Calculus

Problem 27001

Leiten Sie die Funktionen ab und klammern Sie aus: a) f(x)=2xe3xf(x)=2 x e^{3 x}, b) g(x)=(x3)e2xg(x)=(x-3)e^{2 x}, c) f(t)=t2e12t+5f(t)=t^{2} e^{\frac{1}{2} t}+5, d) g(t)=(t32t2)e2tg(t)=(t^{3}-2 t^{2})e^{-2 t}, e) f(x)=(2x4)e0,5xf(x)=(2 x-4)e^{0,5 x}, f) h(x)=(x2x)e0,01xh(x)=(x^{2}-x)e^{-0,01 x}.

See Solution

Problem 27002

Find the tangent line equation to the curve y=2x2y=2^{-x^{2}} at x=0x=0 and graph both the curve and tangent.

See Solution

Problem 27003

Analyze the model P=(5×108)e0.20015tP=\left(5 \times 10^{8}\right) e^{0.20015 t} for interest payments from 1967-1979. Calculate rates for 1968, 1978, 1988, and 1998, and verify with Statistics Canada.

See Solution

Problem 27004

Differentiate y=6(x+2)y=\frac{6}{(x+2)} to find dydx=a(x2+bx+c)\frac{d y}{d x}=\frac{a}{(x^{2}+b x+c)}. What is 'a'?

See Solution

Problem 27005

Differentiate the following functions: a. y=23xy=2^{3x}, b. y=3.1x+x3y=3.1^{x}+x^{3}, d. w=10(56n+n2)w=10^{(5-6n+n^{2})}, e. y=3x2+2y=3^{x^{2}+2}.

See Solution

Problem 27006

Differentiate these functions: a. y=23xy=2^{3x}, b. y=3.1x+x3y=3.1^{x}+x^{3}, d. w=10(56n+n2)w=10^{(5-6n+n^{2})}, e. y=3x2+2y=3^{x^{2}+2}.

See Solution

Problem 27007

An epidemiologist starts with 2,000 bacteria decaying at 4.5%4.5\% per hour. How many will remain after 36 hours?

See Solution

Problem 27008

Find the derivatives of the following functions: a. y=x5×(5)xy=x^{5} \times(5)^{x} b. y=x(3)x2y=x(3)^{x^{2}} c. v=2ttv=\frac{2^{t}}{t} d. f(x)=3x2f(x)=\frac{\sqrt{3^{x}}}{2}

See Solution

Problem 27009

Find the derivative of the following functions: a. y=x5×(5)xy=x^{5} \times(5)^{x}, c. v=2ttv=\frac{2^{t}}{t}.

See Solution

Problem 27010

Bestimme die Ableitung der Funktion f(t)=12t2f(t) = \frac{1}{2} t^{-2}.

See Solution

Problem 27011

Graph the piecewise function f(x)={x2 if x<1x+1 if x1f(x)=\left\{\begin{array}{ll}x^{2} & \text { if } x<-1 \\ x+1 & \text { if } x \geq-1\end{array}\right. and find limits at x=1x=-1 and x=1x=1.

See Solution

Problem 27012

Find the limit as xx approaches -\infty for 2x45x2+3\frac{2x - 4}{\sqrt{5x^2 + 3}}.

See Solution

Problem 27013

Find the derivatives: 1) y=x(3)x2y = x(3)^{x^{2}} and 2) f(x)=3xx2f(x) = \frac{\sqrt{3^{x}}}{x^{2}}.

See Solution

Problem 27014

Find a function that behaves like f(x)=6x24x+186x+8f(x)=\frac{6 x^{2}-4 x+18}{6 x+8} for large x|x|. y=y=\square

See Solution

Problem 27015

Find the derivative of the function f(x)=3xx2f(x) = \frac{\sqrt{3^{x}}}{x^{2}}.

See Solution

Problem 27016

Find the tangent line to the curve given by x=t2+2tx=t^{2}+2t and y=t3+t2y=t^{3}+t^{2} at t=1t=1.

See Solution

Problem 27017

Find the slope of the tangent line to the polar curve r=cosθr=\cos \theta at θ=π6\theta=\frac{\pi}{6}.

See Solution

Problem 27018

Find the half-life of a radioactive material with P(t)=100(1.2)tP(t)=100(1.2)^{-t} and its decay rate at half-life.

See Solution

Problem 27019

Calculate the integral: 2x2+7x8(x+2)(2x1)(1x)dx\int \frac{-2 x^{2}+7 x-8}{(x+2)(2 x-1)(1-x)} d x

See Solution

Problem 27020

Evaluate the integral: 2x2+7x8(x+2)(2x1)(1x)dx=?\int \frac{-2 x^{2}+7 x-8}{(x+2)(2 x-1)(1-x)} \, dx = ? Choose (A), (B), (C), or (D).

See Solution

Problem 27021

Determine the direction of the particle moving through the point (3,2)(3,-2) given its position (x(t),y(t))=(52t,t23)(x(t), y(t))=(5-2t, t^{2}-3).

See Solution

Problem 27022

Find the integral: 6x2+10x+16dx\int \frac{6}{x^{2}+10 x+16} d x.

See Solution

Problem 27023

Evaluate the integral: 6x2+10x+16dx\int \frac{6}{x^{2}+10 x+16} d x. Choose the correct answer from the options.

See Solution

Problem 27024

Evaluate the integral: 8x24dx\int \frac{8}{x^{2}-4} d x. Which is the correct answer? (A) (B) (C) (D) (E)

See Solution

Problem 27025

Find all values of pp for which the integral 11x3p+1dx\int_{1}^{\infty} \frac{1}{x^{3p+1}} dx converges.

See Solution

Problem 27026

Evaluate the integral 1x(1+x2)2dx\int_{1}^{\infty} \frac{x}{(1+x^{2})^{2}} dx and choose the correct answer: (A) 12-\frac{1}{2}, (B) 14-\frac{1}{4}, (C) 14\frac{1}{4}, (D) 12\frac{1}{2}, (E) divergent.

See Solution

Problem 27027

Evaluate the integral 1x2(x2+2)2dx\int_{1}^{\infty} \frac{x^{2}}{(x^{2}+2)^{2}} dx. Options: (A) 18-\frac{1}{8}, (B) हो, (C) 18\frac{1}{8}, (b) 1, (1) divergent.

See Solution

Problem 27028

Find the area of the region RR between y=e2xy=e^{-2 x} and the xx-axis for x3x \geq 3. Options: (A) 12e6\frac{1}{2 e^{6}}, (B) 1e6\frac{1}{e^{6}}, (C) 2e6\frac{2}{e^{6}}, (D) π2e6\frac{\pi}{2 e^{6}}, (E) infinite.

See Solution

Problem 27029

Montrer que le volume d'un cône de hauteur hh et rayon rr est V=πr2h3V=\frac{\pi r^{2} h}{3} en utilisant la méthode des disques.

See Solution

Problem 27030

Estimate the area change rate of a circle A(r)=πr2A(r)=\pi r^{2} when the radius rr is 7.

See Solution

Problem 27031

Find the integral expression for the area of region RR between f(θ)=3+3cosθf(\theta)=3+3\cos\theta and g(θ)=4+2cosθg(\theta)=4+2\cos\theta.

See Solution

Problem 27032

Given f(0)=2f(0)=2, f(4)=3f(4)=-3, and 04f(x)dx=8\int_{0}^{4} f(x) dx=8, find 04xf(x)dx\int_{0}^{4} x f'(x) dx. Choices: (A) -20 (B) -13 (C) -12 (D) -7 (E) 36.

See Solution

Problem 27033

Find the area between the polar curve r=1+3πθr=\sqrt{1+\frac{3}{\pi} \theta} and the xx-axis for 0θπ0 \leq \theta \leq \pi.

See Solution

Problem 27034

Find the area of the region RR in the first quadrant bounded by r=6sin(3θ)r=\sqrt{6 \sin (3 \theta)}. Options: (A) 1 (B) 2 (C) 4 (D) 6

See Solution

Problem 27035

Find a differentiable function f(x)f(x) such that f(x)sinxdx=f(x)cosx+4x3cosxdx\int f(x) \sin x \, dx=-f(x) \cos x+\int 4 x^{3} \cos x \, dx. Which could be f(x)f(x)? (A) cosx\cos x (B) sinx\sin x (C) 4x34 x^{3} (D) x4-x^{4} (E) x4x^{4}

See Solution

Problem 27036

Which integral finds the area bounded by θ=0\theta=0, θ=π4\theta=\frac{\pi}{4}, and r=2cosθ+sinθr=\frac{2}{\cos \theta+\sin \theta}?

See Solution

Problem 27037

Find the length of the path for x=sin(t3)x=\sin(t^3) and y=e5ty=e^{5t} from t=0t=0 to t=πt=\pi. Which integral is correct?

See Solution

Problem 27038

Which statement is true about the integral 0πsec2xdx\int_{0}^{\pi} \sec ^{2} x \, dx? (A) 0, (B) 2/32/3, (C) diverges due to tanx\tan x, (D) diverges due to sec2x\sec ^{2} x.

See Solution

Problem 27039

A particle moves on the parabola y=x2xy=x^{2}-x at speed 2102\sqrt{10}. Find dydt\frac{d y}{d t} at (2,2)(2,2).

See Solution

Problem 27040

Find the limit as xx approaches 5 for the function 1x4\frac{1}{x-4}.

See Solution

Problem 27041

Which expression equals 0217x+43x27x6dx\int_{0}^{2} \frac{17 x+4}{3 x^{2}-7 x-6} d x? (A) 022x3dx+0253x+2dx\int_{0}^{2} \frac{2}{x-3} d x+\int_{0}^{2} \frac{5}{3 x+2} d x (B) 025x3dx+0223x+2dx\int_{0}^{2} \frac{5}{x-3} d x+\int_{0}^{2} \frac{2}{3 x+2} d x (C) 024x3dx+0217x3x+2dx\int_{0}^{2} \frac{4}{x-3} d x+\int_{0}^{2} \frac{17 x}{3 x+2} d x (D) 0217xx3dx+0243x+2dx\int_{0}^{2} \frac{17 x}{x-3} d x+\int_{0}^{2} \frac{4}{3 x+2} d x

See Solution

Problem 27042

Find limx43x2\lim _{x \rightarrow-4} 3 x^{2} using the given values of f(x)f(x).

See Solution

Problem 27043

Find the limit: limx51x4=\lim _{x \rightarrow 5} \frac{1}{x-4}=\square (Enter an integer or decimal.)

See Solution

Problem 27044

Find the limit: limx2x+3x2+1=\lim _{x \rightarrow 2} \frac{x+3}{x^{2}+1}=\square (Enter an integer or decimal.)

See Solution

Problem 27045

Find the slope of the tangent line to f(x)=4x2f(x)=-4 x^{2} at (3,36)(3,-36) and its slope-intercept equation.

See Solution

Problem 27046

Find the slope of the tangent line to f(x)=4x2f(x)=-4 x^{2} at (3,36)(3,-36) and its slope-intercept equation. What is mtan=m_{\tan }=\square?

See Solution

Problem 27047

A fan throws a puck at 15 m/s15 \mathrm{~m/s} and 35° from 10 m10 \mathrm{~m}. Find: a) time in air, b) max height, c) horizontal distance.

See Solution

Problem 27048

Determine the type of discontinuity for the graph of 4x2-\frac{4}{x^{2}}: infinite, jump, point, or continuous.

See Solution

Problem 27049

Calculez l'augmentation du profit total lorsque qq passe de 5 à 10 avec Pm(q)=464qP_{m}(q)=46-4q.

See Solution

Problem 27050

Quel est le profit total pour 10 unités si le profit total pour 6 unités est de 230 \et et P_{m}=\frac{80}{\sqrt{4 q+1}}$?

See Solution

Problem 27051

Determine the type of discontinuity for f(x)=x3+7x2+10xx+5f(x)=\frac{x^{3}+7 x^{2}+10 x}{x+5}: infinite, jump, point, or continuous?

See Solution

Problem 27052

Find when the particle with velocity v(t)=2t+6v(t)=-2t+6 has increasing velocity and increasing speed.

See Solution

Problem 27053

Untersuchen Sie die Funktion f(x)=2x2+3x5f(x)=2 x^{2}+3 x-5 auf lokale Extremalpunkte und skizzieren Sie ihren Graphen.

See Solution

Problem 27054

Determine which integers 1,2,3,4,51, 2, 3, 4, 5 could be xx-coordinates of relative minima or maxima based on h(x)h'(x) and h(x)h''(x).

See Solution

Problem 27055

Determine the xx-coordinates of relative minima and maxima for h(x)h(x) using h(x)h'(x) and h(x)h''(x) values at 1,2,3,4,51, 2, 3, 4, 5.

See Solution

Problem 27056

Find if the curve with slope dydx=x2y\frac{dy}{dx} = \frac{x-2}{y} has a local min, max, or neither at (2,3) using the second derivative test.

See Solution

Problem 27057

Ein radioaktives Material hat zu Beginn 0,5 kg0,5 \mathrm{~kg}. Nach einem Jahr sind es 0,4 kg0,4 \mathrm{~kg}. Bestimme die Exponentialfunktion und die Halbwertszeit. Wann sind 1 g1 \mathrm{~g} Uran erreicht?

See Solution

Problem 27058

Wasserhöhe hk(t)=20tekt+10h_{k}(t)=20 \cdot t \cdot e^{-k t}+10.
a) Höhe zu Beginn (t=0t=0)? b) Finde kk, wenn hk(1)=12h_{k}(1)=12 m. c) Änderungsrate bei t=0t=0? d) Frage zu f2(t+1)f2(t)=0,5f_{2}(t+1)-f_{2}(t)=0,5?

See Solution

Problem 27059

Gegeben ist die Funktion f(x)=0,0002x6+0,0078x50,1098x4+0,6562x31,386x2+6f(x)=-0,0002 x^{6}+0,0078 x^{5}-0,1098 x^{4}+0,6562 x^{3}-1,386 x^{2}+6 für den Wasserverbrauch.
1. Berechne f(7.5)f(7.5).
2. Warum kann f(x)f(x) nur im Intervall [0;14][0; 14] den Verbrauch modellieren?
3. Finde die Hoch- und Tiefpunkte von f(x)f(x).
4. Analysiere das Monotonieverhalten von f(x)f(x) und interpretiere es.
5. Bestimme die Zeiten, bei denen f(x)=600f(x)=600.

See Solution

Problem 27060

Berechnen Sie die Fläche A zwischen den Graphen f(x)=0,5x2+2f(x)=0,5 x^{2}+2 und g(x)=0,5x+1g(x)=-0,5 x+1 für x1=1x_{1}=-1 und x2=1,5x_{2}=1,5.

See Solution

Problem 27061

Find the rate of change of the equation y=3x3y=3x-3.

See Solution

Problem 27062

Use the function g(x)=x43x33x23g(x)=x^{4}-3 x^{3}-3 x^{2}-3.
a. Calculate the average rate of change of g(x)g(x) on [0,3][0,3].
b. Find all xx in [0,3][0,3] where the instantaneous rate equals this average rate, accurate to three decimal places.

See Solution

Problem 27063

Find the cc values that satisfy the Mean Value Theorem for f(x)=x+xf(x)=x+\sqrt{x} on the interval [1,4][1,4].

See Solution

Problem 27064

Approximate f(3.1)f(3.1) using the tangent line at the point (3,2)(3,2) on y(x)=x33x2+2y(x)=x^{3}-3 x^{2}+2.

See Solution

Problem 27065

A kite string is held 5 feet high and let out at 2ft/sec2 \mathrm{ft/sec}. Find the kite's horizontal speed when the string is 125 feet.

See Solution

Problem 27066

1. Find f(3)f^{\prime}(3) for the tangent line to y=f(x)y=f(x) at x=3x=3.
2. Write the equation of the tangent line.
3. Use the tangent line to estimate f(2.9)f(2.9).

See Solution

Problem 27067

Calculate the integral: (2x5+4x7)dx\int\left(\frac{2}{x^{5}}+4 x^{7}\right) d x.

See Solution

Problem 27068

Find the integral of x7x^{-7} with respect to xx.

See Solution

Problem 27069

Find the derivative of the function f(x)=13x9f(x)=\frac{1}{3} x^{-9}, i.e., compute f(x)f^{\prime}(x).

See Solution

Problem 27070

Find the derivative of the function f(x)=x23f(x)=\sqrt[3]{x^{2}}. What is f(x)f^{\prime}(x)?

See Solution

Problem 27071

Find the integral: 3x2x3dx\int \frac{3 x}{2 x-3} d x

See Solution

Problem 27072

Find the derivative of the function f(x)=1x2f(x)=\frac{1}{x^{2}}. What is f(x)f^{\prime}(x)?

See Solution

Problem 27073

Find the derivative of the function f(x)=3x4f(x)=3 x^{4}. What is f(x)f^{\prime}(x)?

See Solution

Problem 27074

Find the limit: limxπcosx3sin3x2\lim _{x \rightarrow \pi} \frac{\cos x}{3 \sin \frac{3 x}{2}}

See Solution

Problem 27075

Evaluate the integral 02(x3)2dx\int_{0}^{2}(x-3)^{-2} d x.

See Solution

Problem 27076

Evaluate the integral 10.5(1x2+x3)dx\int_{-1}^{-0.5}\left(\frac{1}{x^{2}}+x^{3}\right) dx.

See Solution

Problem 27077

Calculate 1014x3x2x5dx10 \int_{1}^{4} \frac{x^{3}-x^{2}}{x^{5}} dx.

See Solution

Problem 27078

Gegeben ist die Funktion f(x,y)=(yxy+xy)xf(x, y)=(y x^{y}+x y)^{x}. Welche Ableitungen sind korrekt?

See Solution

Problem 27079

Die Funktion f(a,b,c)=4a3b23c2f(a, b, c)=4 a^{3} \sqrt[3]{b^{2}} c^{2} hat die dritte Ableitung 0. Nach welcher Variable wurde abgeleitet? aa, bb, cc oder keine?

See Solution

Problem 27080

Find the limit: limx0x2sinx\lim _{x \rightarrow 0} \frac{x}{-2 \sin x}.

See Solution

Problem 27081

Calculate 1014x3x2x5dx10 \int_{1}^{4} \frac{x^{3}-x^{2}}{x^{5}} d x.

See Solution

Problem 27082

Find the limit as xx approaches infinity for xx4(x31)(2x+3)\frac{x-x^{4}}{(x^{3}-1)(2x+3)}.

See Solution

Problem 27083

Find where the function f(x)=xex3exf(x)=x e^{x}-3 e^{x} is decreasing, its relative extrema, concave up intervals, and inflection points.

See Solution

Problem 27084

Find the derivative F(3)F'(3) for the function F(x)=4xx2F(x) = 4x - x^2 using the limit definition.

See Solution

Problem 27085

Find the min and max values of y=x312xy=x^{3}-12 x on the interval [0,3][0,3].

See Solution

Problem 27086

Find the derivative dydx\frac{d y}{d x} for the equation sin(y+2)+ln(cotx)=0\sin (y+2)+\ln (\cot x)=0.

See Solution

Problem 27087

Find where the tangent to f(x)=13x312x2+12f(x)=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+\frac{1}{2} is parallel to y=10y=10.

See Solution

Problem 27088

Find the xx-value(s) that satisfy the Mean Value Theorem for f(x)=13x3xf(x)=\frac{1}{3} x^{3}-x on [3,0][-3,0].

See Solution

Problem 27089

Let ff be continuous with f(bx)=f(x)f(b-x)=f(x). Prove 0bxf(x)dx=b20bf(x)dx\int_{0}^{b} x f(x) dx=\frac{b}{2} \int_{0}^{b} f(x) dx. Then evaluate 0πxsin2022xsin2022x+cos2022xdx\int_{0}^{\pi} \frac{x \sin^{2022} x}{\sin^{2022} x+\cos^{2022} x} dx.

See Solution

Problem 27090

(a) For n2n \geq 2, show that f(x)=nxn2(1x)n2[G(n)+H(n)x(1x)]f'(x)=n x^{n-2}(1-x)^{n-2}[G(n)+H(n)x(1-x)] and find G(n)G(n), H(n)H(n). (b) Compute Sn=01sn(1s)nn!esdsS_{n}=\int_{0}^{1} \frac{s^{n}(1-s)^{n}}{n !} e^{s} ds: (i) Find S0S_{0}, S1S_{1}. (ii) Show Sn=Sn2(4n2)Sn1S_{n}=S_{n-2}-(4n-2)S_{n-1} for n2n \geq 2. (iii) Prove 0<n!Sn<e0<n!S_{n}<e for all n0n \geq 0.

See Solution

Problem 27091

Vrai ou faux : évaluez les limites suivantes et justifiez.
1. limx4(2xx48x4)=limx42xx4limx48x4\lim _{x \rightarrow 4}\left(\frac{2 x}{x-4}-\frac{8}{x-4}\right)=\lim _{x \rightarrow 4} \frac{2 x}{x-4}-\lim _{x \rightarrow 4} \frac{8}{x-4}
2. limx1x2+6x7x2+5x6=limx1(x2+6x7)limx1(x2+5x6)\lim _{x \rightarrow 1} \frac{x^{2}+6 x-7}{x^{2}+5 x-6}=\frac{\lim _{x \rightarrow 1}\left(x^{2}+6 x-7\right)}{\lim _{x \rightarrow 1}\left(x^{2}+5 x-6\right)}

See Solution

Problem 27092

How long to charge a capacitor to 1.17% of max with a 17V17-\mathrm{V} battery and time constant 82.1 s82.1 \mathrm{~s}?

See Solution

Problem 27093

Calculate these limits: (a) limx0[cos(4x2)1x2sin(2x2)]\lim _{x \rightarrow 0}\left[\frac{\cos (4x^{2})-1}{x^{2} \sin (2x^{2})}\right], (b) limx0[ln(1+2x+x2)x]\lim _{x \rightarrow 0}\left[\frac{\ln (1+2x+x^{2})}{x}\right], (c) limx0[(1+2x)1x21arcsin(x)]\lim _{x \rightarrow 0}\left[\frac{(1+2x) \sqrt{1-x^{2}}-1}{\arcsin (x)}\right]. Use limits: limh0sin(h)h=1\lim _{h \rightarrow 0} \frac{\sin (h)}{h}=1, limh0eh1h=1\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1, limh0cos(h)1h=0\lim _{h \rightarrow 0} \frac{\cos (h)-1}{h}=0.

See Solution

Problem 27094

Calculez limx3x29x2+2x3\lim _{x \rightarrow 3} \frac{x^{2}-9}{x^{2}+2 x-3}.

See Solution

Problem 27095

Find all maxima, minima, and x-intercepts of the function y=3cos(2x+π)y=3 \cos (2 x+\pi).

See Solution

Problem 27096

Find the derivative of (4x3+x)(6x22x)(4x^3 + x)(6x^2 - 2x) with respect to xx.

See Solution

Problem 27097

Find the derivatives of: h(t) = e t^{2} + 3 e^{-1} and f \cdot g(t) = \frac{e^{2 t}}{1 + e^{2 t}}.

See Solution

Problem 27098

Trouvez la limite suivante : limx1+x29x2+2x3\lim _{x \rightarrow 1^{+}} \frac{x^{2}-9}{x^{2}+2 x-3}

See Solution

Problem 27099

Find the derivatives of: h(t)=et2+3eth(t)=e t^{2}+3 e^{-t} and g(t)=e2t1+e2tg(t)=\frac{e^{2 t}}{1+e^{2 t}}.

See Solution

Problem 27100

Solve for xx in the equation f(x)=32x23x=0f'(x) = \frac{3}{2} x^2 - 3 x = 0.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord