Calculus

Problem 20201

Find the dimensions of a cylindrical can with volume 950 cm³ to minimize metal cost (0.01/cm²sides,0.01/cm² sides, 0.02/cm² top/bottom). What is the height/radius ratio?

See Solution

Problem 20202

Ein Snowboarder fährt mit der Bewegung s(t)=1,5t2s(t)=1,5 t^2. Berechne: a) Weg nach 1s und 5s, b) mittlere Geschwindigkeit in 5s, c) Momentangeschwindigkeit nach 5s.

See Solution

Problem 20203

Calculate the integral A=916154xdxA=\int_{9}^{16} 15 \sqrt{4-\sqrt{x}} d x.

See Solution

Problem 20204

Berechnen Sie die Fläche zwischen den Kurven F(x)=1x2F(x) = -\frac{1}{x^2} und g(x)=2.5x5.25g(x) = 2.5x - 5.25.

See Solution

Problem 20205

Find dydx\frac{dy}{dx} for 2x2+3x3y5y3=162x^2 + 3x^3 y - 5y^3 = 16 and the tangent line at (2,2)(2,2).

See Solution

Problem 20206

A particle moves in the xyxy-plane with position x(t),y(t)=sin(2t),t2t\langle x(t), y(t)\rangle=\langle\sin(2t), t^2-t\rangle for 0t80 \leq t \leq 8.
a. Find the speed at t=3t=3 seconds.
b. Is the speed increasing or decreasing at t=5t=5 seconds?
c. Calculate the total distance traveled from t=0t=0 to t=6t=6 seconds.
d. Find the position at t=11t=11 seconds if the particle moves straight after t=8t=8.

See Solution

Problem 20207

Find the derivative dydx\frac{d y}{d x} for y=0x12+13t2dty=\int_{0}^{x} \sqrt{12+13 t^{2}} dt. What is dydx=\frac{d y}{d x}=\square?

See Solution

Problem 20208

Calculate the integral from 1 to 4 of x2+xx^{2}+\sqrt{x}. Find 14(x2+x)dx=(\int_{1}^{4}\left(x^{2}+\sqrt{x}\right) d x=\square( exact answer).

See Solution

Problem 20209

Evaluate the integral using the fundamental theorem of calculus: 14(4x2+5)dx=\int_{1}^{4}(4 x^{2}+5) dx=\square

See Solution

Problem 20210

A car's velocity is v(t)=20tv(t)=20t for 0t60 \leq t \leq 6. Estimate distance with Δt=2\Delta t=2 and find the exact distance.

See Solution

Problem 20211

Estimate the total water volume used by a factory from 6 am to 9 am, given flow rates from 70 m3/hr70 \mathrm{~m}^{3}/\mathrm{hr} to 250 m3/hr250 \mathrm{~m}^{3}/\mathrm{hr}.  Best estimate =im3 \text { Best estimate }=\mathbf{i} \quad \mathrm{m}^{3}

See Solution

Problem 20212

Evaluate the integral using substitution: (x22x)(x33x2+6)23dx\int\left(x^{2}-2 x\right)\left(x^{3}-3 x^{2}+6\right)^{\frac{2}{3}} d x

See Solution

Problem 20213

Find f(2)f^{\prime}(2) given that 40+4f(x)+x2(f(x))3=040 + 4f(x) + x^{2}(f(x))^{3} = 0 and f(2)=2f(2) = -2.

See Solution

Problem 20214

Find g(89)g^{\prime}\left(-\frac{8}{9}\right) given 8g(x)9xsin(g(x))=72x217x728 g(x)-9 x \sin (g(x))=72 x^{2}-17 x-72 and g(89)=0g\left(-\frac{8}{9}\right)=0.

See Solution

Problem 20215

Evaluate the integral using substitution: (1+4lnx)10xdx\int \frac{(1+4 \ln x)^{10}}{x} d x.

See Solution

Problem 20216

Evaluate the integral: 8x(7+8x)5dx\int \frac{8}{\sqrt{x}(7+8 \sqrt{x})^{5}} dx

See Solution

Problem 20217

Use L'Hôpital's rule to show: (a) limxln(xn)xk=0\lim _{x \rightarrow \infty} \frac{\ln \left(x^{n}\right)}{x^{k}}=0; (b) limxln(ln(xn))ln(xk)=0\lim _{x \rightarrow \infty} \frac{\ln \left(\ln \left(x^{n}\right)\right)}{\ln \left(x^{k}\right)}=0.

See Solution

Problem 20218

Ein Behälter hat zu Beginn 2m32 m^{3} Öl. Zuflussrate ist f(t)=0,1e0,1tf(t)=0,1 e^{-0,1 t}. Bestimmen Sie die Ölmenge g(t)g(t) für t>0t>0 und die Zeit bis 2,5m32,5 m^{3}. Warum nie mehr als 3m33 m^{3}?

See Solution

Problem 20219

Find the shortest ladder length L(θ)L(\theta) that reaches over a 4 ft fence, 2 ft from a building.
[A] Formula for L(θ)L(\theta):
L(θ)= L(\theta)=
[B] Derivative L(θ)L^{\prime}(\theta):
L(θ)= L^{\prime}(\theta)=
[C] Find θ\theta where L(θ)=0L^{\prime}(\theta)=0 and compute L(θmin)L\left(\theta_{\min }\right) \approx (to 5 decimal places) feet.

See Solution

Problem 20220

Evaluate the integral 8t9cos(1t81)dt\int \frac{8}{t^{9}} \cos \left(\frac{1}{t^{8}}-1\right) dt.

See Solution

Problem 20221

Bestimmen Sie das Verhalten von ff für xx \rightarrow \infty und xx \rightarrow -\infty für die folgenden Funktionen: a) f(x)=exx4+1f(x)=\frac{e^{x}}{x^{4}+1} b) f(x)=exx2f(x)=e^{x} \cdot x^{2} c) f(x)=x2exf(x)=\frac{-x^{2}}{e^{x}} d) f(x)=2ex10x3f(x)=2 e^{x}-10 x^{3} e) f(x)=100x4+0,1exf(x)=100 x^{4}+0,1 \cdot e^{x} f) f(x)=1x2exf(x)=\frac{-1-x^{2}}{e^{x}}

See Solution

Problem 20222

Bestimmen Sie das Verhalten von ff für xx \rightarrow \infty und xx \rightarrow -\infty. Geben Sie die waagerechte Asymptote an. a) f(x)=exx4+1f(x)=\frac{e^{x}}{x^{4}+1} b) f(x)=exx2f(x)=e^{x} \cdot x^{2} c) f(x)=x2exf(x)=\frac{-x^{2}}{e^{x}}

See Solution

Problem 20223

Show why limxxnex=0\lim _{x \rightarrow \infty} x^{n} e^{-x}=0 using L'Hôpital's rule for positive integer nn.

See Solution

Problem 20224

Projectile fired vertically with initial velocity 550ft/sec550 \mathrm{ft/sec} and g=32ft2/secg=-32 \mathrm{ft}^2/sec. Find: A) velocity eqn B) displacement eqn C) velocity at 3s D) time to max height E) max height.

See Solution

Problem 20225

Find the volume of the solid formed by revolving the region between y=x2+2y=x^{2}+2 and y=x1/2y=x^{1/2} from x=2x=2 to x=4x=4 around the yy-axis. Round to the tenths place.

See Solution

Problem 20226

Find the volume of the cylinder formed by revolving f(x)=e5x2f(x)=e^{5 x^{2}} from x=0.8x=0.8 to x=1x=1. Round to tenths.

See Solution

Problem 20227

Bestimme die Woche mit den meisten Brötchenverkäufen, den langfristigen Verkauf und die Verkäufe in den ersten 8 Wochen. Funktion: f(x)=2000xe0,5x+2500f(x)=2000 \cdot x \cdot e^{-0,5 x}+2500.

See Solution

Problem 20228

Find the indefinite integral of x2cos(3x)dxx^{2} \cos (3 x) \, dx.

See Solution

Problem 20229

Find the position function s(t)s(t) given a(t)=16t6a(t)=16 t-6, v(1)=4v(1)=4, and s(3)=6(10pt)s(3)=6(10 p t).

See Solution

Problem 20230

Evaluate the integral using integration by parts: ln(x)x5 dx=\int \frac{\ln (x)}{x^{5}} \mathrm{~d} x=

See Solution

Problem 20231

An object at 150F150^{\circ} \mathrm{F} cools in water at 70F70^{\circ} \mathrm{F}. Find F(t)F(t) with cooling constant k=1.4k=1.4. F(t)= F(t)=

See Solution

Problem 20232

Calculate the integral: x2sin(6x)dx\int x^{2} \sin (6 x) d x.

See Solution

Problem 20233

What is the best u-substitution for 4x4sin(7x5+4)dx\int 4 x^{4} \sin (7 x^{5}+4) dx? Choose one: 7x5+47 x^{5}+4, u=sin(x)u=\sin (x), u=x+4u=x+4, u=xu=x.

See Solution

Problem 20234

What is the new integral in terms of uu after performing uu-sub for x3sin(x4)dx\int x^{3} \sin(x^{4}) \mathrm{dx}?

See Solution

Problem 20235

Find the average value of x9+7x^{9}+7 over the interval [4,8][4,8]. Provide an exact or decimal answer with 0.1% accuracy.

See Solution

Problem 20236

Find the best u-substitution for sec2xtan4xdx\int \sec ^{2} x \tan ^{4} x d x. Choose one: u=tan(x)u=\tan (x), u=sec(x)u=\sec (x), u=tan^xu=\tan \hat{\uparrow} x, u=xu=x, u=sec2xu=\sec ^{2} x.

See Solution

Problem 20237

Find the limit as xx approaches 0 from the right: limx0+sin(x)sin(x)sin(x)\lim _{x \rightarrow 0^{+}} \sin (x)^{\sin (x)^{\sin (x)}}.

See Solution

Problem 20238

3. (a) Why is ln(x)dx=xln(x)+C\int \ln (|x|) d x=x \ln (|x|)+C incorrect? (b) What is the correct value of ln(x)dx\int \ln (|x|) d x?

See Solution

Problem 20239

Gegeben sind die Funktionen ft(x)=etx1(t>0)f_{t}(x)=e^{t x}-1(t>0). Bestimmen Sie tt für folgende Aufgaben: a) Geht durch den Ursprung? b) ft(2)=5f_{t}(2)=5? c) ftf_{t}^{\prime} schneidet yy-Achse bei S(03)S(0 \mid 3)? d) ft=g(x)=8x1f_{t}=g(x)=8^{x}-1? e) Normale von f1f_{1} schneidet xx-Achse? f) Normale von ftf_{t} schneidet xx-Achse bei Q(20)Q(2 \mid 0)? g) Ist ftf_{t} monoton wachsend? h) Fläche für t>0t>0 ist endlich. Wie ist tt zu wählen, damit der Flächeninhalt 2 ist?

See Solution

Problem 20240

Identify the TRUE statements regarding these integrals without evaluating them:
1. 22x3dx=202x3dx\int_{-2}^{2} x^{3} d x=2 \int_{0}^{2} x^{3} d x
2. 32x2dx=202x2dx\int_{-3}^{2} x^{2} d x=2 \int_{0}^{2} x^{2} d x
3. 44x2dx=204x2dx\int_{-4}^{4} x^{2} d x=2 \int_{0}^{4} x^{2} d x

See Solution

Problem 20241

Une entreprise fabrique des objets avec un coût C(q)=0,0000025q30,03q2+120q+40000C(q)=0,0000025 q^{3}-0,03 q^{2}+120 q+40000.
1) Quel est le prix maximal en \?2)Cou^tmarginalaˋ100uniteˊs,arrondiaˋdeuxdeˊcimales.3)Trouvez? 2) Coût marginal à 100 unités, arrondi à deux décimales. 3) Trouvez R(q)pourlerevenu.4)Revenumarginalaˋ100uniteˊs,arrondiaˋdeuxdeˊcimales.5)Eˊtablissez pour le revenu. 4) Revenu marginal à 100 unités, arrondi à deux décimales. 5) Établissez \epsilon(p)sans sans q$.

See Solution

Problem 20242

Une entreprise fabrique qq objets avec un coût C(q)=0,0000025q30,03q2+120q+40000C(q)=0,0000025 q^{3}-0,03 q^{2}+120 q+40000. Trouvez le prix maximal en \$ et le coût marginal à 100 unités.

See Solution

Problem 20243

Find the marginal cost in \forproducing100unitsusingthecostfunction for producing 100 units using the cost function C(q) = 0.0000025q^3 - 0.03q^2 + 120q + 4000$. Round to two decimal places.

See Solution

Problem 20244

Une entreprise fabrique qq objets avec un coût C(q)=0,0000025q30,03q2+120q+40000C(q)=0,0000025 q^{3}-0,03 q^{2}+120 q+40000. La demande est q=1800001000p6q=\frac{180000-1000 p}{6}.
1) Quel est le prix maximal (en \$) pour le produit? 2) Calculez le coût marginal (en \$) à 100 unités, arrondi à deux décimales.

See Solution

Problem 20245

Fonction de coût : C(q)=0,0000025q30,03q2+120q+40000C(q)=0,0000025 q^{3}-0,03 q^{2}+120 q+40000.
1) Prix maximal en \?2)Cou^tmarginalaˋ100uniteˊs,arrondiaˋdeuxdeˊcimales?3)Fonctionderevenu ? 2) Coût marginal à 100 unités, arrondi à deux décimales ? 3) Fonction de revenu R(q)?4)Revenumarginalaˋ100uniteˊs,arrondiaˋdeuxdeˊcimales?5)Eˊlasticiteˊdelademande ? 4) Revenu marginal à 100 unités, arrondi à deux décimales ? 5) Élasticité de la demande \epsilon(p)sans sans q$ ? 6) Élasticité à \$100 ? 7) Prix de vente pour une demande unitaire ? 8) Quantité vendue quand la demande est unitaire ?

See Solution

Problem 20246

Evaluate the integral of tan1(5x)1+25x2\frac{\tan^{-1}(5x)}{1+25x^2} with respect to xx.

See Solution

Problem 20247

Find the derivative of y=2x2+9x2+7y=\frac{2 x^{2}+9}{x^{2}+7}. What is y=y^{\prime}=\square?

See Solution

Problem 20248

Find the derivative of y=9x+29x5y=\frac{9 x+2}{9 x-5}. Which option correctly shows the derivative process?

See Solution

Problem 20249

Find the limit: limx81x18x8\lim _{x \rightarrow 8} \frac{\frac{1}{x}-\frac{1}{8}}{x-8}. Choose A or B.

See Solution

Problem 20250

Find the derivative of f(y)=4y77y4f(y)=\frac{4 y-7}{7 \sqrt{y}-4}. What is the result?

See Solution

Problem 20251

Find the limit: limz41z14z4\lim _{z \rightarrow 4} \frac{\frac{1}{z}-\frac{1}{4}}{z-4}. Choose A or B.

See Solution

Problem 20252

Find the limits of f(x)=8x5+8x4+48x6f(x)=\frac{8 x^{5}+8 x^{4}+4}{8 x^{6}} as xx \rightarrow \infty and xx \rightarrow -\infty.

See Solution

Problem 20253

Le nombre de personnes qq utilisant le service d'autobus est donné par q(p)=30009pq(p)=3000 \sqrt{9-p}.
1) Calculez l'élasticité de la demande ϵ(p)\epsilon(p) à p=4p=4 et arrondissez à deux décimales. 2) Trouvez le prix pour lequel la demande est unitaire, arrondissez à deux décimales.

See Solution

Problem 20254

Find the derivative of v=9+x6xxv=\frac{9+x-6 \sqrt{x}}{x}. Which option correctly shows the derivative process?

See Solution

Problem 20255

A soccer ball is kicked from 3 ft with an initial speed of 48 ft/s. What is its maximum height?

See Solution

Problem 20256

Find the derivative of the function y=2ex+e3xy=2 e^{-x}+e^{3 x}. What is dydx\frac{d y}{d x}?

See Solution

Problem 20257

Find all derivatives of the function y=(x5)(x+3)(x+4)y=(x-5)(x+3)(x+4). What is y=y'=\square?

See Solution

Problem 20258

Find the first and second derivatives of y=2x4+7x2y=\frac{2 x^{4}+7}{x^{2}}. What is dydx\frac{d y}{d x}?

See Solution

Problem 20259

Evaluate the integral: sin(ln29x)xdx\int \frac{\sin (\ln 29 x)}{x} \, dx

See Solution

Problem 20260

Deux compagnies produisent un bien. Coûts: 77 pour C1 et 99 pour C2. Prix: p=5150.4Qp=515-0.4Q. Trouvez les profits et dérivées.

See Solution

Problem 20261

Find the first and second derivatives of the function w=(1+15z5z)(15z)w=\left(\frac{1+15 z}{5 z}\right)(15-z). Calculate dwdz=\frac{d w}{d z}=\square.

See Solution

Problem 20262

Find the derivative of y=3x8exy=3 x^{8} e^{x}. Which option shows the correct derivative calculation?

See Solution

Problem 20263

Ein Ortsteil hat 500 Einwohner und will das Wachstum modellieren. Bestimmen Sie die ee-Funktion und beantworten Sie folgende Fragen:
e) Gleichung der ee-Funktion? f) Einwohnerzahl vor 10 Jahren? g) Wann verdoppelt sich die Einwohnerzahl? h) Anfangswachstumsgeschwindigkeit? i) Wann halbiert sich die Wachstumsgeschwindigkeit?

See Solution

Problem 20264

Evaluate the integral from 1 to 2: 12x3+4xx4+8x2+6dx\int_{1}^{2} \frac{x^{3}+4 x}{x^{4}+8 x^{2}+6} d x

See Solution

Problem 20265

Find the position of a particle at time t=8t=8 given a(t)=18t+14a(t)=18t+14, s(0)=10s(0)=10, and v(0)=11v(0)=11.

See Solution

Problem 20266

Find the derivative dydx\frac{d y}{d x} for the function y=x8cscx+5y=\sqrt[8]{x} \csc x+5.

See Solution

Problem 20267

Find the derivative dydx\frac{d y}{d x} for the function y=19x+2cosxy=-19 x+2 \cos x. What is ddx(19x+2cosx)\frac{d}{d x}(-19 x+2 \cos x)?

See Solution

Problem 20268

Deux compagnies produisent un bien. Compagnie 1: coût \7,Compagnie2:cou^t$9.Prix:7, Compagnie 2: coût \$9. Prix: p=515-0,4 Q.Trouvezlesprofits. Trouvez les profits \Pi_{1},, \Pi_{2}$ et leurs dérivées.

See Solution

Problem 20269

Find derivatives at x=0x=0: a. ddx(uv)\frac{d}{d x}(u v), b. ddx(uv)\frac{d}{d x}\left(\frac{u}{v}\right), c. ddx(vu)\frac{d}{d x}\left(\frac{v}{u}\right), d. ddx(7v3u)\frac{d}{d x}(7 v-3 u), given u(0)=9u(0)=9, u(0)=4u'(0)=4, v(0)=8v(0)=-8, v(0)=6v'(0)=6.

See Solution

Problem 20270

Is the integral 011+x6dx\int_{0}^{\infty} \frac{1}{\sqrt[6]{1+x}} d x convergent or divergent? If convergent, find its value.

See Solution

Problem 20271

Find the derivative of f(x)=5xx9f(x)=\frac{5 x}{x-9} using f(x)=limzxf(z)f(x)zxf^{\prime}(x)=\lim _{z \rightarrow x} \frac{f(z)-f(x)}{z-x}.

See Solution

Problem 20272

Find the derivative dydx\frac{d y}{d x} for y=tanx1+tanxy=\frac{\tan x}{1+\tan x}. What is dydx\frac{\mathrm{dy}}{\mathrm{dx}}?

See Solution

Problem 20273

Find the derivative dydx\frac{d y}{d x} for the function y=4cosx1sinxy=\frac{4 \cos x}{1-\sin x}.

See Solution

Problem 20274

Evaluate the integral: x2x+12x3+3xdx\int \frac{x^{2}-x+12}{x^{3}+3 x} d x (include absolute values and use CC for the constant).

See Solution

Problem 20275

Is the integral 0e8xdx\int_{0}^{\infty} e^{-8 x} d x convergent or divergent? If convergent, find its value.

See Solution

Problem 20276

Find the value of F(2)F(2) where F(x)=2xt4sin2(t)dtF(x)=\int_{2}^{x} t^{4} \sin ^{2}(t) d t.

See Solution

Problem 20277

Is the integral 31x2+xdx\int_{3}^{\infty} \frac{1}{x^{2}+x} d x convergent or divergent? If convergent, evaluate it.

See Solution

Problem 20278

Determine if the integral 17xex2dx\int_{-\infty}^{\infty} 17 x e^{-x^{2}} d x converges or diverges; evaluate if convergent.

See Solution

Problem 20279

Evaluate the integral from 0 to π10\sqrt[10]{\pi} of 7x9cos(x10)dx7 x^{9} \cos(x^{10}) \, dx.

See Solution

Problem 20280

Find the area between f(x)=x3f(x)=x^{3} and the xx-axis for x[1,0]x \in[-1,0]. What is it?

See Solution

Problem 20281

Find the value of 06f(x)dx\int_{0}^{6} f(x) dx where f(x)={2x for x<1,3 for x1}f(x)=\{2x \text{ for } x<1, 3 \text{ for } x \geq 1\}.

See Solution

Problem 20282

Use Newton's method to find a root of ex=3+xe^{-x}=3+x accurate to eight decimal places.

See Solution

Problem 20283

Is the integral 2321x4dx\int_{-2}^{3} \frac{21}{x^{4}} d x convergent or divergent? If convergent, evaluate it.

See Solution

Problem 20284

Find uu if 5t+6dt=15u1/2du\int \sqrt{5 t+6} d t=\frac{1}{5} \int u^{1 / 2} d u. Choices: a. t6t-6, b. 5t+65 t+6, c. t+6t+6, d. 5t65 t-6, e. x6x-6, f. x+6x+6.

See Solution

Problem 20285

Find the inner product of f(x)=15xf(x) = 15x and g(x)=3x3g(x) = 3x^{3} over [3,1][-3,1], given f,g=2×5\langle f, g\rangle = 2 \times 5.

See Solution

Problem 20286

Approximate the root of ex=3+xe^{-x}=3+x using Newton's method to eight decimal places. The root is 1.

See Solution

Problem 20287

If (sin(θ))5cos(θ)dθ=u5du\int(\sin (\theta))^{5} \cos (\theta) d \theta=\int u^{5} d u, what is the value of uu?

See Solution

Problem 20288

Set up an integral for the curve length of y=x5ln(x)y=x-5 \ln (x) from x=1x=1 to x=4x=4: 14(1+(y)2)dx\int_{1}^{4}(\sqrt{1 + (y')^2}) \, dx

See Solution

Problem 20289

Find the inner product of f(x)=15xf(x)=15x and g(x)=3x3g(x)=3x^{3} on C[2,1]C[-2,1].

See Solution

Problem 20290

Find limx2ln(x)3x\lim _{x \rightarrow \infty} \frac{-2 \ln (x)}{3 x}. What is the answer?

See Solution

Problem 20291

Find the distance travelled by an elephant with velocity v(t)=2t2v(t)=2t-2 from t=0t=0 to t=5t=5. Options: a. 15m b. 12s c. -17s d. -15m e. -15s f. 17m

See Solution

Problem 20292

Find the derivative drdθ\frac{d r}{d \theta} for the equation r=2θ2sinθr=2-\theta^{2} \sin \theta.

See Solution

Problem 20293

Find the area of the surface formed by rotating y=cos(16x)y=\cos \left(\frac{1}{6} x\right), for 0x3π0 \leq x \leq 3 \pi, about the xx-axis.

See Solution

Problem 20294

Calculate the integration norm of the polynomial f(x)=3x+6f(x)=-3x+6 on the interval C[0,1]C[0,1].

See Solution

Problem 20295

Calculate the L1L1 norm of f(x)=9x4f(x) = -9x - 4 on the interval [0,1][0,1] using the integral of its absolute value.

See Solution

Problem 20296

Ein Snowboarder fährt den Hang hinunter. Gegeben ist s(t)=1,5t2s(t)=1,5 t^2. Berechne: a) Weg nach 1s und 5s, b) mittlere Geschwindigkeit in 5s, c) Momentangeschwindigkeit nach 5s.

See Solution

Problem 20297

Find the derivative dydx\frac{d y}{d x} for y=tanx1+tanxy=\frac{\tan x}{1+\tan x}. dydx=\frac{\mathrm{dy}}{\mathrm{dx}}=\square

See Solution

Problem 20298

Calculate the weighted integration norm f,f=01(x3)(x3)(8x)dx\langle f, f\rangle=\int_{0}^{1} (x-3)(x-3)(8x) dx for f(x)=x3f(x)=x-3 and w(x)=8xw(x)=8x.

See Solution

Problem 20299

Find the derivative dpdq\frac{d p}{d q} for p=sinqcosqsinqp=\frac{\sin q-\cos q}{\sin q}. What is dpdq=\frac{d p}{d q}=\square?

See Solution

Problem 20300

Find the derivative drdθ\frac{d r}{d \theta} for the function r=(3+secθ)sinθr=(3+\sec \theta) \sin \theta. What is drdθ\frac{\mathrm{dr}}{\mathrm{d} \theta}?

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord