Calculus

Problem 22801

Find where the tangent line is vertical and horizontal for the curve x=11acosat,y=t1asinatx=1-\frac{1}{a} \cos a t, \quad y=t-\frac{1}{a} \sin a t (a>0a>0).

See Solution

Problem 22802

Find values of pp for which the series n=1(pn+11n+3)\sum_{n=1}^{\infty}\left(\frac{p}{n+1} \frac{1}{n+3}\right) converges.

See Solution

Problem 22803

Given xy=3x y=3 and dydt=2\frac{d y}{d t}=2, find dxdt\frac{d x}{d t} when x=3x=3.

See Solution

Problem 22804

Analyze the Leonard-Jones potential V(r)=1r6Ar3V(r)=\frac{1}{r^{6}}-\frac{A}{r^{3}} as r0r \rightarrow 0. What happens to V(r)V(r)?

See Solution

Problem 22805

If p(x)p(x) and q(x)q(x) are polynomials with qq monic and deg(p)<3\operatorname{deg}(p)<3, is the integral p(x)q(x)dx\int \frac{p(x)}{q(x)} dx always, sometimes, or never equal to the given expression?

See Solution

Problem 22806

1. Pour quelles valeurs de aa et bb la fonction f(x)f(x) est-elle continue sur R\mathbb{R} ? A) a=1a=1, b=3b=3 B) a=2a=-2, b=2b=2 C) a=1a=1, b=2b=2 D) a=3a=3, b=5b=5 E) a=3a=-3, b=6b=6
2. Quelle est la valeur de fxy(1,1)f_{xy}(1,1) pour f(x,y)=ex2+2xy2yf(x,y)=e^{x^{2}}+2xy-2y ? A) 2 B) 2e2e C) 3e3e D) 4e4e E) 6e6e F) aucune de ses réponses
3. Combien de bureaux de chaque modèle peut-on fabriquer avec 530 unités de bois, 66,9 de contreplaqué et 31,8 de panneau particule ?
4. Quelles quantités supplémentaires de matériaux sont nécessaires pour 29 bureaux du modèle 1, 55 du modèle 2 et 43 du modèle 3 ?
5. Calculez les matrices suivantes : 1) BC+ABC + A 2) BTB^T 3) 3CTABT3C^T A B^T
6. Calculez les intégrales : a) xex2ex2+2dx\int \frac{x e^{x^{2}}}{\sqrt{e^{x^{2}+2}}} dx b) x2ln(x)dx\int x^{2} \ln(x) dx

See Solution

Problem 22807

Find the point on the graph of y=exy=e^{-x} where the tangent line's slope is -4. Provide the point as an ordered pair.

See Solution

Problem 22808

Find the volume of solid SS with a triangular cross-section. Base bounded by x=a2y2x=a^{2}-y^{2}, y=6ax4ay=\frac{6}{a} x-4 a, and xx-axis.

See Solution

Problem 22809

Find the rate of change of yy with respect to xx in the equation 2x+y=62x + y = 6.

See Solution

Problem 22810

Find the power series for f(x)=x2x4+16f(x)=\frac{x^{2}}{x^{4}+16} and its interval of convergence.

See Solution

Problem 22811

Maximize profit P(x,y)=24xx2xy2y2+33y43P(x, y)=24x-x^2-xy-2y^2+33y-43 for goods xx and yy. Find optimal xx and yy values.

See Solution

Problem 22812

Express the limit limnk=1nck2Δx\lim _{n \rightarrow \infty} \sum_{k=1}^{n} c_{k}^{2} \Delta x as a definite integral over [0,2][0,2].

See Solution

Problem 22813

Question 7 : Trouvez fxy(1,1)f_{xy}(1,1) pour f(x,y)=ex2+2xy2yf(x, y)=e^{x^{2}}+2xy-2y.
Question 8 : Avec 530 bois, 66,9 contreplaqué, 31,8 panneau, combien de bureaux de chaque modèle peuvent être fabriqués ?
Question 9 : Pour les matrices AA, BB, et CC, calculez : 1) BC+ABC+A 2) BTB^{T} 3) 3CTABT3C^{T}AB^{T}
Question 10 : Calculez les intégrales : a) xex2ex2+2dx\int \frac{xe^{x^{2}}}{\sqrt{e^{x^{2}+2}}} dx b) x2ln(x)dx\int x^{2} \ln(x) dx

See Solution

Problem 22814

Show that for n=1n=1, the function f(P)=PnPn+30nf(P)=\frac{P^{n}}{P^{n}+30^{n}} has no inflection points.

See Solution

Problem 22815

Find inflection points of f(x)=8e7x2f(x)=8 e^{-7 x^{2}} for x0x \geq 0 and provide their coordinates as ordered pairs.

See Solution

Problem 22816

Find the tangent line equation for y=f(x)y=f(x) at x=4x=4 given f(4)=2f(4)=-2 and the slope f(4)f'(4). What is the equation?

See Solution

Problem 22817

Find where the tangent line is vertical and horizontal for the curve x=11acosatx=1-\frac{1}{a} \cos a t, y=t1asinaty=t-\frac{1}{a} \sin a t (a>0a>0).

See Solution

Problem 22818

Show that for n=3n=3, the function f(P)=P3P3+303f(P)=\frac{P^{3}}{P^{3}+30^{3}} is increasing and approaches 1 as PP \rightarrow \infty.

See Solution

Problem 22819

Hill's equation models blood oxygen saturation: f(P)=PnPn+30nf(P)=\frac{P^{n}}{P^{n}+30^{n}}. For n=1n=1, show f(P)f(P) is increasing and f(P)1f(P) \rightarrow 1 as PP \rightarrow \infty.

See Solution

Problem 22820

Deposit \5000at5000 at 5.5\%$ interest compounded continuously. Find:
(a) Formula for A(t)A(t), (b) differential equation, (c) balance after 6 years, (d) time to reach \$8000, (e) growth rate at \$8000.

See Solution

Problem 22821

What is the average amount of radium in a vault after 1100 years if starting with 100 grams and a half-life of 1690 years? Average: \square grams.

See Solution

Problem 22822

Partition the interval [0,4][0,4] into 8 equal parts. Approximate the volume S8S_{8} of cylinders at left endpoints. Overestimate? Why?

See Solution

Problem 22823

What is the average amount of radium (in grams) left in a vault after 1000 years if starting with 200 grams and a half-life of 1690 years? There will be an average of \square grams of radium in the vault during the next 1000 years.

See Solution

Problem 22824

Find the limits: a. limx76+15x76x=\lim _{x \rightarrow \frac{7}{6}^{+}} \frac{15 x}{7-6 x}= b. limx7615x76x=\lim _{x \rightarrow \frac{7}{6}^{-}} \frac{15 x}{7-6 x}=

See Solution

Problem 22825

Find the average rate of change of rainfall from day 8 to day 14 for f(t)f(t), and answer parts B, C, and D regarding ff.

See Solution

Problem 22826

Calculate 41f(x)dx\int_{4}^{1} f^{\prime}(x) \, dx using the function values from the table provided.

See Solution

Problem 22827

Evaluate the integral ππf(x)dx\int_{-\pi}^{\pi} f(x) dx where f(x)={2x4,πx<05sin(x),0xπf(x)=\begin{cases}2 x^{4}, & -\pi \leq x<0 \\ 5 \sin (x), & 0 \leq x \leq \pi\end{cases}.

See Solution

Problem 22828

Find the limit: limx0x0ln(2+t2)dtx\lim _{x \rightarrow 0} \frac{\int_{x}^{0} \ln \left(2+t^{2}\right) d t}{x}.

See Solution

Problem 22829

Given the data for C(t)C(t) at t=0,10,20,40t = 0, 10, 20, 40 days, estimate C(15)C^{\prime}(15). Interpret C(15)C^{\prime}(15). For D(t)=0.357(1.14)tD(t)=0.357(1.14)^{t}, find D(15)D^{\prime}(15).

See Solution

Problem 22830

A cup of tea cools from 120°F in a room at 70°F. After 3 min it's 100°F. Find its temp after 5 min, rounded to one decimal.

See Solution

Problem 22831

Find the population after 12 years of continuous growth at 4%4\% per year starting from 230000. Round down.

See Solution

Problem 22832

Evaluate the integral sinxcos(cosx)dx\int \sin x \cos (\cos x) \, dx.

See Solution

Problem 22833

Verify the Intermediate Value Theorem for f(x)=x2+7x+1f(x)=x^{2}+7x+1 on [0,9][0,9] and find cc where f(c)=19f(c)=19.

See Solution

Problem 22834

Show that the function f(x)=x26cosxf(x)=x^{2}-6-\cos x has at least one zero in the interval [0,π][0, \pi].

See Solution

Problem 22835

The bacteria count is given by n(t)=930e0.1tn(t)=930 e^{0.1 t}. Find the growth rate, initial population, and count at t=5t=5.

See Solution

Problem 22836

Calculate the area between the curves y=7x2x3+xy=7 x^{2}-x^{3}+x and y=x2+9xy=x^{2}+9 x. The area is 4.

See Solution

Problem 22837

Check if the Intermediate Value Theorem applies to f(x)=x2+7x+1f(x)=x^{2}+7x+1 on [0,9][0,9] and find cc where f(c)=19f(c)=19.

See Solution

Problem 22838

Find the area between the curves y=x312x2+35xy=x^{3}-12 x^{2}+35 x and y=x3+12x235xy=-x^{3}+12 x^{2}-35 x.

See Solution

Problem 22839

Analyze the function f(x)=1x8f(x)=\frac{1}{x-8} as xx approaches 8 from both sides. Does f(x)f(x) go to \infty or -\infty?

See Solution

Problem 22840

Analyze the function f(x)=7xx24f(x)=7\left|\frac{x}{x^{2}-4}\right| as xx approaches 2 from the left and right. Does it go to \infty or -\infty?

See Solution

Problem 22841

Given the function f(x)=1x216f(x)=\frac{1}{x^{2}-16}, complete the table for f(x)f(x) and analyze limits as xx approaches -4. What are:
limx4f(x)= \lim _{x \rightarrow-4^{-}} f(x)= limx4+f(x)= \lim _{x \rightarrow-4^{+}} f(x)=

See Solution

Problem 22842

Find the one-sided limit: limxπ+xcscx\lim _{x \rightarrow \pi^{+}} \frac{\sqrt{x}}{\csc x} (enter DNE if it doesn't exist).

See Solution

Problem 22843

Find or estimate f(x)f(x) for x=0,2,4,6x=0,2,4,6 given f(0)=80f(0)=80 and the derivative values: f(0)=5f^{\prime}(0)=5, f(2)=17f^{\prime}(2)=17, f(4)=29f^{\prime}(4)=29, f(6)=38f^{\prime}(6)=38.

See Solution

Problem 22844

Find the general antiderivative of h(t)=sin(t)cos2(t)h(t)=\frac{-\sin(t)}{\cos^2(t)} for π2<t<π2-\frac{\pi}{2}<t<\frac{\pi}{2}.

See Solution

Problem 22845

Determine the limits: (a) limxc[f(x)+g(x)]\lim _{x \rightarrow c}[f(x)+g(x)] (b) limxc[f(x)g(x)]\lim _{x \rightarrow c}[f(x) g(x)] (c) limxcg(x)f(x)\lim _{x \rightarrow c} \frac{g(x)}{f(x)} Given: limxcf(x)=\lim _{x \rightarrow c} f(x)=\infty and limxcg(x)=2\lim _{x \rightarrow c} g(x)=-2.

See Solution

Problem 22846

Find the one-sided limit: limx0(4+3x)\lim _{x \rightarrow 0^{-}}\left(4+\frac{3}{x}\right). If it doesn't exist, state DNE.

See Solution

Problem 22847

Find the tangent line to f(x)=x3f(x)=x^{3} that is parallel to 3xy+8=03x-y+8=0. Provide both yy-intercepts.

See Solution

Problem 22848

Find the limit of mass m=m01(v2/c2)m=\frac{m_{0}}{\sqrt{1-\left(v^{2} / c^{2}\right)}} as vv approaches cc from the left.

See Solution

Problem 22849

Find f(2)f(2) for the function with f(x)=6x+4sin(x)f^{\prime \prime}(x)=6x+4\sin(x), given f(0)=2f(0)=2 and f(0)=2f^{\prime}(0)=2.

See Solution

Problem 22850

Find dRdr\frac{d R}{d r} for resistors rr and ss in parallel, and determine if RR is increasing, decreasing, or neither. Also, find global max and min for RR in arba \leq r \leq b.

See Solution

Problem 22851

Find the function f(x)f(x) and the number cc such that the limit equals f(c)f^{\prime}(c):
limx46x12x4\lim_{x \rightarrow 4} \frac{6 \sqrt{x}-12}{x-4}
f(x)=f(x)=\square, c=c=\square.

See Solution

Problem 22852

Find the value(s) of xx where the slope of the tangent line to y=1+250x33x5y=1+250 x^{3}-3 x^{5} is maximized. Answer: x=x=

See Solution

Problem 22853

Find the derivative of the integral ddt0t10u7du\frac{d}{d t} \int_{0}^{t^{10}} \sqrt{u^{7}} du using two methods.

See Solution

Problem 22854

Given h(x)=xf(x)+(g(x))3h(x)=x f(x)+(g(x))^{3}, find h(3)h^{\prime}(3) using provided values of f(x)f(x) and g(x)g(x).

See Solution

Problem 22855

Calculate the area between the xx-axis and y=x23xy=-x^{2}-3x for 8x3-8 \leq x \leq 3.

See Solution

Problem 22856

Find the xx-values where the function y=x2x216y=\frac{x^{2}}{x^{2}-16} is differentiable. Use interval notation for your answer.

See Solution

Problem 22857

Find the derivative of f(x)=x3+2x2+5f(x)=x^{3}+2x^{2}+5 at x=2x=-2. If it doesn't exist, write UNDEFINED.

See Solution

Problem 22858

Find the function f(x)f(x) given that the limit equals f(c)f^{\prime}(c) where c=4c=4: limx46x12x4\lim _{x \rightarrow 4} \frac{6 \sqrt{x}-12}{x-4}

See Solution

Problem 22859

Find the derivative dydx\frac{d y}{d x} for y=0cotxdt1+t2y=\int_{0}^{\cot x} \frac{d t}{1+t^{2}}.

See Solution

Problem 22860

Evaluate the integral: ddt0t10u7du=ddt()\frac{d}{d t} \int_{0}^{t^{10}} \sqrt{u^{7}} du=\frac{d}{d t}(\square)

See Solution

Problem 22861

Given the function f(x)=x6f(x)=|x-6|, find the left and right derivatives at x=6x=6. Is it differentiable there? Enter Yes or No.

See Solution

Problem 22862

Given the function f(x)=3x67x5f(x)=3 x^{6}-7 x^{5}, find critical numbers, intervals of increase/decrease, local maxima/minima, concavity, inflection points, and asymptotes.

See Solution

Problem 22863

Find the derivative of y=97x4y=\frac{9}{7 x^{4}} and simplify the result.

See Solution

Problem 22864

Calculate the area between the x\mathrm{x}-axis and y=2x3+12x2+16xy=2x^{3}+12x^{2}+16x for 4x0-4 \leq x \leq 0.

See Solution

Problem 22865

Find the slope of the function y=(6x+1)2y=(6x+1)^{2} at the point (0,1)(0,1) using its derivative.

See Solution

Problem 22866

Find the tangent line equation for f(x)=5x4+9x24f(x)=-5 x^{4}+9 x^{2}-4 at the point (1,0). y=y=

See Solution

Problem 22867

Find the derivative of f(t)=7t2/35t1/3+8f(t)=7 t^{2/3}-5 t^{1/3}+8. What is f(t)f'(t)?

See Solution

Problem 22868

Find the derivative of the function y=π3sin(θ)y=\frac{\pi}{3} \sin (\theta). What is yy^{\prime}?

See Solution

Problem 22869

Given the function f(x)=9x6ln(x)f(x)=9 x-6 \ln (x) for x>0x>0, find critical numbers, increasing/decreasing intervals, local maxima/minima, concavity, and inflection points.

See Solution

Problem 22870

Find the point(s) where the function y=x2+5y=x^{2}+5 has a horizontal tangent line. If none, enter NONE.

See Solution

Problem 22871

Find the absolute min and max of f(t)=16cos(t)+8sin(2t)f(t)=16 \cos (t)+8 \sin (2 t) on [0,π2][0, \frac{\pi}{2}].

See Solution

Problem 22872

Calculate the average rate of change of f(t)=6t21f(t)=6 t^{2}-1 over [3,3.1][3,3.1] and compare it with rates at the endpoints.

See Solution

Problem 22873

A projectile is shot upward at 133 m/s. Find its velocity after 4s and 10s using s(t)=4.9t2+v0t+s0s(t)=-4.9t^2+v_0t+s_0.

See Solution

Problem 22874

Given the function f(x)=4x2ln(x)f(x)=4 x^{2} \ln (x) for x>0x>0, find critical values, intervals of increase/decrease, local max/min, concavity, inflection points, and sketch the graph.

See Solution

Problem 22875

Differentiate the function using the Product Rule: f(x)=x7cos(x)f(x)=x^{7} \cos (x).

See Solution

Problem 22876

Determine the absolute min and max of f(t)=t9t2f(t)=t \sqrt{9-t^{2}} on the interval [1,3][-1,3].

See Solution

Problem 22877

Find the derivative of f(x)=xx9f(x)=\frac{x}{x-9} using the Quotient Rule: f(x)=f^{\prime}(x)=

See Solution

Problem 22878

Find the critical numbers of the function h(t)=t3/49t1/4h(t)=t^{3/4}-9t^{1/4}. Enter answers as a list or DNE if none exist.

See Solution

Problem 22879

Find the critical numbers of the function f(x)=2x3+x2+4xf(x)=2 x^{3}+x^{2}+4 x. Enter answers as a comma-separated list or DNE.

See Solution

Problem 22880

Given f(x)=(84x)exf(x)=(8-4 x) e^{x}, find critical values, intervals of increase/decrease, local max/min, concavity, inflection points, and sketch the graph.

See Solution

Problem 22881

Find the critical numbers of the function f(x)=2x33x236xf(x)=2x^3-3x^2-36x.

See Solution

Problem 22882

Find the limit: limxxex\lim_{x \to \infty} x^{e^{-x}}.

See Solution

Problem 22883

Find the derivative of y=52x7y=\frac{5}{2 x^{7}} without the Quotient Rule. What is yy'?

See Solution

Problem 22884

Find the derivative f(x)f^{\prime}(x) and evaluate it at c=0c=0 for the function f(x)=(x5+5x)(3x4+4x3)f(x)=(x^{5}+5x)(3x^{4}+4x-3).

See Solution

Problem 22885

Sketch the graph of f(x)=6xf(x)=\frac{6}{x} for x6x \geq 6 and find its absolute and local max/min values.

See Solution

Problem 22886

Evaluate the integral: ddx1cosx6t5dt=ddx()\frac{d}{d x} \int_{1}^{\cos x} 6 t^{5} d t=\frac{d}{d x}(\square)

See Solution

Problem 22887

Test the series n=15(1)nen\sum_{n=1}^{\infty} 5(-1)^{n} e^{-n} for convergence using the Alternating Series Test. Identify bnb_{n} and evaluate limnbn\lim _{n \rightarrow \infty} b_{n}.

See Solution

Problem 22888

Find the derivative of the function f(x)=x3(11x+5)f(x)=x^{3}\left(1-\frac{1}{x+5}\right). What is f(x)=f^{\prime}(x)=\square?

See Solution

Problem 22889

Find the radius of convergence, RR, and interval of convergence, II, for the series n=1n7n(x+3)n\sum_{n=1}^{\infty} \frac{n}{7^{n}}(x+3)^{n}.

See Solution

Problem 22890

Find the derivatives f(x)f^{\prime}(x) and f(0)f^{\prime}(0) for the function f(x)=(x5+5x)(3x4+4x3)f(x)=(x^{5}+5x)(3x^{4}+4x-3).

See Solution

Problem 22891

Find local extrema and inflection points for f(x)f(x) given f(x)=(x+7)(8x)(14x)f^{\prime}(x)=(x+7)(8-x)(14-x).

See Solution

Problem 22892

Find the derivative of the function y=csc(x)cos(x)y=-\csc (x)-\cos (x); answer: y=y'=\square.

See Solution

Problem 22893

Find the min and max values of f(x)=xx2+1f(x)=\frac{x}{x^{2}+1} on the interval [0,4][0,4].

See Solution

Problem 22894

Find where the function f(x)=x2x8f(x)=\frac{x^{2}}{x-8} has a horizontal tangent line and give the points (x,y)(x, y).

See Solution

Problem 22895

Find the radius of convergence, RR, and the interval of convergence, II, for the series n=1n!(8x1)n\sum_{n=1}^{\infty} n !(8 x-1)^{n}.

See Solution

Problem 22896

Find the growth rate of a bacteria population modeled by P(t)=430(1+3t76+t2)P(t)=430\left(1+\frac{3t}{76+t^{2}}\right) at t=2t=2.

See Solution

Problem 22897

Find the fourth derivative of f(3)(x)=x23f^{(3)}(x)=\sqrt[3]{x^{2}}. What is f(4)(x)f^{(4)}(x)?

See Solution

Problem 22898

Find the second derivative of f(x)=secxf(x)=\sec x, so compute f(x)f^{\prime \prime}(x).

See Solution

Problem 22899

Find the tangent line equation at the point (4,23)(4,-2 \sqrt{3}) for the curve x2y29x24y2=0x^{2} y^{2}-9 x^{2}-4 y^{2}=0.

See Solution

Problem 22900

Gravel is dumped at 40ft3/min40 \mathrm{ft}^{3} / \mathrm{min}. Find the height increase rate when the pile is 9ft9 \mathrm{ft} high.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord