Calculus

Problem 27501

A- 1) Prove that g(x)=x1+exg(x)=x-1+e^{x} is strictly increasing and create its variation table. 2) Find g(0)g(0) and analyze the sign of g(x)g(x) for different xx.
B 1) For f(x)=(x2)ex1+exf(x)=\frac{(x-2)e^{x}}{1+e^{x}}, find limxf(x)\lim_{x \rightarrow -\infty} f(x) and identify an asymptote. 2) Analyze the positions of the curve (C)(C) and line (Δ):y=x2(\Delta): y=x-2. 3) Calculate limx+f(x)\lim_{x \rightarrow +\infty} f(x) and show (Δ)(\Delta) is an asymptote. 4) Show f(x)=exg(x)(1+ex)2f'(x)=\frac{e^{x} g(x)}{(1+e^{x})^2} and create the variation table for ff. 5) Plot (Δ)(\Delta) and (C)(C).

See Solution

Problem 27502

Find the derivative of y=3ln(5x2)y=3 \ln (5 x-2) with respect to xx: dy dx\frac{\mathrm{d} y}{\mathrm{~d} x}.

See Solution

Problem 27503

Find the derivative of the function y=5e2x+1y=5 e^{2 x+1} with respect to xx: dy dx\frac{\mathrm{d} y}{\mathrm{~d} x}.

See Solution

Problem 27504

Find the derivative of y=(x2+7)12y=\left(x^{2}+7\right)^{\frac{1}{2}} with respect to xx: dydx\frac{d y}{d x}.

See Solution

Problem 27505

Differentiate y={x+ln(2x)}3y = \{x+\ln (2 x)\}^{3} with respect to xx.

See Solution

Problem 27506

Berechnen Sie f(x)f^{\prime}(x) für 6f(x)=6x+3xax26 f(x)=\frac{6}{x}+3 \sqrt{x}-a x^{2} oder f(x)=38x4+ab2xπ2f(x)=-\frac{3}{8} x^{-4}+a b^{2} x-\pi^{2}.

See Solution

Problem 27507

Untersuchen Sie die Funktion f(x)=x2x24f(x)=\frac{x^{2}}{x^{2}-4} vollständig und zeichnen Sie ihren Graphen in einem geeigneten Intervall.

See Solution

Problem 27508

Find the normal line equation at point PP on the curve y=3(53x)2y=\frac{3}{(5-3x)^{2}} where x=2x=2. Format: ax+by+c=0ax+by+c=0.

See Solution

Problem 27509

Find the tangent line equation at point P(2,9)P(2, \sqrt{9}) on the curve y=4x+1y=\sqrt{4x+1} in the form ax+by+c=0ax + by + c = 0.

See Solution

Problem 27510

Find the following limits:
1. limx2(2x+6)\lim_{x \rightarrow 2} (2x + 6)
2. 2limx3((x+3)(2x1))2 \cdot \lim_{x \rightarrow 3} ((x + 3)(2x - 1))
3. limx3x3x29\lim_{x \rightarrow 3} \frac{x - 3}{x^2 - 9}
4. limx2x+2x1\lim_{x \rightarrow 2} \frac{x + 2}{x - 1}
5. limx033x+1+1\lim_{x \rightarrow 0} \frac{3}{\sqrt{3x + 1} + 1}
6. limx03x+11x\lim_{x \rightarrow 0} \frac{\sqrt{3x + 1} - 1}{x}

See Solution

Problem 27511

Wie ändert sich f(x,y)=x3y2f(x, y)=x^{3} y^{2} bei (2,5)(2,5), wenn xx um 0.7 steigt und yy um 0.3 sinkt? Berechnen Sie das totale Differential! Ergebnis als Dezimalzahl, gerundet auf zwei Nachkommastellen.

See Solution

Problem 27512

Finde den stationären Punkt der Funktion f(x,y)=y(3x2y2)f(x, y)=y(3x^{2}-y^{2}). Was ist der stationäre Punkt an ..-- bitte auswählen ---. v^\hat{v}?

See Solution

Problem 27513

Gegeben ist die Funktion Y(A,K)=25A0,7K0,3Y(A, K)=25 A^{0,7} K^{0,3} mit A=t+20A=\sqrt{t}+20 und K=t2+8K=t^{2}+8. Welche Ableitung ist richtig?

See Solution

Problem 27514

Berechne die partielle Elastizität von k=f(t,w,z)=wt5z3a+3twzk=f(t, w, z)=w t^{5} \frac{z^{3}}{a}+\frac{3}{t w z} bezüglich tt.

See Solution

Problem 27515

Bestimme die Extremstellen der Funktion f(x,y)=x32x27x+y32y215y10f(x, y)=x^{3}-2 x^{2}-7 x+y^{3}-2 y^{2}-15 y-10 und die Anzahl der Sattelpunkte.

See Solution

Problem 27516

Gegeben ist die Funktion f(x,y,z)=x23y+4zf(x, y, z)=x^{2}-3 y+4 \sqrt{z} mit y=7x5y=7 x^{5} und z=x2+5z=x^{2}+5. Welche Ableitungen sind korrekt?

See Solution

Problem 27517

Bestimme die Veränderung von f(x,y)=ln(x9)+4y2f(x, y)=\ln(x^{9})+4y^{2} bei (0.4,3.2)(0.4, 3.2) für Δx=0.49\Delta x=0.49, Δy=0.32\Delta y=-0.32.

See Solution

Problem 27518

Bestimme die Elastizität der Funktion f(x1,x2)=4x13+0.3x23f\left(x_{1}, x_{2}\right)=4 x_{1}^{3}+0.3 x_{2}^{3} bezüglich x1x_{1} bei (2.1;3.7)(2.1 ; 3.7). Ergebnis auf vier Dezimalstellen.

See Solution

Problem 27519

Gegeben ist die Nachfragefunktion x(p)=ln(0.04p5)x(p)=-\ln \left(0.04 p^{5}\right). Berechne die Änderung Δx\Delta x bei p=3.4p=3.4 und einer Erhöhung um 0.7.

See Solution

Problem 27520

Leite die Funktion f(g,x)=4gx2f(g, x)=4g-x^{2} mit g=3x2+x+1g=3x^{2}+x+1 ab. Gib die Ableitung ohne Leerzeichen an: dfdx=\frac{d f}{d x}=\square

See Solution

Problem 27521

Was ist die erste Ableitung von f(x,y)=x2y+8y6f(x, y)=x^{2} y+8 y^{6} nach xx bei (x=2.2,y=1)(x^{*}=2.2, y^{*}=1)? Ergebnis als Dezimalzahl.

See Solution

Problem 27522

Given the function f(x)=(1x)ex+2f(x)=(1-x)e^{x}+2, find limits, inflection points, and analyze the curve's relation to y=2xy=2x.

See Solution

Problem 27523

A soccer ball's height (m) at times (s) is given. Estimate the rate of change at t=2.0t=2.0 s using two methods. Which do you prefer?

See Solution

Problem 27524

Estimate the instantaneous rate of change of height h(x)=5x2+3x+65h(x)=-5 x^{2}+3 x+65 at x=3x=3 seconds.

See Solution

Problem 27525

A raccoon population is modeled by P(t)=100+30t+4t2P(t)=100+30t+4t^{2}. Find P(2.5)P(2.5), average rate from 0 to 2.5, and rate at 2.5.

See Solution

Problem 27526

Consider the function f(x)=(1x)ex+2f(x)=(1-x)e^{x}+2.
1) a- Find limxf(x)\lim_{x \to -\infty} f(x) and an asymptote (d) to (C). b- Find limx+f(x)\lim_{x \to +\infty} f(x), then calculate f(1)f(1) and f(2)f(2).
2) a- Show f(x)=xexf'(x)=-x e^{x} and create the variation table for ff. b- Prove the curve (C) has an inflection point II and find its coordinates.
3) Sketch (d) and (C).
4) Let (Δ)(\Delta) be the line y=2xy=2x. a- Show f(x)2x=(ex+2)(1x)f(x)-2x=(e^{x}+2)(1-x) and analyze positions of (C) and (Δ)(\Delta). b- Find an antiderivative FF of ff. c- Draw (Δ)(\Delta) and calculate the area bounded by (C), the yy-axis, and (Δ)(\Delta).
5) Let g(x)=ln[f(x)2]g(x)=\ln[f(x)-2]. a- Show the domain of gg is (,1)(-\infty, 1). b- Is there a point on (G)(G) where the tangent is parallel to (Δ)(\Delta)? Justify.

See Solution

Problem 27527

Graph the function f(x)=x32x2+xf(x)=x^{3}-2 x^{2}+x to find its zeros and estimate where the rate of change is positive, negative, or zero.

See Solution

Problem 27528

Given the function f(x)=3(x2)22f(x)=3(x-2)^{2}-2, find average rates of change on specified intervals and discuss positivity and negativity of rates.

See Solution

Problem 27529

A construction worker drops a bolt from 320 m320 \mathrm{~m}.
a) Find the average velocity from t=3t=3 to t=8t=8. b) Find velocity at t=2t=2.

See Solution

Problem 27530

How many years until 94%94\% of a radioactive isotope remains if it decays as y(t)=y0e0.0002ty(t)=y_{0} e^{-0.0002 t}?

See Solution

Problem 27531

Estimate the instantaneous rate of change of the car's value, given V(t)=18999(0.93)tV(t)=18999(0.93)^{t}, at t=5t=5. What does it mean?

See Solution

Problem 27532

Find the average population change from 2000 to 2024 using P(t)=1.5t2+36t+6P(t)=-1.5 t^{2}+36 t+6. Discuss results for 2000-2012 and 2012-2024. When is the rate of change 0?

See Solution

Problem 27533

Given f(x)=3x24x1f(x)=3 x^{2}-4 x-1, find the tangent line at x=1x=1: a) slope, b) yy-coordinate, c) equation.

See Solution

Problem 27534

A watermelon drops from 10 m10 \mathrm{~m}. What is its speed upon hitting the ground?

See Solution

Problem 27535

For 500 g of a substance with a half-life of 5.2 h, use M(t)=500(0.5)t5.2M(t)=500(0.5)^{\frac{t}{5.2}} to find:
a) Amount after 1 day.
b) Instantaneous rate of change at 1 day.

See Solution

Problem 27536

A boat's distance from the dock is given by d(t)=(1200)t2(t8)2d(t)=\left(\frac{1}{200}\right) t^{2}(t-8)^{2}.
a) Find when the rate of change is positive, negative, and zero. b) Explain the significance of zero and negative rates of change.

See Solution

Problem 27537

Determine the end behavior of f(x)=2x+4f(x)=2^{-x}+4 as xx \to \infty.

See Solution

Problem 27538

Find the end behavior of f(x)=2x+4f(x)=2^{-x}+4 as xx approaches infinity. What does f(x)f(x) approach?

See Solution

Problem 27539

Find the end behavior of f(x)=2x+4f(x)=2^{-x}+4 as xx \to \infty. What does f(x)f(x) approach?

See Solution

Problem 27540

Graph s(t)=tt2+5s(t)=\frac{t}{t^{2}+5} for 0t160 \leq t \leq 16. Find when the particle reverses direction, speeds up/slows down, and max/min velocities.

See Solution

Problem 27541

Find the limiting value of cumulative sales S(t)=641+8e0.47tS(t)=\frac{64}{1+8 e^{-0.47 t}} after a product launch.

See Solution

Problem 27542

Find the derivative of the function f(x)=3x2+2x2f(x) = 3x^2 + 2x - 2. What is f(x)f'(x)?

See Solution

Problem 27543

Bestimme die Asymptote von x3x^{-3}.

See Solution

Problem 27544

Sia {an}\{a_n\} convergente con an>0a_n > 0. Studia la convergenza di {bn},{cn},{dn}\{b_n\}, \{c_n\}, \{d_n\} definiti come sopra.

See Solution

Problem 27545

Calcula limh0f(x+h)f(x)h\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} para f(x)=x3f(x)=x^{3} y f(x)=xf(x)=\sqrt{x}, x>0x>0.

See Solution

Problem 27546

Encuentra limx1f(x)\lim _{x \rightarrow 1} f(x) donde f(x)=x31x1f(x)=\frac{\sqrt[3]{x}-1}{x-1} si x1x \neq 1 y f(1)=1f(1)=1.

See Solution

Problem 27547

Dans un repère orthonormé, pour la fonction f(x)=2xex+1+1f(x)=2xe^{-x+1}+1, faites les tâches suivantes : 1) Trouvez limxf(x)\lim_{x \to -\infty} f(x). 2) Montrez que limx+f(x)=1\lim_{x \to +\infty} f(x)=1 et déduisez-en une asymptote. 3) Montrez que f(x)=2(1x)ex+1f'(x)=2(1-x)e^{-x+1}.

See Solution

Problem 27548

Find the limit: limx2x23xx21\lim _{x \rightarrow \infty} \frac{2 x^{2}-3 x}{x^{2}-1}.

See Solution

Problem 27549

Find the derivative of the function f(x)=2x52xf(x)=\frac{2x-5}{2-x}.

See Solution

Problem 27550

Find the derivative of f(x)=2x52xf(x) = \frac{2x - 5}{2 - x}.

See Solution

Problem 27551

Find the third derivative of P(x)=(3x+2)3P(x) = (3x + 2)^3.

See Solution

Problem 27552

Find the decay constant for Pu-239 (half-life 24,110 years), remaining amount after 5,000 years, and time to decay from 20g to 1g.

See Solution

Problem 27553

Find the relationship between the perimeter PP and the side length aa of an equilateral triangle over time.

See Solution

Problem 27554

A fossil has 70% of its original carbon-14. Using the half-life of 5730 years, find when the creature died.

See Solution

Problem 27555

Explain the graph behavior of f(x)f(x) near its vertical asymptote for:
1) f(x)=3x9f(x)=\frac{3}{x-9}. 2) f(x)=5(x7)2f(x)=\frac{-5}{(x-7)^{2}}.

See Solution

Problem 27556

Determine the horizontal asymptote of the function f(x)=17x5x2+4f(x)=\frac{17 x}{5 x^{2}+4}.

See Solution

Problem 27557

Find the tangent line approximation for f(2.1)f(2.1) given f(2)=3f(2)=3 and f(x)=cos(1x2+x)f^{\prime}(x)=\cos \left(\frac{1}{x^{2}}+x\right). Is f(2.1)=2.12f(2.1)=2.12 an overestimate or underestimate?

See Solution

Problem 27558

Find the derivative of f(x)=6x+2f(x)=6x+2 using the limit definition: f(x)=limh0f(x+h)f(x)hf'(x)=\lim_{h \to 0} \frac{f(x+h)-f(x)}{h}.

See Solution

Problem 27559

A skier descends from 100 m100 \mathrm{~m}. What is his velocity at this height, assuming no friction or air resistance?

See Solution

Problem 27560

Berechnen Sie den Grenzwert der Reihe sn=i=1n3i22(i1)5is_{n} = \sum_{i=1}^{n} \frac{3^{i}-2^{2(i-1)}}{5^{i}} für nn \rightarrow \infty.

See Solution

Problem 27561

Find the derivative dydx\frac{d y}{d x} of the function y=2xy=2 \sqrt{x} using the first principle of calculus.

See Solution

Problem 27562

Berechne die Grenzwerte:
1. limnUn=13 \lim _{n \rightarrow \infty} U_{n} = \frac{1}{3}
2. limnOn=13 \lim _{n \rightarrow \infty} O_{n} = \frac{1}{3}

See Solution

Problem 27563

Bestimmen Sie die Tangentengleichung der Exponentialfunktion bei A(2,e2)A(2, e^2) und finden Sie die Achsenschnittpunkte.

See Solution

Problem 27564

An object falls with position s(t)=305t2s(t)=30-5 t^{2}. Find average velocities and limits as hh approaches 0.

See Solution

Problem 27565

Find the slope of the tangent to f(x)=xf(x)=\sqrt{x} at x=16x=16 using points near P(16,4)P(16,4), then find the tangent line's equation. y=y=

See Solution

Problem 27566

Solve for y(x)y(x) in the equation y7y=21x234x10y' - 7y = 21x^2 - 34x - 10 with initial condition y(0)=7y(0) = 7.

See Solution

Problem 27567

Evaluate the limit: limx0+x21x\lim _{x \rightarrow 0^{+}} \frac{x^{2}-1}{x}. If it doesn't exist, write DNE.

See Solution

Problem 27568

Find the limit: limxπ/26xtan(x)\lim _{x \rightarrow \pi / 2} \frac{6 x}{\tan (x)}. If it doesn't exist, write DNE.

See Solution

Problem 27569

Find the limit as x x approaches 0: limx05+ex1ex2 \lim _{x \rightarrow 0} \frac{5+e^{x}}{1-e^{x^{2}}} .

See Solution

Problem 27570

Find the average rate of change of f(x)=x2x8f(x)=x^{2}-x-8 from x=1x=-1 to x=5x=5.

See Solution

Problem 27571

Find the average rate of change of the function h(x)=x2+6x+11h(x)=-x^{2}+6x+11 from x=3x=-3 to x=6x=6.

See Solution

Problem 27572

Find the average rate of change of h(x)=x2+5x+12h(x)=-x^{2}+5x+12 from x=2x=2 to x=8x=8.

See Solution

Problem 27573

Find the average rate of change of g(x)=x2+6x+1g(x)=x^{2}+6x+1 from x=4x=-4 to x=0x=0.

See Solution

Problem 27574

Find the average rate of change of g(x)=x28x+18g(x)=-x^{2}-8x+18 on the interval 9x1-9 \leq x \leq -1.

See Solution

Problem 27575

Find the rate of change of the cylinder's volume with base radius t+2\sqrt{t+2} and height 12t\frac{1}{2} \sqrt{t}.

See Solution

Problem 27576

Find the speed of a 1.00kg1.00-\mathrm{kg} cart at 0.340 m0.340 \mathrm{~m} height, starting at 2.35 m/s2.35 \mathrm{~m/s} from 0.125 m0.125 \mathrm{~m}.

See Solution

Problem 27577

Matthew slides down an 8.45 m8.45 \mathrm{~m} hill at a 3232^\circ angle. With a mass of 27.5 kg27.5 \mathrm{~kg} and friction 0.1280.128, find the stopping distance.

See Solution

Problem 27578

Determine the speed of a 1.00kg1.00-\mathrm{kg} cart at 0.340 m0.340 \mathrm{~m} height if it starts at 2.35 m/s2.35 \mathrm{~m/s} and 0.125 m0.125 \mathrm{~m}.

See Solution

Problem 27579

Connor (m=76.0 kg)(m=76.0 \mathrm{~kg}) dives from 3.00 m3.00 \mathrm{~m} with 5.94 m/s5.94 \mathrm{~m/s}. Find his speed on impact and average water resistance force at 2.15 m2.15 \mathrm{~m}.

See Solution

Problem 27580

Bestimmen Sie die Extremstellen der Funktionen, indem Sie f(x)=0f^{\prime}(x)=0 lösen: a) f(x)=x24x+4f(x)=x^{2}-4x+4, b) f(x)=7x242x+35f(x)=7x^{2}-42x+35, c) f(x)=13x3+3x2+8xf(x)=\frac{1}{3}x^{3}+3x^{2}+8x, d) f(x)=14x48xf(x)=\frac{1}{4}x^{4}-8x.

See Solution

Problem 27581

Given that f(x)f(x) is continuous on [2,5][-2,5] with a critical point at x=1x=1 and ff is negative, what is true about ff at x=1x=1?

See Solution

Problem 27582

Ein Stein sinkt mit der Geschwindigkeit v(t)=2,5(1e0,1t)v(t)=2,5 \cdot\left(1-e^{-0,1 t}\right).
a) Wann erreicht er 2ms2 \frac{\mathrm{m}}{\mathrm{s}}? b) Zeigen Sie, dass v(t)v(t) stetig wächst. c) Was bedeutet v(t+5)v(t)=0,05v(t+5)-v(t)=0,05? d) Wie löst man: „Wann steigt vv in der nächsten Sekunde um 0,13 ms\frac{\mathrm{m}}{\mathrm{s}}?“ e) Wann ist die Beschleunigung 2,6cms22,6 \frac{\mathrm{cm}}{\mathrm{s}^{2}}?

See Solution

Problem 27583

Find the derivative of f(x) f(x) and simplify f(x)=xx1 f'(x) = \frac{x}{\sqrt{x} - 1} .

See Solution

Problem 27584

Find the second derivative of f(x)f(x) if f(x)=xx1f'(x) = \frac{x}{\sqrt{x} - 1}.

See Solution

Problem 27585

Check if the graph of f(x)=7+(9x)3/7f(x)=7+(9-x)^{3/7} has a vertical tangent or cusp at x=9x=9.

See Solution

Problem 27586

Check if the graph of f(x)=4(4x)3/7f(x)=4-(4-x)^{3/7} has a vertical tangent or cusp at x=4x=4.

See Solution

Problem 27587

Check if the graph of f(x)=3xx83f(x)=-3 x \sqrt[3]{x-8} has a vertical tangent or cusp at x=8x=8.

See Solution

Problem 27588

Check if the graph of f(x)=4(x4)4/5f(x)=4(x-4)^{4/5} has a vertical tangent or cusp at x=4x=4.

See Solution

Problem 27589

If 0 is a root of multiplicity 4 of a DE, then any polynomial of degree 3 or less is a solution. True or False?

See Solution

Problem 27590

Find the cell reaction and calculate the standard Gibbs energy, enthalpy, and entropy at 298.15 K for the cell:
E=0.23659(4.8564×104)t(3.4205×106)t2+(5.869×109)t3E^{\circ} = 0.23659 - (4.8564 \times 10^{-4}) t - (3.4205 \times 10^{-6}) t^2 + (5.869 \times 10^{-9}) t^3 for 0Ct50C0^{\circ}C \leq t \leq 50^{\circ}C.

See Solution

Problem 27591

Given the rational function f(x)=1x24f(x)=\frac{1}{x^{2}-4}, which statement about f(x)f(x) is FALSE?

See Solution

Problem 27592

Which statements about the graph of f(x)=64x2+128x+3f(x)=64 x^{2}+\frac{128}{x}+3 are true?

See Solution

Problem 27593

Consider the function f(x)=(4x2x)13f(x)=(4x^2-x)^{\frac{1}{3}}. Which statement about f(x)f(x) is FALSE?

See Solution

Problem 27594

Identify the FALSE statement about the function f(x)=6x(x1)2f(x)=\frac{6 x}{(x-1)^{2}} and its derivatives.

See Solution

Problem 27595

Determine the vertical and horizontal asymptotes of the function f(x)=xx2+5f(x)=\frac{x}{\sqrt{x^{2}+5}}.

See Solution

Problem 27596

Find the limit: limx4x2+32x1\lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}+3}}{2 x-1}. Choose from (A) -2, (B) -1, (C) 1, (D) Does not exist.

See Solution

Problem 27597

Find the tangent line to the curve 2x2y4=12x^{2}-y^{4}=1 at (1,1)(-1,1). Choose from options (A) to (D).

See Solution

Problem 27598

Определете вида на уравнението x2uxx+2xyuxy+y2uyy=0x^{2} u_{xx}+2xy u_{xy}+y^{2} u_{yy}=0 и намерете решението с трансформации ξ=yx,η=x\xi=\frac{y}{x}, \eta=x.

See Solution

Problem 27599

Дадено е ЧДУ: x2uxx+2xyuxy+y2uyy=0x^{2} u_{x x}+2 x y u_{x y}+y^{2} u_{y y}=0. Определете вида и намерете решението с ξ=yx\xi=\frac{y}{x}, η=x\eta=x.

See Solution

Problem 27600

Find the acceleration of a particle with velocity v(t)=5+et/3v(t)=5+e^{t / 3} at time t=4t=4. Options: (A) 0.422 (B) 0.698 (C) 1.265 (D) 8.794

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord