Calculus

Problem 9201

Find the average rate of change of the function h(x)=x2+7x+18h(x)=-x^{2}+7 x+18 from x=1x=1 to x=10x=10.

See Solution

Problem 9202

Calculate the double integral: 1403(3x2+y2)dxdy\int_{1}^{4} \int_{0}^{3}(3 x^{2}+y^{2}) \, dx \, dy.

See Solution

Problem 9203

Evaluate the double integral Rf(x,y)dA\iint_{R} f(x, y) d A for f(x,y)=xf(x, y)=x over the region R=[2,3]×[3,3]R=[2,3] \times[-3,3].

See Solution

Problem 9204

Differentiate the function f(x)=ln5x29xf(x)=\ln \sqrt{5 x^{2}-9 x}.

See Solution

Problem 9205

Calculate the double integral Rxcos(2x+y)dA\iint_{\mathbf{R}} x \cos (2 x+y) d A for 0xπ3,0yπ40 \leq x \leq \frac{\pi}{3}, 0 \leq y \leq \frac{\pi}{4}.

See Solution

Problem 9206

Differentiate g(s)=ln(sin2(7s))g(s)=\ln(\sin^{2}(7s)) with respect to ss.

See Solution

Problem 9207

Differentiate y=(4x)ln4xy=(4 x)^{\ln 4 x} using logarithmic differentiation to find yy^{\prime}.

See Solution

Problem 9208

Find dydx\frac{dy}{dx} for y=ln((x2+4)58x)y=\ln \left(\frac{(x^{2}+4)^{5}}{\sqrt{8-x}}\right).

See Solution

Problem 9209

Differentiate y=(sin8x)2xy=(\sin 8 x)^{2 x} using logarithmic differentiation.

See Solution

Problem 9210

Find the rocket's climbing speed at t=4t = 4 sec, given height h=3t2h = 3t^2 ft after liftoff.

See Solution

Problem 9211

A cone-shaped tank has a radius of 3m3 m and height 5m5 m. Water is added at 2 m3/min2 \mathrm{~m}^{3} / \mathrm{min}. Find the rise rate of water when it's 2m2 m deep. /min\square / m i n

See Solution

Problem 9212

Find the linearization L(x)L(x) of f(x)=x2+21f(x)=\sqrt{x^{2}+21} at x=2x=-2.

See Solution

Problem 9213

Estimate f(7)f(4)f(7) - f(4) using the Mean Value Theorem given 3f(x)2-3 \leq f^{\prime}(x) \leq 2.

See Solution

Problem 9214

Estimate 4.1\sqrt{4.1} using a linear approximation.

See Solution

Problem 9215

Find the second derivative of y=7x368y=\frac{7 x^{3}}{6}-8.

See Solution

Problem 9216

Estimate ln(0.91)\ln(0.91) using linear approximation.

See Solution

Problem 9217

Estimate e0.02e^{0.02} using linear approximation.

See Solution

Problem 9218

Find the limit: limxx3tan(1x)\lim _{x \rightarrow \infty} \frac{x}{3} \cdot \tan \left(\frac{1}{x}\right)

See Solution

Problem 9219

An object is dropped from 162ft162 \mathrm{ft}. Its height after tt seconds is s=16216t2s=162-16t^{2}. Find velocity, speed, and acceleration at time tt.

See Solution

Problem 9220

An object is dropped from 162 ft. Find its velocity, speed, acceleration at time tt, time to hit ground, and impact velocity.

See Solution

Problem 9221

A stone is thrown down at 88 ft/s from a 135 ft bridge. Find s(t)s(t) for height after tt seconds and check if it hits water in 2s.

See Solution

Problem 9222

Find the first and second derivatives of r=13s272sr=\frac{1}{3 s^{2}}-\frac{7}{2 s}.

See Solution

Problem 9223

Find the first and second derivatives of y=θ2(2θ+7)y=\theta^{2}(2 \theta+7).

See Solution

Problem 9224

Find the second and third derivatives of y=θ2(2θ+7)y=\theta^{2}(2 \theta+7) with respect to θ\theta.

See Solution

Problem 9225

Evaluate tan12(x)sec2(x)dx\int \tan^{12}(x) \sec^{2}(x) \, dx using an appropriate substitution.

See Solution

Problem 9226

Calculate the integral of -5 with respect to x: 5dx\int -5 \, dx.

See Solution

Problem 9227

Calculate the integral 3x2+16dx\int \frac{3}{\sqrt{x^{2}+16}} d x using a trigonometric substitution.

See Solution

Problem 9228

Find g(0)g^{\prime \prime}(0) for the function g(s)=ess+1g(s)=\frac{e^{s}}{s+1}.

See Solution

Problem 9229

Solve the differential equation y=2x3xy^{\prime}=2 x^{3}-x.

See Solution

Problem 9230

Evaluate the integral sin2(x)cos5(x)dx\int \sin^{2}(x) \cos^{5}(x) \, dx using the identity sin2(x)+cos2(x)=1\sin^{2}(x) + \cos^{2}(x) = 1 and substitution.

See Solution

Problem 9231

Find the derivative dydx\frac{d y}{d x} for the equation y=3x48x+9y=3 x^{4}-8 x+9.

See Solution

Problem 9232

Evaluate the integral 19(x+2)2dx\int \frac{1}{\sqrt{9-(x+2)^{2}}} d x using the substitution x+2=3sin(θ)x+2=3 \sin (\theta).

See Solution

Problem 9233

Evaluate the integral: xx23dx\int x \cdot \sqrt[3]{x^{2}} \, dx

See Solution

Problem 9234

Find the derivative dydx\frac{d y}{d x} for the equation y=6x5+9x46x3+x2y=-6 x^{5}+9 x^{4}-6 x^{3}+x^{2}.

See Solution

Problem 9235

Find the derivative dydx\frac{d y}{d x} for the equation y=3x5+4x4+6x38x5y=3 x^{5}+4 x^{4}+6 x^{3}-8 x-5.

See Solution

Problem 9236

Analyze the limits of f(n)=3(2)n1f(n)=3(2)^{n}-1 as nn \to -\infty and nn \to \infty. What are the results?

See Solution

Problem 9237

Analyze the end behavior of f(t)=2(14)t2f(t)=-2\left(\frac{1}{4}\right)^{t}-2. Find limits as tt \to -\infty and tt \to \infty.

See Solution

Problem 9238

Find the derivative f(x)f^{\prime}(x) of the function f(x)=2x57x3+8xf(x)=-2 x^{5}-7 x^{3}+8 x.

See Solution

Problem 9239

Find the profit function from the marginal profit dPdx=20x+250\frac{d P}{d x}=-20 x+250 and initial condition P(4)=$610P(4)=\$ 610.

See Solution

Problem 9240

Find the derivative dydx\frac{d y}{d x} for the equation y=x5x3+9x+7y=-x^{5}-x^{3}+9 x+7.

See Solution

Problem 9241

Find the integral of 1(5x)2\frac{1}{(5 x)^{2}} with respect to xx.

See Solution

Problem 9242

Find the cost of producing 100 items if the marginal cost is 1.830.006x1.83 - 0.006x and one item costs \$560.

See Solution

Problem 9243

Find the cost function given the marginal cost dCdx=x490+40\frac{d C}{d x}=\frac{\sqrt[4]{x}}{90}+40 and fixed cost \$2,400.

See Solution

Problem 9244

Evaluate dydx\frac{d y}{d x} for y=x2+3y=-x^{2}+3 at x=1x=-1.

See Solution

Problem 9245

Evaluate f(1)f^{\prime}(1) for the function f(x)=2x45xf(x)=2 x^{4}-5 x.

See Solution

Problem 9246

Find the derivative of yy from the equation y5ln(y)x4ln(x)=5y^{5} \ln (y) - x^{4} \ln (x) = 5. Answer: y=y'=

See Solution

Problem 9247

Evaluate dydx\frac{d y}{d x} for y=4x5+3x3y=-4 x^{5}+3 x^{3} at x=1x=-1.

See Solution

Problem 9248

Find the derivative of the function f(x)=86x2+4f(x)=\frac{-8}{\sqrt{6 x^{2}+4}}. What is f(x)f^{\prime}(x)?

See Solution

Problem 9249

Find the intervals where the function f(x)=x44x33f(x)=x^{4}-4 x^{3}-3 is concave up: (,0)(-\infty, 0), (0,2)(0,2), (2,)(2, \infty).

See Solution

Problem 9250

Find the derivative dydx\frac{d y}{d x} for the equation y=9x45x37y=-9 x^{4}-5 x^{3}-7.

See Solution

Problem 9251

Find the interval(s) where the function f(x)=x335x2+21x+1f(x)=\frac{x^{3}}{3}-5 x^{2}+21 x+1 is decreasing and concave down. Use interval notation.

See Solution

Problem 9252

Find dPdt\frac{d P}{d t} for b=1.8b=1.8, P=15kPaP=15 \mathrm{kPa}, V=120 cm3V=120 \mathrm{~cm}^{3}, dVdt=60 cm3/min\frac{d V}{d t}=60 \mathrm{~cm}^{3}/\mathrm{min}. dPdt=kPa/min\frac{d P}{d t}=\square \mathrm{kPa}/\mathrm{min}

See Solution

Problem 9253

Find local extrema using the First Derivative Test for f(x)=8x53+x3f(x)=-8 x^{\frac{5}{3}}+\sqrt[3]{x}. List xx values or \varnothing.

See Solution

Problem 9254

Find local extrema for f(x)=921x227x33f(x)=-9-\frac{21 x^{2}}{2}-\frac{7 x^{3}}{3} using the First Derivative Test.

See Solution

Problem 9255

Water fills a cylindrical pool at 4 ft³/min. Find the height change rate when water is 5 ft deep. Answer in ft/min\mathrm{ft} / \mathrm{min}.

See Solution

Problem 9256

Find the local minima of the continuous function f(x)f(x) with critical points at x=3,0,3,7x=-3, 0, 3, 7 based on f(x)f^{\prime \prime}(x) signs.

See Solution

Problem 9257

Find local extrema of f(x)=(x+4)3(3x2)2f(x)=(x+4)^{3}(3 x-2)^{2} using the First Derivative Test. List xx values or \varnothing.

See Solution

Problem 9258

Find the number of items, nn, that minimizes costs given the function C(n)=75n21800n+60000C(n)=75 n^{2}-1800 n+60000.

See Solution

Problem 9259

Bestimmen Sie die Ableitung von f(x)=2x412x2+12f(x)=2 x^{4}-12 x^{2}+12.

See Solution

Problem 9260

Find how fast the total resistance RR increases when R1=100ΩR_{1}=100 \Omega, R2=70ΩR_{2}=70 \Omega, with rates 0.90.9 and 0.7Ω/s0.7 \Omega/\mathrm{s}.

See Solution

Problem 9261

Bestimmen Sie den Wendepunkt und die Wendetangente für die Funktionen: a) f(x)=0,5x33x2+5xf(x)=0,5 x^{3}-3 x^{2}+5 x, b) f(x)=x3+3x2+x+2f(x)=x^{3}+3 x^{2}+x+2, c) f(x)=0,5x31,5x2f(x)=-0,5 x^{3}-1,5 x^{2}, d) f(x)=x3+9x2+7x18f(x)=x^{3}+9 x^{2}+7 x-18, e) f(x)=x33x2+4x+4f(x)=-x^{3}-3 x^{2}+4 x+4, f) f(x)=x36x2+11xf(x)=x^{3}-6 x^{2}+11 x.

See Solution

Problem 9262

Bestimme die 1. und 2. Ableitung für die folgenden Funktionen: a) f(x)=3x2+4x1f(x)=-3 x^{2}+4 x-1, b) f(x)=2x2+x44f(x)=\frac{2}{x^{2}}+\frac{x^{4}}{4}, c) f(x)=2sinxlnxf(x)=2 \sin x-\ln x, d) f(x)=18x4+32x3+2x2+45f(x)=\frac{1}{8} x^{4}+\frac{3}{2} x^{3}+2 x^{2}+\frac{4}{5}, e) f(x)=(3x+2)5f(x)=(3 x+2)^{5}, f) f(x)=4xexf(x)=4 x \cdot e^{x}.

See Solution

Problem 9263

Gegeben ist f(x)=3x24x+1f(x)=3 x^{2}-4 x+1.
a) Bestimme die Tangente t1(x)t_{1}(x) an f(x)f(x) bei P(1,f(1))P(1, f(1)).
b) Finde den Schnittpunkt und Schnittwinkel der Tangenten t1(x)t_{1}(x) und t2(x)t_{2}(x) durch Q(4,33)Q(4, 33).
c) Bestimme die Gleichung der Geraden g(x)g(x), die parallel zu t1(x)t_{1}(x) verläuft und durch R(1,1)R(1, -1) geht.

See Solution

Problem 9264

Finde die Punkte, an denen k(x)=53x38x216x+3k(x)=\frac{5}{3} x^{3}-8 x^{2}-16 x+3 waagerechte Tangenten hat.

See Solution

Problem 9265

Zeigen Sie, dass FF eine Stammfunktion von ff ist für die folgenden Funktionen:
a) f(x)=5x4+x3f(x)=5 x^{4}+x^{3}, F(x)=x5+14x4F(x)=x^{5}+\frac{1}{4} x^{4}; b) f(x)=3x28x3f(x)=3 x^{2}-8 x^{3}, F(x)=x32x43F(x)=x^{3}-2 x^{4}-3; c) f(x)=cos(x)+1f(x)=\cos (x)+1, F(x)=sin(x)+xF(x)=\sin (x)+x; d) f(x)=sin(13x)f(x)=\sin \left(\frac{1}{3} x\right), F(x)=3cos(13x)+πF(x)=-3 \cos \left(\frac{1}{3} x\right)+\pi; e) f(x)=32x2+4e2xf(x)=\frac{3}{2} x^{2}+4 e^{2 x}, F(x)=12x3+2e2xF(x)=\frac{1}{2} x^{3}+2 e^{2 x}; f) f(x)=(4x3)2f(x)=(4 x-3)^{2}, F(x)=112(4x3)3F(x)=\frac{1}{12}(4 x-3)^{3}.

See Solution

Problem 9266

Gegeben ist die Funktion y=f1(x)=(x+1t)etxy=f_{1}(x)=\left(x+\frac{1}{t}\right)e^{-t x}. Führen Sie eine Kurvendiskussion durch und berechnen Sie Flächeninhalte und Volumen.

See Solution

Problem 9267

Eine Tangente t3(x)t_{3}(x) berührt h(x)=x32+2h(x)=\frac{x^{3}}{2}+2 in Q1Q_{1} oder Q2Q_{2}. Bestimme die Punkte und t3(x)t_{3}(x) parallel zu y=6x+2y=6x+2. Finde auch die Normale i(x)i(x) bei S(2,h(2))S(-2, h(-2)).

See Solution

Problem 9268

Find the limit: limx4x3+64x+4\lim _{x \rightarrow-4} \frac{x^{3}+64}{x+4}.

See Solution

Problem 9269

Find the derivative dydx\frac{d y}{d x} for the function y=(2x5)(x3)y=(2 x-5)(x-3).

See Solution

Problem 9270

Evaluate the integral 2xydy\int 2xy \, dy.

See Solution

Problem 9271

Find the limit: limx3x22x+5x+6\lim _{x \rightarrow-3} \frac{x^{2}-2 x+5}{x+6}.

See Solution

Problem 9272

Gegeben ist f(x)=x2+9f(x)=-x^{2}+9. Berechne für 0u30 \leqq u \leqq 3: a) den maximalen Flächeninhalt des Rechtecks, b) den maximalen Umfang.

See Solution

Problem 9273

Bestimme die 1., 2. und 3. Ableitung der Funktion f(x)=x(x+3)2f(x)=x \cdot (x+3)^{2}.

See Solution

Problem 9274

Find local extrema for f(x)=(x5)2x+9f(x)=\frac{(x-5)^{2}}{x+9} in (9,7)(-9,7) using the Second Derivative Test.

See Solution

Problem 9275

Leiten Sie die Funktion ff ab: a) f(x)=xsin(3x)f(x)=x \cdot \sin (3 x) b) f(x)=(2x1)2xf(x)=(2 x-1)^{2} \cdot \sqrt{x} c) f(x)=3x5cos(2x)f(x)=3 x^{5} \cdot \cos (2 x) d) f(x)=3xsin(4x1)f(x)=3 x \cdot \sin (4 x-1) e) f(x)=(43x)2sin(x)f(x)=(4-3 x)^{2} \cdot \sin (x) f) f(x)=0,5x24xf(x)=0,5 x^{2} \cdot \sqrt{4-x} g) f(x)=x2cos(1x)f(x)=x^{2} \cdot \cos (1-x) h) f(x)=2x+3x2f(x)=\sqrt{2 x+3} \cdot x^{2} i) f(x)=(5x+2)7cos(x)f(x)=(5 x+2)^{7} \cdot \cos (x)

See Solution

Problem 9276

Solve the differential equation y=3yy'=\sqrt{3} y with initial condition y(0)=12y(0)=12. Find y(t)y(t).

See Solution

Problem 9277

Calculate the average rate of change of f(x)=3x2xf(x)=-3x^{2}-x from x=5x=5 to x=6x=6. Options: A. -34 B. -2 C. 16-\frac{1}{6} D. 12\frac{1}{2}

See Solution

Problem 9278

A protozoa population starts with 7 members and grows at a rate of 0.469/day. Find the population size after 8 days.

See Solution

Problem 9279

Find the derivative of f(x)=ln(6+e)f(x)=\ln(6+e) and state its domain. What is f(x)f'(x)? Domain:

See Solution

Problem 9280

Ergänzen Sie die Ableitungen für die Funktionen: a) f(x)=x2sin(x)f(x)=x^{2} \cdot \sin (x) b) f(x)=(2x3)cos(4x)f(x)=(2 x-3) \cdot \cos (4 x) c) f(x)=sin(2x)3x1f(x)=\sin (2-x) \cdot \sqrt{3 x-1} d) f(x)=x(4x+1)f(x)=\sqrt{x} \cdot(4 x+1) e) f(x)=(x+2)3cos(3x)f(x)=(x+2)^{3} \cdot \cos (-3 x)

See Solution

Problem 9281

Bestimmen Sie die 1. Ableitung der Funktionen: a) f(x)=xz3f(x)=x^{z-3}, b) f(x)=13x3+x1f(x)=\frac{1}{3} x^{3}+x-1, c) f(b)=4abf(b)=4 a b, d) f(z)=4z+zf(z)=\frac{4}{z}+\sqrt{z}, e) f(x)=4x2+0,5x+1f(x)=-4 x^{2}+0,5 x+1.

See Solution

Problem 9282

Find the arc length parametrization for the curve p(t)=2ti+(14t)j+(1+6t)k\mathbf{p}(t)=2 \sqrt{t} \mathbf{i}+(1-4 \sqrt{t}) \mathbf{j}+(1+6 \sqrt{t}) \mathbf{k}, t1t \geq 1.

See Solution

Problem 9283

A feather drops from 1.40 m on the moon with gravity 1.67 m/s21.67 \mathrm{~m} / \mathrm{s}^{2}. Find the fall time.

See Solution

Problem 9284

Bestimme den Differenzenquotienten für die Funktionen: a) f(x)=x32x2+1f(x)=x^{3}-2x^{2}+1 bei P(1)P(-1) und Q(2)Q(2), b) f(x)=cos(x)f(x)=\cos(x) bei A(1)A(1) und B(5)B(5). Berechne auch Änderungsmaße für f(x)=2x1f(x)=2x-1 im Intervall [3; 7].

See Solution

Problem 9285

Determine the time for a feather to fall 1.40 meters to Earth's surface.

See Solution

Problem 9286

Differentiate x2+3xy+y3=9x^{2}+3xy+y^{3}=9 with respect to xx. Which result is correct?

See Solution

Problem 9287

Calculez la dérivée seconde de y=71x3+7x2y=7 \frac{1}{x^{3}}+7 x^{2} en x=7x=7.

See Solution

Problem 9288

Use implicit differentiation on sin(x+y)=cos(xy)\sin(x+y) = \cos(xy) to find dydx\frac{dy}{dx}. What are the results?

See Solution

Problem 9289

Determine where the function f(x)f(x) is increasing, decreasing, and locate its local extrema for f(x)=4x232x22f(x)=-4 x^{2}-32 x-22.

See Solution

Problem 9290

Calculate the average rate of change of f(x)=13x24f(x)=\frac{1}{3} x^{2}-4 between x=0x=0 and x=3x=3.

See Solution

Problem 9291

Determine if these statements are true or false: I. If you can solve yy from xx, implicit differentiation can't be used. II. Implicit differentiation finds slopes for curves that aren't functions. III. It's fine if dydx\frac{d y}{d x} involves both xx and yy.

See Solution

Problem 9292

Determine where f(x)f(x) is increasing, decreasing, and identify local extrema for f(x)=(x8)e6xf(x)=(x-8)e^{-6x}.

See Solution

Problem 9293

Identify cases needing implicit differentiation for dydx\frac{d y}{d x}:
1. y=x2sin(5x)y=x^{2} \sin (5 x)
2. x43=y\sqrt[3]{x^{4}}=y
3. y5+2y3x4=1y^{5}+2 y^{3}-x^{4}=1
4. x2y3=1+yx^{2} y^{3}=1+y
5. y21+x+2y=0y^{2}-1+\sqrt{x+2 y}=0
6. y=2+tan1(3x2)y=\sqrt{2+\tan ^{-1}\left(3 x^{2}\right)}
7. xy=sin(x+y)x y=\sin (x+y)

See Solution

Problem 9294

Find (A) f(x)f'(x), (B) the partition numbers for ff', and (C) the critical numbers of ff for f(x)=8x+6f(x)=\frac{8}{x+6}.

See Solution

Problem 9295

Identify the valid multiple integrals from the options below:
1. a=01b=01c=01(abc)dcdadb\int_{a=0}^{1} \int_{b=0}^{1} \int_{c=0}^{1}(a b c) d c d a d b
2. y=01x=1yz=yx2(x2y+z)dzdxdy\int_{y=0}^{1} \int_{x=-1}^{y} \int_{z=-y}^{x^{2}}(x-2 y+z) d z d x d y
3. x=01y=0xz=0ydzdydx\int_{x=0}^{1} \int_{y=0}^{x} \int_{z=0}^{y} d z d y d x
4. u=01v=0ueuvdudv\int_{u=0}^{1} \int_{v=0}^{-u} e^{u-v} d u d v
5. x=21y=xxz=27(exyz)dzdxdy\int_{x=2}^{-1} \int_{y=-x}^{x} \int_{z=2}^{7}\left(e^{x} y z\right) d z d x d y
6. y=0xx=0yx2+y2dxdy\int_{y=0}^{x} \int_{x=0}^{y} x^{2}+y^{2} d x d y

See Solution

Problem 9296

Calculate the double integral: x=01y=0x42x3y2dydx\int_{x=0}^{1} \int_{y=0}^{x} 42 x^{3} y^{2} d y d x.

See Solution

Problem 9297

Determine where the function f(x)=(x5)e6xf(x)=(x-5) e^{-6 x} is increasing, decreasing, and locate its local extrema.

See Solution

Problem 9298

Find the derivative of f(x)=ax3+x22f(x) = a \sqrt[3]{x}+x^{2}-2 at x=1x = -1.

See Solution

Problem 9299

Find the slope of the tangent line for f(x)=5x211x9f(x)=5 x^{2}-11 x-9 at x=2x=-2.

See Solution

Problem 9300

Find the slope of the tangent line for the function f(x)=6x9f(x)=-6x-9 at the point where x=6x=6.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord