Calculus

Problem 4801

Find the derivative f(1)f^{\prime}(1) for the piecewise function f(x)={53x2x>186xx1f(x)=\begin{cases} 5-3 x^{2} & x>1 \\ 8-6 x & x \leq 1 \end{cases}. If not differentiable, enter DNE.

See Solution

Problem 4802

Find the derivative of f(x)=3x+47x5f(x)=\frac{3 x+4}{7 x-5} at x=0x=0 and provide the exact decimal answer. f(0)=f^{\prime}(0)=

See Solution

Problem 4803

Find the derivative of f(t)=24tf(t)=\frac{2}{4-t} at t=5t=-5 using the limit definition. f(5)= f^{\prime}(-5)=

See Solution

Problem 4804

Find the tangent line equation for f(x)=59+x2f(x)=\frac{5}{9+x^{2}} at x=3x=3. Express as yy in terms of xx.

See Solution

Problem 4805

Find the tangent line equation for f(x)=59+x2f(x)=\frac{5}{9+x^{2}} at x=3x=3. Use y=f(x)y=f(x) for the equation.

See Solution

Problem 4806

Find the derivative v(a)v^{\prime}(a) for the dodecahedron volume v=15+754x3v=\frac{15+7 \sqrt{5}}{4} x^{3} at x=ax=a.

See Solution

Problem 4807

Find the derivative at x=3x=3: f(3)=limh0(3+h)2+6(3+h)27hf^{\prime}(3)=\lim _{h \rightarrow 0} \frac{(3+h)^{2}+6(3+h)-27}{h}.

See Solution

Problem 4808

Profit PP (in \thousands)from thousands) from xkgofcoffeeisgivenby kg of coffee is given by P(x)=\frac{4x-200}{x+400}.Findaverageprofit,sketch,andrateofchangeat. Find average profit, sketch, and rate of change at x=1000$.

See Solution

Problem 4809

Find the production level xx that minimizes the marginal cost C(x)=x2120x+8500C(x)=x^{2}-120x+8500 and the minimum cost.

See Solution

Problem 4810

Find the derivative dydx\frac{d y}{d x} for the function y=sin1(9x2)y=\sin^{-1}(\sqrt{9 x^{2}}).

See Solution

Problem 4811

Determine if the function f(x)=3x2+6x+1f(x)=-3 x^{2}+6 x+1 has a minimum or maximum, its location, and the value.

See Solution

Problem 4812

Find dydx\frac{d y}{d x} using the chain rule: dydx=dydududx\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}, where y=5u45y=5 u^{4}-5 and u=3xu=3 \sqrt{x}.

See Solution

Problem 4813

Find h(1)h^{\prime}(-1) for h(x)=(x4+p(x))3h(x)=\left(x^{4}+p(x)\right)^{3} using given values of p(x)p(x) and p(x)p^{\prime}(x).

See Solution

Problem 4814

Find the derivative of f(x)=0.5exf(x)=0.5^{e^{x}}.

See Solution

Problem 4815

The Collegiate Investigator sells for \90percopy.Thecosttoproduce90 per copy. The cost to produce xcopiesis copies is C(x)=90+0.10x+0.001x^{2}$.
(a) Find the marginal profit function P(x)P^{\prime}(x). (b) Calculate the marginal profit for 500 copies. Interpret the results.

See Solution

Problem 4816

Given cost C(x)=2xC(x)=2x and revenue R(x)=4x0.01x2R(x)=4x-0.01x^2, find marginal cost C(x)C'(x), revenue R(x)R'(x), and profit P(x)P'(x) at x=10x=10.

See Solution

Problem 4817

Find the marginal profit for a car wash with n=50n=50 workers using the formula P=300n+25n20.005n4P=-300n+25n^{2}-0.005n^{4}. Interpret the result.

See Solution

Problem 4818

Find the 1st, 2nd, and 3rd derivatives of f(x)=(x2x)e0.5xf(x)=(x^{2}-x) \cdot e^{-0.5 x} using factoring.

See Solution

Problem 4819

Find the marginal cost function C(x)C'(x) for C(x)=100+43x0.09x2C(x)=100+43x-0.09x^2. At x=100x=100, find C(100)C'(100) and average cost Cˉ(100)\bar{C}(100).

See Solution

Problem 4820

Given cost C(x)=2xC(x)=2x and revenue R(x)=4x0.01x2R(x)=4x-0.01x^2, find marginal cost, revenue, profit, and compare actual vs. approximate for the 10th ounce.

See Solution

Problem 4821

Given C(x)=2xC(x)=2x and R(x)=4x0.01x2R(x)=4x-0.01x^2, find marginal cost C(x)C'(x), revenue R(x)R'(x), and profit P(x)P'(x) for the 10th unit.

See Solution

Problem 4822

The Collegiate Investigator sells for 90ϕ90\phi per copy. Given cost C(x)=90+0.10x+0.001x2C(x)=90+0.10x+0.001x^{2}, find:
(a) Marginal profit function P(x)=P'(x)=
(b) Marginal profit for 500 copies: loss from 501st copy is dollars.

See Solution

Problem 4823

Find the marginal cost function C(x)C'(x) for C(x)=150+2,200x0.08x2C(x)=150+2,200x-0.08x^2. Approximate and find the exact cost for the 5th commercial in dollars.

See Solution

Problem 4824

The newspaper sells for \904percopy.Thecostfor904 per copy. The cost for xcopiesis copies is C(x)=90+0.10x+0.001x^{2}$.
(a) Find the marginal profit function P(x)P^{\prime}(x). (b) Calculate the marginal profit for 500 copies. The loss from producing the 501st copy is __ dollars.

See Solution

Problem 4825

Find the marginal cost function C(x)C^{\prime}(x) for C(x)=150+2,200x0.08x2C(x)=150+2,200 x-0.08 x^{2}. Approximate and find the exact cost for the 5th commercial.

See Solution

Problem 4826

Bestimme die Intervalle, in denen ff monoton wachsend oder fallend ist, und untersuche das Krümmungsverhalten. a) f(x)=x2x6f(x)=x^{2}-x-6 b) f(x)=x3+xf(x)=x^{3}+x c) f(x)=19x3xf(x)=\frac{1}{9} x^{3}-x

See Solution

Problem 4827

Bestimme die Ableitungen der Funktionen: a) f(x)=1x(x4+3x2)f(x)=\frac{1}{x}(x^{4}+3x^{2}), b) f(t)=t3(t3+1t)f(t)=\sqrt[3]{t}(t^{3}+\frac{1}{t}), c) f(s)=s2(s+1s4)f(s)=s^{2}(\sqrt{s}+\frac{1}{s^{4}}).

See Solution

Problem 4828

Find the derivative of g(x)=(x2+1x)4g(x)=\left(\frac{x^{2}+1}{x}\right)^{4}. Simplify your answer.

See Solution

Problem 4829

Franz investiert in Hasen, deren Population sich nach h(t)=(240+20t)e0,05th(t)=(240+20 t) \cdot e^{-0,05 t} entwickelt.
a) Wie viele Hasen hat er gekauft und wie viele sind es nach einem Jahr? b) Wachstumsrate zu Beginn (in Hasen/Monat)? c) Wann ist das Maximum erreicht? d) Wann verringert sich die Population am stärksten?

See Solution

Problem 4830

Find dydx\frac{d y}{d x} for x=yx=\sqrt{y}. Options: (A) 2x2 \sqrt{x} (B) 2x\sqrt{2} x (C) 2y2 \sqrt{y} (D) 2y\sqrt{2} y.

See Solution

Problem 4831

Find the value of kk given r=2u5r=2u^{5} and u=3x2+2u=3x^{2}+2, with drdx=k(x)(3x2+2)4\frac{dr}{dx}=k(x)(3x^{2}+2)^{4}.

See Solution

Problem 4832

Nennen Sie zwei Funktionen, die für x+x \rightarrow+\infty den Grenzwert 1 haben, und analysieren Sie ihr Verhalten für xx \rightarrow-\infty.

See Solution

Problem 4833

Nennen Sie zwei verschiedene Funktionen, die für x+x \rightarrow+\infty den Grenzwert 1 haben, und analysieren Sie ihr Verhalten für xx \rightarrow-\infty.

See Solution

Problem 4834

Find the derivative of the function f(x)=(x+k)exf(x)=(x+k) \cdot e^{x}. What is f(x)f^{\prime}(x)?

See Solution

Problem 4835

Beurteilen Sie Naels Aussage über den Grenzwert von f(x)=0,001x40,11x2+3\mathrm{f}(x) = 0,001 \mathrm{x}^{4}-0,11 \mathrm{x}^{2}+3 im Unendlichen.

See Solution

Problem 4836

Find the derivative, roots, and max/min points of the function f(x)=450x3x2f(x)=450x-3x^{2}.

See Solution

Problem 4837

Find the partial elasticities of z(x,y)=26e3x+2yz(x, y) = 26e^{3x+2y} with respect to xx and yy. Determine coefficients a,b,c,d,m,n,ka, b, c, d, m, n, k.

See Solution

Problem 4838

Find an approximate value for F(3.99,0.04)F(3.99,0.04) given F(4,0)=6F(4,0)=-6, F1(4,0)=2F_{1}^{\prime}(4,0)=2, F2(4,0)=3F_{2}^{\prime}(4,0)=3. Round to two digits.

See Solution

Problem 4839

Find the first and second-order partial derivatives of G(p,q)=5p5+20q8G(p, q)=5 p^{5}+20 q^{8} w.r.t. pp, and determine coefficients.

See Solution

Problem 4840

Find partial elasticities of z=26e3x+2yz=26 \cdot e^{3x+2y} with respect to xx and yy, and determine coefficients a,b,c,d,m,n,ka, b, c, d, m, n, k.

See Solution

Problem 4841

Find the linear approximation of h(x1,x2)=14e5x1ln(7+x2)h(x_{1}, x_{2})=14 e^{5 x_{1}} \cdot \ln(7+x_{2}) at (0.3,0.5)(-0.3,0.5) and coefficients aa, bb, cc, dd, kk.

See Solution

Problem 4842

Find the partial elasticities of z=26e3x+2yz=26 \cdot e^{3x+2y} with respect to xx and yy, and determine the coefficients aa, bb, cc, dd, mm, nn, kk.

See Solution

Problem 4843

Find an expression for 2cos3θ+2sin5θ+5θ25cos5θ\frac{2 \cos 3 \theta + 2 \sin 5 \theta + 5 \theta^{2}}{5 \cos 5 \theta} when θ\theta is small.

See Solution

Problem 4844

Find the derivative of f(x)=6x3x+2f(x) = -6x\sqrt{3x+2} and simplify it.

See Solution

Problem 4845

A ball is dropped from a height of 4.9 m4.9 \mathrm{~m}. How long until it hits the ground?

See Solution

Problem 4846

Find the derivative of f(x)=2exexf(x) = 2e^x - e^{-x}.

See Solution

Problem 4847

Find the derivative of f(x)=2exf(x)=2 e^{x}.

See Solution

Problem 4848

Find the derivative of f(x)=2exf(x)=2e^x.

See Solution

Problem 4849

Find the derivative of the function f(x)=exf(x)=-e^{-x}.

See Solution

Problem 4850

Find the first three derivatives of f(x)=2exexf(x)=2 \cdot e^{x}-e^{-x} and simplify each one.

See Solution

Problem 4851

Berechnen Sie die Ableitung von f(x)=2exf(x)=2 e^{x}. Ist die Produktregel erforderlich? Was geschieht mit der Zahl zwei?

See Solution

Problem 4852

Finde den Wert von bb (mit b>0b>0 und bNb \in \mathbb{N}), sodass 2b(4x2)dx=0\int_{-2}^{b} (4 - x^2) \, dx = 0.

See Solution

Problem 4853

Differentiate the function u=t3+6t3u=\sqrt[3]{t}+6 \sqrt{t^{3}}. Find uu'.

See Solution

Problem 4854

Differentiate g(x)=3exx g(x)=3 e^{x} \sqrt{x} ; find g(x) g^{\prime}(x) .

See Solution

Problem 4855

Write the composite function as f(g(x))f(g(x)) with u=g(x)u=g(x) and y=f(u)y=f(u) for y=1+8x3y=\sqrt[3]{1+8x}. Find dydx\frac{dy}{dx}.

See Solution

Problem 4856

Find the derivative of y=e3xcosxy=e^{3 x \cos x}. What is y=y^{\prime}=?

See Solution

Problem 4857

Find the light intensity II (in thousands of foot-candles) that maximizes the photosynthesis rate P=110II2+I+9P=\frac{110 I}{I^{2}+I+9}.

See Solution

Problem 4858

Find the first and second derivatives, yy^{\prime} and yy^{\prime \prime}, for y=eαxsinβxy=e^{\alpha x} \sin \beta x.

See Solution

Problem 4859

Find the average rate of change of C(t)C(t) over these intervals: (i) [1.0,2.0][1.0,2.0], (ii) [1.5,2.0][1.5,2.0], (iii) [2.0,2.5][2.0,2.5], (iv) [2.0,3.0][2.0,3.0]. Also estimate C(2)C^{\prime}(2).

See Solution

Problem 4860

Find the max and min of f(x)=xex2/50f(x)=x e^{-x^{2} / 50} on the interval [2,10][-2,10]. What are the values?

See Solution

Problem 4861

Find the price elasticity of demand for the "Roasted Rooster" at \4.00when4.00 when q=\frac{39}{p^{0.85}}$. What is the % change in demand?

See Solution

Problem 4862

Find the derivative of y=e3xcosxy=e^{3 x \cos x}, where y=y'=\square.

See Solution

Problem 4863

Given C(x)=3xC(x)=3x and R(x)=8x0.01x2R(x)=8x-0.01x^{2}, find the marginal cost, revenue, and profit functions.

See Solution

Problem 4864

What is the sum of the series 1=12+18148+1=\frac{1}{2}+\frac{1}{8}-\frac{1}{48}+\cdots?

See Solution

Problem 4865

Substitute x=π/2x=\pi / 2 into the series for sinx\sin x: 1=π2+π33!+π55!+1=\frac{\pi}{2}+\frac{\pi^{3}}{3 !}+\frac{\pi^{5}}{5 !}+\cdots

See Solution

Problem 4866

Find the derivative of the function y=e3xcosxy=e^{3 x \cos x}.

See Solution

Problem 4867

Identify the summation notation for the series 12x22+x2232!\frac{1}{2}-\frac{x}{2^{2}}+\frac{x^{2}}{2^{3} 2 !}-\cdots. Options include:
1. n=0(1)nxnn!2n+1\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{n ! 2^{n+1}}
2. n=0xnn!2n+1\sum_{n=0}^{\infty} \frac{x^{n}}{n ! 2^{n+1}}
3. n=1xnn!2n\sum_{n=1}^{\infty} \frac{x^{n}}{n ! 2^{n}}
4. n=0xnn!2n\sum_{n=0}^{\infty} \frac{x^{n}}{n ! 2^{n}}
5. n=0(1)nxnn!2n\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{n ! 2^{n}}
6. n=1(1)n+1xnn!2n\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n ! 2^{n}}

See Solution

Problem 4868

Find the first and second derivatives, yy^{\prime} and yy^{\prime \prime}, for y=eαxsinβxy=e^{\alpha x} \sin \beta x.

See Solution

Problem 4869

Find the first and second derivatives, yy' and yy'', of the function y=eαxsinβxy=e^{\alpha x} \sin \beta x.

See Solution

Problem 4870

Find f(1)f^{\prime}(-1) if f(x)=x12h(x)f(x)=x^{12} h(x), h(1)=2h(-1)=2, and h(1)=5h'(-1)=5.

See Solution

Problem 4871

Find the marginal revenue at 75 units for the revenue function R(q)=3q2+600qR(q)=-3 q^{2}+600 q. Answer: MR(75)=M R(75)= \$.

See Solution

Problem 4872

Find f(0)f^{\prime}(0) for f(x)=3x27x+7f(x)=3 x^{2}-7 x+7 and the tangent line at (0,7)(0,7) in the form y=mx+by=m x+b.

See Solution

Problem 4873

Find the first and second derivatives dydx\frac{d y}{d x} and d2ydx2\frac{d^{2} y}{d x^{2}} for the equation 4y2x=4y4 \sqrt{y}-2 x=-4 y.

See Solution

Problem 4874

Find the limit: limx0tan2xsinx\lim _{x \rightarrow 0} \frac{\tan 2 x}{\sin x}.

See Solution

Problem 4875

Find the limit as xx approaches 0 for the expression tannxsinx\frac{\tan n x}{\sin x}.

See Solution

Problem 4876

Find the velocity and acceleration vectors using uru_{r} and uθu_{\theta} for r=2sin3tr=2 \sin 3 t and θ=4t\theta=4 t. v=()ur+()uθ v=(\square) u_{r}+(\square) u_{\theta}

See Solution

Problem 4877

Find the marginal profit for a business with 150 customers, given p=2n2np=2n^{2}-\sqrt{n}.

See Solution

Problem 4878

Find the force on a mass mm moving at 7 units/sec along y=6x2y=6x^2 at point (21/2,12)(2^{1/2}, 12) using F=maF=ma. F=()i+()jF=(\square) i+(\square) j

See Solution

Problem 4879

Find the derivative of H(x)=(6x+1)1/2(3x2)4H(x)=\frac{(6 x+1)^{1/2}}{(3 x-2)^{4}}.

See Solution

Problem 4880

Find the derivative of f(x)=log4(5x+3)+72x1f(x)=\log _{4}(5 x+3)+7^{2 x-1}.

See Solution

Problem 4881

Find the limit: limh0ln(1+h)h\lim _{h \rightarrow 0} \frac{\ln (1+h)}{h}.

See Solution

Problem 4882

Find the limit: limx12xx4x31x14\lim _{x \rightarrow 1} \frac{\sqrt{2 x-x^{4}}-\sqrt[3]{x}}{1-x^{\frac{1}{4}}}.

See Solution

Problem 4883

Find the first and second derivatives of I(x)=2x3+cxI(x)=2x-3+c^{-x}.

See Solution

Problem 4884

Calculate the limit: limh0(1+3h)1h4e3+h\lim _{h \rightarrow 0} \frac{(1+3 h)^{\frac{1}{h}}}{4 e^{3+h}}.

See Solution

Problem 4885

Bestimme die Wendestellen des Graphen von f(x)=15x53x4+18x354x2f(x)=\frac{1}{5} x^{5}-3 x^{4}+18 x^{3}-54 x^{2}. Wo ist x=x=?

See Solution

Problem 4886

Bestimme die Wendestellen von f(x)=16x4+9x2f(x)=-\frac{1}{6} x^{4}+9 x^{2}. Wo hat der Graph von ff Wendepunkte?

See Solution

Problem 4887

Differentiate y=(2x+5)2/3(6x+7)2(5x4)5y=\frac{(2 x+5)^{2 / 3}}{(6 x+7)^{2}(5 x-4)^{5}} using logarithmic differentiation.

See Solution

Problem 4888

Finde die Nullstellen der zweiten Ableitung f(x)=10x336x2+18xf''(x) = 10x^3 - 36x^2 + 18x. Setze f(x)=0f''(x) = 0.

See Solution

Problem 4889

Berechne den Flächeninhalt zwischen dem Graphen von f(x)=2x23x5f(x)=2 x^{2}-3 x-5 und der xx-Achse im Intervall [1;2,5][-1 ; 2,5].

See Solution

Problem 4890

Überprüfen Sie, ob F(x)=0,1x40,1F(x)=0,1 x^{4}-0,1 und G(x)=220x4G(x)=\frac{2}{20} x^{4} Stammfunktionen von h(x)=25x3h(x)=\frac{2}{5} x^{3} sind.

See Solution

Problem 4891

Find the third derivative of f(x)f(x) if f(x)=x2+x+6f''(x) = -x^2 + x + 6.

See Solution

Problem 4892

Find the inflection point of f(x)=2exexf(x)=2 \cdot e^{x}-e^{-x}.

See Solution

Problem 4893

Find an expression for 4cosθ+4sin4θ+3cos4θ5θ+5cos5θ\frac{4 \cos \theta + 4 \sin 4\theta + 3 \cos 4\theta}{5 \theta + 5 \cos 5\theta} when θ\theta is small.

See Solution

Problem 4894

Find an expression for 2θ2+5cosθ+cos2θtan5θ+5cos5θ\frac{2 \theta^{2}+5 \cos \theta+\cos 2 \theta}{\tan 5 \theta+5 \cos 5 \theta} when θ\theta is small.

See Solution

Problem 4895

Find the derivative of f(x)=1(5x2x)3f(x) = \frac{-1}{(5x^{2} - x)^{3}}.

See Solution

Problem 4896

Calculate the integral from -1 to 4 of the function 3x24x+13x^{2} - 4x + 1.

See Solution

Problem 4897

Bestimmen Sie, ob die Folge an=(1/2)na_n = (1/2)^n konvergent oder divergent ist und erläutern Sie Ihre Antwort.

See Solution

Problem 4898

Find the derivative dydx\frac{d y}{d x} for the equation 9x3x^{3} + 9y3y^{3} = 8.

See Solution

Problem 4899

Find the derivative dydx\frac{d y}{d x} for the equation: 7x3+y3=47 x^{3}+y^{3}=4.

See Solution

Problem 4900

Find the derivative dydx\frac{d y}{d x} for the equation: 8x3y3=18 x^{3} y^{3}=1.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord