Calculus

Problem 12601

Find the tangent line equation for g(x)=(3x24)f(x)g(x)=(3x^{2}-4)f(x) at x=2x=-2 given f(2)=2f(-2)=-2 and f(2)=3f'(-2)=-3.

See Solution

Problem 12602

Find the derivative of y=x2exy=\frac{x^{2}}{e^{x}}.

See Solution

Problem 12603

Find the rate of change of the surface area A=4πr2A=4 \pi r^{2} with respect to the radius rr.

See Solution

Problem 12604

Check if the function is continuous, differentiable, both, or neither at the point where it changes:
f(x)={x2+3x+24,x4x+20,x>4 f(x)=\left\{\begin{array}{ll} x^{2}+3 x+24, & x \leq-4 \\ -x+20, & x>-4 \end{array}\right.

See Solution

Problem 12605

Check if the function is continuous or differentiable at the point where its definition changes:
f(x)={x213x7,x<117x11,x1 f(x)=\left\{\begin{array}{ll} x^{2}-13 x-7, & x<1 \\ -17 x-11, & x \geq 1 \end{array}\right.

See Solution

Problem 12606

Evaluate the limit and simplify your answer: limh03+h+43+4h\lim _{h \rightarrow 0} \frac{\sqrt{-3+h+4}-\sqrt{-3+4}}{h}

See Solution

Problem 12607

Evaluate the limit: limh03csc(x+h)3csc(x)h\lim_{h \rightarrow 0} \frac{3 \csc (x+h) - 3 \csc (x)}{h}

See Solution

Problem 12608

Find the limit as hh approaches 0 for 1x+h11x1h\frac{\frac{1}{x+h-1}-\frac{1}{x-1}}{h}.

See Solution

Problem 12609

Evaluate the double integral: 0202(u+2v)cos(2u)4dudv\int_{0}^{2} \int_{0}^{2}(u+2 v) \cos (2u) 4 \, du \, dv.

See Solution

Problem 12610

Calculate the limit: limn(n2+5nn2n)\lim _{n \rightarrow \infty}\left(\sqrt{n^{2}+5 n}-\sqrt{n^{2}-n}\right).

See Solution

Problem 12611

Find values of aa and bb for the function f(x)f(x) to be differentiable at x=2x=2:
f(x)={2ax7for x<22bx2+4x1for x2 f(x)=\begin{cases} 2 a x-7 & \text{for } x<2 \\ 2 b x^{2}+4 x-1 & \text{for } x \geq 2 \end{cases}

See Solution

Problem 12612

Find the derivative f(6)f^{\prime}(6) for the function f(x)=5x36+3xf(x)=\frac{5 \sqrt{x^{3}}}{6}+\frac{3}{\sqrt{x}}.

See Solution

Problem 12613

Find values of aa and bb so that the function f(x)f(x) is differentiable at x=4x=4:
f(x)={2ax+5 for x42bx2x6 for x>4 f(x)=\left\{\begin{array}{lll} 2 a x+5 & \text { for } & x \leq 4 \\ 2 b x^{2}-x-6 & \text { for } & x>4 \end{array}\right.

See Solution

Problem 12614

Find the derivatives: (a) ddy(Ayb+1)\frac{d}{d y}(A y^{b+1}) (b) dfdx\frac{d f}{d x} for f(x)=x2(x4+1)f(x)=x^{2}(x^{4}+1) (c) dgdp\frac{d g}{d p} for g(p)=p+1p1g(p)=\frac{p+1}{p-1} Also, for f(x)=100+2xf(x)=100+2x and g(x)=x3g(x)=x^{3}: (a) Find f(g(x))f(g(x)) and g(f(x))g(f(x)). (b) Derivative of f(g(x))f(g(x)) using the chain rule. (c) Derivative of g(f(x))g(f(x)) using the chain rule.

See Solution

Problem 12615

Bestimmen Sie die Ableitung von f(x)=2x+x2f(x) = \frac{2}{\sqrt{x}} + \frac{\sqrt{x}}{2}.

See Solution

Problem 12616

Find the derivative of y=x2exy = \frac{x^{2}}{e^{x}}.

See Solution

Problem 12617

A \$6,000 deposit in an IRA earns 7\% interest compounded continuously. What is its value in 15 years? Round to the nearest cent.

See Solution

Problem 12618

Find the antiderivative of f(t)=12t+1f^{\prime}(t)=\frac{1}{\sqrt{2 t+1}}.

See Solution

Problem 12619

Evaluate the integral Cf(x,y,z)ds=01(8e2t+32t)4e2t+16t2+16dt\int_{C} f(x, y, z) d s=\int_{0}^{1}\left(8 e^{2 t}+32 t\right) \sqrt{4 e^{2 t}+16 t^{2}+16} d t.

See Solution

Problem 12620

Evaluate the line integral using uu-substitution:
Cf(x,y,z)ds=01(8e2t+32t)4e2t+16t2+16dt\int_{C} f(x, y, z) d s = \int_{0}^{1}(8 e^{2 t}+32 t) \sqrt{4 e^{2 t}+16 t^{2}+16} d t

See Solution

Problem 12621

Differentiate the function: y=x7lnx13x3y=x^{7} \ln x-\frac{1}{3} x^{3}. Find dydx\frac{d y}{d x}.

See Solution

Problem 12622

Find the derivative of y=ln((x2+7)53x)y=\ln \left(\frac{(x^{2}+7)^{5}}{\sqrt{3-x}}\right). What is dydx\frac{d y}{d x}?

See Solution

Problem 12623

Find the number of cars that pass by from 8 to 9 AM given q(t)=1400+2200t270t2q(t)=1400+2200 t-270 t^{2}.

See Solution

Problem 12624

Find the displacement of an object with velocity v(t)=18t+150v(t)=-18t+150 over the intervals: a) [1,7][1,7], b) [0,10][0,10].

See Solution

Problem 12625

Find the displacement of an object with velocity v(t)=18t5v(t)=18 \sqrt[5]{t} over the interval [0,243][0,243].

See Solution

Problem 12626

Find the total number of antibodies produced in 20 minutes given f(t)=11t3t2+10f(t)=\frac{11 t}{3 t^{2}+10}. Round to two decimal places.

See Solution

Problem 12627

At t=0t=0, species AA and BB have equal populations. Find which has a larger population after 5, 10, and 25 years using:
R1=19+110ln(1+2t2)R_{1}=19+110 \ln(1+2 t^{2})
R2=19e0.2t+1R_{2}=19 e^{0.2 t+1}

See Solution

Problem 12628

Differentiate y=ln[(x+8)5(x+4)3(x+6)6]y=\ln \left[(x+8)^{5}(x+4)^{3}(x+6)^{6}\right] and find ddx[ln[(x+8)5(x+4)3(x+6)6]]\frac{d}{d x}[\ln \left[(x+8)^{5}(x+4)^{3}(x+6)^{6}\right]].

See Solution

Problem 12629

Differentiate the function y=19ln(x235x+6)y=19 \ln \left(x^{23} \sqrt{5 x+6}\right). Find y=y'=\square.

See Solution

Problem 12630

Find the total oil leaked in the first hour using f(t)=Aektf(t)=A e^{-k t} and the integral 060f(t)dt\int_{0}^{60} f(t) \, dt. What are the units?

See Solution

Problem 12631

Find the marginal-revenue function for the demand p=30ln(q+2)p=\frac{30}{\ln (q+2)}. What is drdq\frac{d r}{d q}?

See Solution

Problem 12632

Find the limit of the sequence an=n(n3+n+23n)a_{n}=n\left(\sqrt[3]{n^{3}+n+2}-n\right) as nn approaches infinity.

See Solution

Problem 12633

Find the marginal cost of the total-cost function c=24ln(q+1)+13c=24 \ln (q+1)+13 when q=4q=4. The answer is \square.

See Solution

Problem 12634

Approximate the area under f(x)=0.2x2x+12f(x)=-0.2 x^{2}-x+12 on [1,3][-1,3] using trapezoids with n=4n=4 subintervals.

See Solution

Problem 12635

Oil leaks at r=17e4tr=17 e^{4 t} gallons/hour. Find the integral for 0 to 3 hours. Estimate using a left sum with 3 parts.

See Solution

Problem 12636

Find the limit: limmm(m3+m+23)\lim _{m \rightarrow-\infty} m\left(\sqrt[3]{m^{3}+m+2}\right).

See Solution

Problem 12637

Differentiate the function y=17ln(x34x+73)y=17 \ln \left(x^{3} \sqrt[3]{4 x+7}\right). Find y=y'=\square.

See Solution

Problem 12638

Find the rate of change of supply with respect to price given q(p)=22+8ln(3p+1)q(p)=22+8 \ln (3 p+1). Calculate dqdp\frac{d q}{d p}.

See Solution

Problem 12639

Find the limit: limnnn3+n+23n\lim _{n \rightarrow \infty} n \sqrt[3]{n^{3}+n+2}-n.

See Solution

Problem 12640

Differentiate y=17ln(x37x+53)y=17 \ln \left(x^{3} \sqrt[3]{7 x+5}\right). Find y=\mathbf{y}^{\prime}=\square.

See Solution

Problem 12641

Find the tangent line equation to y=ln(x29x9)y=\ln(x^{2}-9x-9) at x=10x=10. y=\mathbf{y}=\square (Simplify your answer.)

See Solution

Problem 12642

Differentiate the function y=ex6+6x1y=e^{x^{6}+6 x-1}. Find y=ddx(ex6+6x1)=y'=\frac{d}{dx}\left(e^{x^{6}+6 x-1}\right)=\square.

See Solution

Problem 12643

Differentiate the function y=ex4exex+4exy=\frac{e^{x}-4 e^{-x}}{e^{x}+4 e^{-x}}. Find yy'.

See Solution

Problem 12644

Find the derivative of yy where y=lnx4+lnxy=\frac{\ln x}{4+\ln x}.

See Solution

Problem 12645

Differentiate the function y=ex6+3x+10y=e^{x^{6}+3 x+10}. Find y=ddx(ex6+3x+10)=y' = \frac{d}{dx}(e^{x^{6}+3 x+10}) = \square.

See Solution

Problem 12646

A particle moves along a line with s(t)=2t220ts(t)=2t^2-20t. Find velocity, acceleration, when stationary, and motion intervals.

See Solution

Problem 12647

Find the derivative of yy with respect to xx for y=lnx2+3lnxy=\frac{\ln x}{2+3 \ln x}.

See Solution

Problem 12648

Bestimmen Sie den Grenzwert L=limx12xx+1L = \lim _{x \rightarrow \infty} \frac{1-2 x}{x+1} mithilfe einer Wertetabelle.

See Solution

Problem 12649

Find the derivative of y=8e9x3x2y=\frac{-8 e^{9 x}}{3 x-2}. What is ddx(8e9x3x2)\frac{d}{d x}\left(\frac{-8 e^{9 x}}{3 x-2}\right)?

See Solution

Problem 12650

Differentiate the function f(x)=(x+6)e5x+3f(x)=(x+6) e^{-5 x+3} and express f(x)f^{\prime}(x) in factored form.

See Solution

Problem 12651

Find the derivative of yy with respect to xx for y=lnx1+4lnxy=\frac{\ln x}{1+4 \ln x}.

See Solution

Problem 12652

Differentiate the function y=(9x+8)xy=(9 x+8)^{x}. Find dydx=\frac{d y}{d x}=\square.

See Solution

Problem 12653

Find the limit of the sequence an=n+(1)nna_{n}=\frac{n+(-1)^{n}}{n} as nn \to \infty.

See Solution

Problem 12654

Differentiate the function y=(2x+7)xy=(2x+7)^{x}. Find dydx\frac{dy}{dx}.

See Solution

Problem 12655

Evaluate the double integral: 402(02ucos(2u)dv)du4 \int_{0}^{2}\left(\int_{0}^{2} u \cos (2 u) d v\right) d u.

See Solution

Problem 12656

Find the grams of carbon-14 left after 5403 years using the model A=16e0.000121tA=16 e^{-0.000121 t}. Answer: \square grams.

See Solution

Problem 12657

Differentiate the function y=(8x+1)xy=(8 x+1)^{x}. Find dydx\frac{d y}{d x}.

See Solution

Problem 12658

Find dydx\frac{dy}{dx} if y=lnx1+lnxy=\frac{\ln x}{1+\ln x}.

See Solution

Problem 12659

Find the rate of change of price pp with respect to quantity qq for p=e0.003qp=e^{-0.003 q} when q=300q=300. Answer: \square.

See Solution

Problem 12660

Find the marginal-cost function and its values for cˉ=2250eq450q\bar{c}=\frac{2250 e^{\frac{q}{450}}}{q} at q=225q=225 and q=450q=450.

See Solution

Problem 12661

Evaluate the expression [492t576cos(t)(54)sin(2t)]02π[492 t-576 \cos (t)-(54) \sin (2 t)]_{0}^{2 \pi}.

See Solution

Problem 12662

Find the marginal-cost function from cˉ=2250eq450q\bar{c}=\frac{2250 e^{\frac{q}{450}}}{q} and calculate it for q=225q=225 and q=450q=450.

See Solution

Problem 12663

Check if the sequence an=(1)n(11n)a_{n}=(-1)^{n}\left(1-\frac{1}{n}\right) converges.

See Solution

Problem 12664

Find dydt\frac{dy}{dt} for y=e(2cost+lnt)y=e^{(2 \cos t+\ln t)}.

See Solution

Problem 12665

Find the derivative of yy with respect to tt for y=e(11sint+lnt)y=e^{(11 \sin t+\ln t)}.

See Solution

Problem 12666

Analyze the sequence an=n!nna_{n}=\frac{n !}{n^{n}}: Is it monotonic, bounded, and does it converge?

See Solution

Problem 12667

Determine the truth of these statements about absolute and local maxima of a function f(x)f(x):
I. Absolute maximum is the largest yy-value of f(x)f(x). II. A function can have multiple absolute maxima. III. Local maximum f(c)f(c) is the largest yy-value near cc. IV. A function can have multiple local maxima. V. A function can't have both local and absolute maxima at cc. VI. A function can have no absolute max or min. VII. Continuous functions on closed intervals have absolute max and min. VIII. Only continuous functions have absolute max and min on closed intervals.

See Solution

Problem 12668

Is each of the following statements true or false based on Fermat's Theorem?
I. If f(x)f(x) has a local max at x=cx=c, then cc is a critical point. II. If cc is not a critical point, then no local max/min exists at cc. III. If cc is a critical point, then a local max/min exists at cc. IV. If no local extremum at cc, then cc is not a critical point. V. If f(x)f(x) has a local max at cc, then f(c)=0f'(c)=0.

See Solution

Problem 12669

Find the derivative of s(t)=e2t1+e2ts(t) = \frac{e^{2t}}{1 + e^{2t}}.

See Solution

Problem 12670

Calculate the limit: limn(n!nn)\lim _{n \rightarrow \infty}\left(\frac{n !}{n^{n}}\right).

See Solution

Problem 12671

Find the curve equation with slope f(x)=x29f^{\prime}(x)=x^{\frac{2}{9}} that passes through (1,911)(1, \frac{9}{11}).

See Solution

Problem 12672

Find the critical numbers of the function f(x)=x348xf(x)=x^{3}-48x. Enter answers as a comma-separated list.

See Solution

Problem 12673

Find the critical numbers of the function f(x)=x3+6x215x10f(x)=x^{3}+6 x^{2}-15 x-10. Provide your answers as a comma-separated list.

See Solution

Problem 12674

Find critical points of f(x)=ex+ex2f(x)=\frac{e^{x}+e^{-x}}{2}: domain, f(x)f'(x), where f(x)=0f'(x)=0, and where f(x)=DNEf'(x)=D N E.

See Solution

Problem 12675

Find the derivative of k(x)=3cot7(x)k(x)=\frac{3}{\cot^{7}(x)} and confirm if f(x)=k(x)f(x)=k(x). Is there a specific point for evaluation?

See Solution

Problem 12676

Is it possible for a function on a finite interval (a,b)(a, b) to lack an absolute maximum or minimum?

See Solution

Problem 12677

Find f(2)f^{\prime \prime}(2) for the Taylor polynomial T4(x)=1+4(x2)5(x2)2+18(x2)3(x2)4T_{4}(x)=1+4(x-2)-5(x-2)^{2}+18(x-2)^{3}-(x-2)^{4}. Options: (a) -10 (b) -1 (c) -5 (d) 18 (e) 4.

See Solution

Problem 12678

Find the values of the squares and evaluate the integral 02π(8+()sin2(t)+()dusin3(t))cos(t)dt\int_{0}^{2 \pi} (8 + (\square) \sin^2(t) + (\square) du \sin^3(t)) \cos(t) dt.

See Solution

Problem 12679

Evaluate the integral of 8(1sin2(t))cos(t)+16sin3(t)cos(t)+40sin2(t)cos(t)8(1-\sin^2(t))\cos(t) + 16\sin^3(t)\cos(t) + 40\sin^2(t)\cos(t) from 00 to 2π2\pi.

See Solution

Problem 12680

Create a sign diagram for the derivative of f(x)=x36x215x+5f(x)=x^{3}-6 x^{2}-15 x+5. Identify intervals of increase and decrease.

See Solution

Problem 12681

Find the limit as xx approaches -∞: limxcos18x5x=(\lim _{x \rightarrow-\infty} \frac{\cos 18 x}{5 x} = \square( Simplify your answer.)

See Solution

Problem 12682

Calculate the total compression ΔL\Delta L (in mm) of an 8 m8 \mathrm{~m} sandstone pillar with density 2250 kg/m32250 \mathrm{~kg/m}^3 and Young's Modulus 12.5GPa12.5 \mathrm{GPa}.

See Solution

Problem 12683

Evaluate the limit: limni=1n(3in)33n\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{3 i}{n}\right)^{3} \cdot \frac{3}{n} using the formula for the sum of cubes.

See Solution

Problem 12684

Find the limit of f(x)=6x5+9x5x2+x+8f(x)=\frac{6 x^{5}+9}{x^{5}-x^{2}+x+8} as xx \rightarrow \infty and xx \rightarrow -\infty.

See Solution

Problem 12685

Find the limit: limx8x+x89x3\lim _{x \rightarrow \infty} \frac{8 \sqrt{x}+x^{-8}}{9 x-3}. Simplify your answer.

See Solution

Problem 12686

Find the limit as xx approaches -\infty: limx(1x4x2+9x)5\lim _{x \rightarrow-\infty}\left(\frac{1-x^{4}}{x^{2}+9 x}\right)^{5}. Simplify your answer.

See Solution

Problem 12687

Find the limits of h(x)=6x413x4+17x3+20x2h(x)=\frac{6 x^{4}}{13 x^{4}+17 x^{3}+20 x^{2}} as xx \rightarrow \infty and xx \rightarrow -\infty.

See Solution

Problem 12688

Find the limit as xx approaches -\infty: limx(1x4x2+9x)5\lim _{x \rightarrow-\infty}\left(\frac{1-x^{4}}{x^{2}+9 x}\right)^{5}. Write \infty or -\infty as needed.

See Solution

Problem 12689

Find the limit:
limxx34x+62x+x231 \lim _{x \rightarrow-\infty} \frac{\sqrt[3]{x}-4 x+6}{2 x+x^{\frac{2}{3}}-1}
Simplify your answer to \infty or -\infty.

See Solution

Problem 12690

Find the limit of f(x)=9x4+5x3+84x5f(x)=\frac{9 x^{4}+5 x^{3}+8}{4 x^{5}} as xx \rightarrow \infty and xx \rightarrow -\infty.

See Solution

Problem 12691

Find the limit: limx71(x7)2=(\lim _{x \rightarrow 7} \frac{1}{(x-7)^{2}}=\square( Simplify your answer. ))

See Solution

Problem 12692

Find the derivative of f(x)=ln(7x33x2+5)4f(x)=\ln \left(7 x^{3}-3 x^{2}+5\right)^{4}.

See Solution

Problem 12693

Find the limit as xx approaches 7 from the right: limx7+4x7=\lim _{x \rightarrow 7^{+}} \frac{4}{x-7}=\square.

See Solution

Problem 12694

Find the limit as xx approaches 0 from the right: limx0+18x=(\lim _{x \rightarrow 0^{+}} \frac{1}{8 x}=\square( Simplify your answer.)

See Solution

Problem 12695

Find the limit as θ\theta approaches 00 from the right: limθ0+(5+cscθ)\lim _{\theta \rightarrow 0^{+}}(5+\csc \theta).

See Solution

Problem 12696

Find the limit: limx(11π2)8tanx=\lim _{x \rightarrow\left(\frac{11 \pi}{2}\right)^{-}}-8 \tan x = \square (simplify your answer).

See Solution

Problem 12697

Find the absolute extreme values of the function f(x)=x4+4x3+4x2f(x)=x^{4}+4x^{3}+4x^{2} on the interval [2,1][-2,1].

See Solution

Problem 12698

Approximate f(7.2)f^{\prime}(-7.2) using f(7.2)=6.2f(-7.2)=-6.2 and f(7.1)=4.6f(-7.1)=-4.6. f(7.2)f^{\prime}(-7.2) \approx

See Solution

Problem 12699

Find the critical numbers of the function f(x)=x3+6x214x70f(x) = x^{3} + 6x^{2} - 14x - 70.

See Solution

Problem 12700

Find the derivative of the inverse function of f(x)=exex2f(x)=\frac{e^{x}-e^{-x}}{2} using (f1)(x)=1f(f1(x))\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}. Then, find the tangent line to y2(y24)=x2(x25)y^{2}(y^{2}-4)=x^{2}(x^{2}-5) at (0,2)(0,-2).

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord