Calculus

Problem 11401

Find critical points of f(x)=23x3+x212xf(x)=\frac{2}{3} x^{3}+x^{2}-12 x and classify them using the first derivative test.

See Solution

Problem 11402

Zeigen Sie, dass der Grenzwert A der Unter- und Obersumme für f(x)=x3f(x)=x^{3} im Intervall [0;b][0 ; b] A=b44A=\frac{b^{4}}{4} ist.

See Solution

Problem 11403

Define the piecewise function f(x)=(x2+1)(x24)f(x)=\left|\left(x^{2}+1\right)\left(x^{2}-4\right)\right|, then find local and absolute extrema.

See Solution

Problem 11404

Find the first and second derivatives: (i) y=(tanh(x))xy=(\tanh (x))^{x}, (ii) x3+sin(xy)=xy2x^{3}+\sin (x y)=x y^{2}, (iii) x=3cosh(2t)x=3 \cosh (2 t), y=5sinh(2t)y=5 \sinh (2 t).

See Solution

Problem 11405

Find the derivative of the function y=x2e3xy=x^{2} e^{3 x}. What is dydx\frac{d y}{d x}?

See Solution

Problem 11406

Find the derivative of y=3x21y=3^{x^{2}-1} with respect to xx: dydx=\frac{d y}{d x}=

See Solution

Problem 11407

Find the derivative dydx\frac{d y}{d x} for the function y=lnxx2y=\frac{\ln x}{x^{2}}.

See Solution

Problem 11408

Find the limit: limx0sin(3x)3xcos(3x)3xsin(3x)\lim _{x \rightarrow 0} \frac{\sin (3 x)-3 x \cos (3 x)}{3 x-\sin (3 x)}.

See Solution

Problem 11409

Find the critical numbers of the function f(x)=x23xf(x)=x^{2} \sqrt{3-x} on the interval [1,3][1,3]. List them or write DNE.

See Solution

Problem 11410

Find the derivative dydx\frac{d y}{d x} if y=tan1(cosx)y=\tan^{-1}(\cos x).

See Solution

Problem 11411

Find the critical numbers of f(x)=x23xf(x)=x^{2} \sqrt{3-x} on [1,3][1,3]. List them or write DNE if none exist. x=x=

See Solution

Problem 11412

Gegeben sind die Funktionen h(x)=x(x1)(x3)h(x)=x(x-1)(x-3) und i(x)=x38x2+15xi(x)=x^{3}-8x^{2}+15x.
a) Bestimme Nullstellen, Schnittpunkte mit Achsen und Verhalten für x±x \to \pm \infty. Zeichne die Graphen. b) Untersuche die Symmetrie von hh. c) Beschreibe das Monotonieverhalten von ii mit Graph II. d) Bestimme den Grad von hh und ii und erkläre, warum beide maximal 2 Extremstellen haben. e) Finde die Extrempunkte von HH und deren Art. f) Zeige, dass der Punkt (8+193i(8+193))\left(\frac{8+\sqrt{19}}{3} \mid i\left(\frac{8+\sqrt{19}}{3}\right)\right) ein Tiefpunkt von hh ist. g) Untersuche die Abweichung der mittleren Steigung von hh im Intervall [0,50,5][-0,5 \mid 0,5] zur lokalen Änderungsrate bei x0=0x_{0}=0.

See Solution

Problem 11413

Find the time tt (0 ≤ tt ≤ 8) when a particle with initial velocity 27 ft/sec changes direction, given a(t)=2t12a(t)=2t-12.

See Solution

Problem 11414

Find the derivative of q(b)=b2+4b+3b41q(b)=\frac{b^{2}+4b+3}{b^{4}-1}.

See Solution

Problem 11415

Find the arclength function s(t)s(t) for the curve r=(e5tcos(2t),e5tsin(2t),e5t)\mathbf{r}=\left(e^{-5 t} \cos (2 t), e^{-5 t} \sin (2 t), e^{-5 t}\right) starting at t=0t=0.

See Solution

Problem 11416

Gegeben ist fa(x)=ax3+4axf_{a}(x)=-a x^{3}+4 a x. Zeigen Sie: a) punktsymmetrisch, b) durch P(20)P(-2 \mid 0) und Q(20)Q(2 \mid 0), c) einen Hoch- und Tiefpunkt, d) Wendetangente mit Steigung m=8m=8.

See Solution

Problem 11417

Find the indefinite integral using substitution: 5x4e5x5dx\int 5 x^{4} e^{5 x^{5}} d x

See Solution

Problem 11418

Find the second derivative h(x)h^{\prime \prime}(x) for h(x)=8x64x8h(x)=8 x^{-6}-4 x^{-8}. What is h(x)=\mathrm{h}^{\prime \prime}(\mathrm{x})=\square?

See Solution

Problem 11419

Find the integral using substitution: (1t)e32t16t2dt\int(1-t) e^{32 t-16 t^{2}} d t

See Solution

Problem 11420

Find the indefinite integral using substitution: (1t)e22t11t2dt\int(1-t) e^{22 t-11 t^{2}} d t

See Solution

Problem 11421

Find the derivative f(1)f^{\prime}(1) given the tangent line at x=1x=1 is y=6x+8y=6x+8.

See Solution

Problem 11422

Find the yy-intercept of the tangent line at (3,8)(3,8) for the function ff where f(3)=6f^{\prime}(3)=6.

See Solution

Problem 11423

Bestimmen Sie den mittleren Anstieg von f(x)=2x2f(x)=2-x^{2} im Intervall [0,50,5][-0,5 \mid 0,5] und interpretieren Sie ihn geometrisch.

See Solution

Problem 11424

Given f(5)=0f^{\prime}(-5)=0 and f(5)=2f^{\prime \prime}(-5)=2, does ff have a max or min at x=5x=-5?

See Solution

Problem 11425

Given g(x)=4x3+18x248xg(x)=4 x^{3}+18 x^{2}-48 x, find g(x)g^{\prime}(x) and g(x)g^{\prime \prime}(x). Determine concavity and local extrema at x=1x=1.

See Solution

Problem 11426

Find the critical value cc for f(x)=(8+5x)7f(x)=(8+5x)^7 and check if f(x)f(x) is increasing or decreasing for x<cx<c and x>cx>c.

See Solution

Problem 11427

Find the critical numbers of the function f(x)=2x333x2+180x3f(x)=2 x^{3}-33 x^{2}+180 x-3 using derivatives.

See Solution

Problem 11428

Bestimmen Sie die Tangentensteigung der Funktion f(x)=13x3f(x)=\frac{1}{3} x^{3} bei P(1,?)P(-1, ?) und die Tangentengleichung.

See Solution

Problem 11429

Find the critical numbers of the function f(x)=2x324x2+72x2f(x)=2 x^{3}-24 x^{2}+72 x-2. Identify the smaller and larger critical numbers.

See Solution

Problem 11430

Find the unique anti-derivative F(x)F(x) of f(x)=(4x)21(4x)2f(x)=(4-x)^{2}-\frac{1}{(4-x)^{2}} with F(0)=0F(0)=0 and compute F(3)F(3).

See Solution

Problem 11431

Find the derivative of the function f(x)=x+1xf(x)=x+\frac{1}{x}. What is f(x)f^{\prime}(x)?

See Solution

Problem 11432

Find the local min and max of f(x)=2x+4x1f(x)=2x+4x^{-1}. Use calculus to find where the derivative equals zero.

See Solution

Problem 11433

Find the unique anti-derivative F(x)F(x) of f(x)=(4x)21(4x)2f(x)=(4-x)^{2}-\frac{1}{(4-x)^{2}} with F(0)=0F(0)=0 and calculate F(3)F(3).

See Solution

Problem 11434

Find the critical number of the function f(x)=(2x9)e5xf(x)=(2 x-9) e^{5 x}. What is its exact value? x= x=

See Solution

Problem 11435

Evaluate the triple integral of f(ρ,θ,ϕ)=cosϕf(\rho, \theta, \phi)=\cos \phi in spherical coordinates over 0θ2π0 \leq \theta \leq 2\pi, π6ϕπ2\frac{\pi}{6} \leq \phi \leq \frac{\pi}{2}, 3ρ73 \leq \rho \leq 7.

See Solution

Problem 11436

Find the volume of the solid formed by rotating the area between y=x2+xy=x^{2}+x and y=2xy=2x around y=1y=-1. Also, calculate the volume of a triangular pyramid with vertices at (0,0,0)(0,0,0), (1,0,0)(1,0,0), (0,2,0)(0,2,0), and (0,0,3)(0,0,3) using cross-sections.

See Solution

Problem 11437

Evaluate the integral of f(x,y,z)=z(x2+y2+z2)3/2f(x, y, z)=z\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2} over the region x2+y2+z24x^{2}+y^{2}+z^{2} \leq 4, z1z \geq 1.

See Solution

Problem 11438

Find the inflection point(s) of the function f(x)=4x3+30x2+48x+8f(x)=4 x^{3}+30 x^{2}+48 x+8. If none, type DNE.

See Solution

Problem 11439

Find the derivative of the function f(x)=x24x+6f(x) = x^{2} - 4x + 6.

See Solution

Problem 11440

Find the linear approximation of f(x)=cosxf(x)=\cos x at x=π2x=\frac{\pi}{2}.

See Solution

Problem 11441

A stone creates a ripple with radius increasing at 3.1ft/s3.1 \mathrm{ft/s}. Find area increase rate when radius is 5 ft and after 6 s.

See Solution

Problem 11442

Find the average rate of change of f(x)=logxf(x)=\log x on the interval [110,10]\left[\frac{1}{10}, 10\right].

See Solution

Problem 11443

Find critical points of f(x)=2x23x22x+12f(x)=\frac{2 x^{2}}{3 x^{2}-2 x+12}. List them as comma-separated values or DNE if none exist.

See Solution

Problem 11444

Evaluate the integral π3π/2xsinxdx\int_{\pi}^{3 \pi / 2} x \sin x \, dx using areas of regions R2R_2 and R3R_3: 11 and π+1\pi + 1.

See Solution

Problem 11445

Find the derivative of g(x)=6x73x1+lnx2ex+π3g(x)=6 x^{7}-3 x^{-1}+\ln x-2 e^{x}+\pi^{3}.

See Solution

Problem 11446

Find AA and BB for the curve y=Ax1/6+Bx1/6y=A x^{1/6}+B x^{-1/6} to have an inflection point at (1,9)(1,9).

See Solution

Problem 11447

Find dydx\frac{d y}{d x} by using implicit differentiation on the equation 25x=y225 x = y^{2}.

See Solution

Problem 11448

Find where the curve 6x+3y2y=56 x + 3 y^{2} - y = 5 has a vertical tangent line.

See Solution

Problem 11449

Find the points on the curve 6x+2y2y=76x + 2y^2 - y = 7 where the tangent line is vertical.

See Solution

Problem 11450

Find how dVdt\frac{d V}{d t} relates to drdt\frac{d r}{d t} and dhdt\frac{d h}{d t} for a cylinder with V=πr2hV=\pi r^{2} h.

See Solution

Problem 11451

Find the brain growth rate in nanograms/yr for fish at L=18 cmL=18 \mathrm{~cm}, given B=.007W2/3B=.007 W^{2/3} and W=.12L2.53W=.12 L^{2.53}.

See Solution

Problem 11452

Find the average rate of change of the function f(x)=1+3cosxf(x)=1+3 \cos x on the interval [0,π][0, \pi].

See Solution

Problem 11453

Evaluate the integral: sec2t1+tantdt\int \frac{\sec ^{2} t}{1+\tan t} d t

See Solution

Problem 11454

Find the tangent line equation for ff at x=1x=-1 given f(x)=3x+4f^{\prime}(x)=-3x+4 and f(1)=6f(-1)=6.

See Solution

Problem 11455

Find dPdt\frac{d P}{d t} for b=1.3,P=9kPa,V=100cm2b=1.3, P=9 \mathrm{kPa}, V=100 \mathrm{cm}^{2}, dVdt=10cm3/min\frac{d V}{d t}=10 \mathrm{cm}^{3}/\mathrm{min}.

See Solution

Problem 11456

Find the tangent line equation to the graph of ff at x=2x=2, given ff^{\prime} and points (2,6)(2,6), (4,18)(4,18).

See Solution

Problem 11457

Consider the piecewise function f(x)f(x) defined as:
1. 3x+13x + 1 for x2x \leq 2
2. 5x35x - 3 for x>2x > 2

Is ff continuous and/or differentiable at x=2x=2? Choose the correct option: (A) Neither (B) Continuous, not differentiable (C) Differentiable, not continuous (D) Both

See Solution

Problem 11458

Find the derivative of f(x)=1x7f(x)=\frac{1}{x^{7}}. Choices: (A) 17x6\frac{1}{7 x^{6}}, (B) 7x6-\frac{7}{x^{6}}, (C) 17x8-\frac{1}{7 x^{8}}, (D) 7x8-\frac{7}{x^{8}}.

See Solution

Problem 11459

Find the derivative of the function f(x)=x4f(x)=\sqrt[4]{x}. What is f(x)f^{\prime}(x)? (A) 14x14\frac{1}{4} x^{\frac{1}{4}} (B) x34x^{-\frac{3}{4}} (C) 14x34\frac{1}{4} x^{-\frac{3}{4}} (D) 4x34 \cdot \sqrt[3]{x}

See Solution

Problem 11460

Calculez les dérivées et évaluez le taux de variation instantané à x=2x=2 pour : a) f(x)=ex+e2xx3f(x)=e^{-x}+e^{2 x} x^{3}, b) f(x)=ln(x4)(lnx)4f(x)=\ln(x^{4})-(\ln x)^{4}, c) f(x)=sin(3x)3sin(x)f(x)=\sin(3 x)-3 \sin(x), d) f(x)=sin(2x+cosx)f(x)=\sin(2^{x}+\cos x).

See Solution

Problem 11461

An object falls under gravity with distance d(t)=16t2d(t)=16 t^{2}. Find d(t)d^{\prime}(t) and compute height and speed after 7.3 s7.3 \mathrm{~s}.

See Solution

Problem 11462

Find critical points of f(x)=3x314x2+7xf(x)=3 x^{3}-14 x^{2}+7 x on [0,5][0,5]. List them or write DNE if none exist.

See Solution

Problem 11463

Find critical points of f(x)=3x314x2+7xf(x)=3 x^{3}-14 x^{2}+7 x on [0,5][0,5] and extreme values fminf_{\min} and fmaxf_{\max}.

See Solution

Problem 11464

Evaluate the integral 24xf(x)dx\int_{-2}^{4} x f(x) d x for f(x)=x10f(x)=\frac{|x|}{10} when 2x4-2 \leq x \leq 4.

See Solution

Problem 11465

Identify the limits where L'Hospital's Rule applies:
1. limxπ/6sin(6x)6xπ\lim _{x \rightarrow \pi / 6} \frac{\sin (6 x)}{6 x-\pi}
2. limxexx\lim _{x \rightarrow-\infty} \frac{e^{-x}}{x}
3. limx9x9ln(10x)\lim _{x \rightarrow 9} \frac{x-9}{\ln (10-x)}
4. limxπ/9sinxπ/9x\lim _{x \rightarrow \pi / 9} \frac{\sin x}{\pi / 9-x}

See Solution

Problem 11466

Find the area for polar coordinates r(θ)=θ(π2θ2)r(\theta) = \sqrt{\theta (\pi^2 - \theta^2)} from 0θπ0 \leq \theta \leq \pi. Use A=120π(r(θ))2dθA = \frac{1}{2}\int_{0}^{\pi}(r(\theta))^2 d\theta.

See Solution

Problem 11467

Find the tangent line equation for y=4xcosxy=4 x \cos x at (π,4π)(\pi,-4 \pi). Write as y=mx+by=m x+b with m=m= and b=b=.

See Solution

Problem 11468

What is the velocity and acceleration of a ball at the peak of its height when thrown straight up?

See Solution

Problem 11469

Find dy/dx using implicit differentiation for the equation e3x=sin(x+5y)e^{3x} = \sin(x + 5y).

See Solution

Problem 11470

Evaluate the integral 05min(x,4)f(x)dx\int_{0}^{5} \min (x, 4) f(x) d x where f(x)=15f(x) = \frac{1}{5} for 0<x<50<x<5, else 00.

See Solution

Problem 11471

Find the tangent line equation for y=4xcosxy=4 x \cos x at (π,4π)(\pi,-4 \pi). Form: y=mx+by=m x+b, where m=m= and b=b=.

See Solution

Problem 11472

Find the inflection points of f(x)=x2e5xf(x)=x^{2} e^{5 x} at x=Ax=A and x=Bx=B. Determine concavity in intervals (,A)(-\infty, A), (A,B)(A, B), and (B,)(B, \infty).

See Solution

Problem 11473

Find the average velocity of a bowling ball described by h(t)=16t2+67t+183h(t)=-16 t^{2}+67 t+183 over the interval [1,3.6][1,3.6].

See Solution

Problem 11474

Find dydt\frac{d y}{d t} when y=π4y=\frac{\pi}{4}, given sin(x)+cos(y)=2\sin (x)+\cos (y)=\sqrt{2} and dxdt=5\frac{d x}{d t}=5.

See Solution

Problem 11475

Find the intervals where m(x)=2x4+52x2+2m(x)=-2 x^{4}+52 x^{2}+2 is increasing and decreasing. Also, find xx for relative max and min.

See Solution

Problem 11476

Find the tangent line equation for y=4xcosxy=4 x \cos x at (π,4π)(\pi,-4 \pi) in the form y=mx+by=m x+b. What are mm and bb?

See Solution

Problem 11477

Find the growth rate of the mouse population given by P=100(1+0.2t+0.02t2)P=100(1+0.2t+0.02t^{2}) at t=13t=13 months.

See Solution

Problem 11478

Analyze the quadratic function f(x)=3x212x+13f(x)=3x^{2}-12x+13.
1. Does it have a minimum or maximum value?
2. Where does this value occur?
3. What is the value?

See Solution

Problem 11479

Differentiate the function f(θ)=sin(θ)1+cos(θ)f(\theta)=\frac{\sin (\theta)}{1+\cos (\theta)}.

See Solution

Problem 11480

Find the tangent line equation to y=cos(x)y=\cos(x) at x=12πx=\frac{1}{2} \pi.

See Solution

Problem 11481

A 16 cm wire is cut into two pieces to form squares.
(a) Find the area function A(x)A(x) for side length xx.
(b) What side length xx minimizes the area?
(c) What is the minimum area?

See Solution

Problem 11482

Find dy/dx\mathrm{dy} / \mathrm{dx} using implicit differentiation for the equation x4=cotyx^{4}=\cot y.

See Solution

Problem 11483

Find the angle the tangent line to y=13sin3xy=\frac{1}{\sqrt{3}} \sin 3 x at the origin makes with the xx-axis.

See Solution

Problem 11484

Given that f(x)f^{\prime \prime}(x) is continuous and has an inflection point at x=8x=8, fill in values for f(3)f^{\prime \prime}(3), f(8)f^{\prime \prime}(8), and f(13)f^{\prime \prime}(13). Determine the behavior of the graph of y=f(x)y=f(x) before and after x=8x=8.

See Solution

Problem 11485

Find the derivative of y=(cscx+cotx)(cscxcotx)y=(\csc x+\cot x)(\csc x-\cot x).

See Solution

Problem 11486

Find the second derivative of y=17x3610y=\frac{17 x^{3}}{6}-10.

See Solution

Problem 11487

Find where the function f(x)=2x4+28x25f(x)=-2 x^{4}+28 x^{2}-5 is increasing and decreasing, plus its relative max and min values.

See Solution

Problem 11488

Calculate the integral 3x(1+x)4dx\int 3 x(1+x)^{-4} dx.

See Solution

Problem 11489

Given the function f(x)=2x4+28x25f(x)=-2 x^{4}+28 x^{2}-5, find where ff is increasing, decreasing, and the xx values for max/min.

See Solution

Problem 11490

Find the derivative of y=(ln3θ)xy=(\ln 3 \theta)^{x}.

See Solution

Problem 11491

Find the derivative of yy with respect to xx for y=(ln3θ)xy=(\ln 3 \theta)^{x}.

See Solution

Problem 11492

Find the slope of f(x)=3+6xexf(x)=3+6 x e^{x} at the point (0,3)(0,3).

See Solution

Problem 11493

Find the derivative of y=(1+3x)e3xy=(1+3x)e^{-3x}.

See Solution

Problem 11494

Find the tangent line equation for the curve y=18x2+2y=\frac{18}{x^{2}+2} at the point (1,6)(1,6).

See Solution

Problem 11495

Find the second derivative yy^{\prime \prime} for the function y=sin(4x2ex)y=\sin(4x^{2}e^{x}).

See Solution

Problem 11496

Find the time tt when the particle changes direction, given a(t)=2t11a(t)=2t-11 and initial velocity 18 ft/sec, for 0t80 \leq t \leq 8.

See Solution

Problem 11497

A ball dropped from a building has height s=14416t2s=144-16t^2 meters after tt seconds. Find the time to reach the ground and impact velocity.

See Solution

Problem 11498

Is the integral 0dxx2+4\int_{0}^{\infty} \frac{d x}{x^{2}+4} convergent or divergent? If convergent, find its value.

See Solution

Problem 11499

Find the derivative of q=13rr7q=\sqrt{13r - r^{7}}.

See Solution

Problem 11500

If ff and gg are differentiable, show that ddxln(f(x)g(x))=f(x)f(x)+g(x)g(x)\frac{d}{d x} \ln (f(x) g(x))=\frac{f^{\prime}(x)}{f(x)}+\frac{g^{\prime}(x)}{g(x)}. Also, prove the Product Rule using (f(x)g(x))f(x)g(x)\frac{(f(x) g(x))^{\prime}}{f(x) g(x)}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord