Calculus

Problem 29701

Maximize z=4xy2z=4xy^{2} with the constraint 8x+4y=168x+4y=16. Find xx, yy, and the extreme value of zz.

See Solution

Problem 29702

Berechne die Ableitungen für f(x)=x2+1f(x)=x^{2}+1 bei x=1x=1 und f(x)=2x3x2+3x5f(x)=2 x^{3}-x^{2}+3 x-5 bei x=2x=2.

See Solution

Problem 29703

A firm expects a 20% annual profit growth over 5 years starting from £12m. Calculate total profits using continuous compounding.

See Solution

Problem 29704

Determine where f f is concave up or down, and find any points of inflection. Support your answers.

See Solution

Problem 29705

Bestimme den Differenzenquotienten für die Funktionen im angegebenen Intervall:
a) f(x)=x2+1f(x)=x^{2}+1, I=[0;2]
b) f(x)=xf(x)=\sqrt{x}, I=[0;4]
c) f(x)=1xf(x)=\frac{1}{x}, I=[0,5;1]
d) f(x)=x+3xf(x)=\sqrt{x+3}-x, I=[1;6]

See Solution

Problem 29706

Calculate the limit as xx approaches -5 for the function exe^{-x}.

See Solution

Problem 29707

Calculate f(x)=sin(4x)xf(x) = \frac{\sin(4x)}{x} for x=0.1,0.01,0.001,0.001,0.01,0.1x = -0.1, -0.01, -0.001, 0.001, 0.01, 0.1 and round to six decimal places.

See Solution

Problem 29708

Find the limit: limx2x+73x2\lim _{x \rightarrow 2} \frac{\sqrt{x+7}-3}{x-2}.

See Solution

Problem 29709

Find limx8f(x)\lim _{x \rightarrow 8} f(x) using the Squeeze Theorem, given 2x8f(x)2+x82-|x-8| \leq f(x) \leq 2+|x-8|.

See Solution

Problem 29710

Find limx3F(x)\lim _{x \rightarrow-3} F(x) for the piecewise function F(x)={(x+3)3+3x<3ex33xF(x)=\left\{\begin{array}{cc}(x+3)^{3}+3 & x<-3 \\ e^{x}-3 & -3 \leq x\end{array}\right..

See Solution

Problem 29711

Find the limit as xx approaches 0: limx0x+55x\lim_{x \rightarrow 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}.

See Solution

Problem 29712

Find the limit: limx3+F(x)\lim _{x \rightarrow-3^{+}} F(x) where F(x)=sin(x+3)F(x)=\sin (x+3) for x<3x<-3 and (x+3)3+2(x+3)^{3}+2 for 3x-3 \leq x.

See Solution

Problem 29713

Evaluate the following integrals: a) (sinxcosx)2dx\int(\sin x-\cos x)^{2} dx b) 491x+xdx\int_{4}^{9} \frac{1}{\sqrt{x}+x} dx

See Solution

Problem 29714

Find numbers for the inequality: 11<x+2<1+1-1 - 1 < x + 2 < -1 + 1 when ε=1\varepsilon = 1.

See Solution

Problem 29715

Prove that limx3(x+2)=1\lim _{x \rightarrow-3}(x+2)=-1.

See Solution

Problem 29716

Find the unit price pp for maximum revenue from R(p)=12p2+1900pR(p)=\frac{-1}{2} p^{2}+1900 p and calculate the maximum revenue.

See Solution

Problem 29717

Find appropriate values of δ\delta for the limit limx2(x23x+5)=3\lim _{x \rightarrow 2}(x^{2}-3 x+5)=3 in terms of ε\varepsilon.

See Solution

Problem 29718

Evaluate the following integrals using integration by parts: a) 01xe5xdx\int_{0}^{1} x e^{-5 x} d x, b) (5x+1)cosxdx\int(5 x+1) \cos x d x.

See Solution

Problem 29719

Evaluate the following trigonometric integrals: a. sin4xcos5xdx\int \sin ^{4} x \cos ^{5} x d x b. 0π4tan3xsec3xdx\int_{0}^{\frac{\pi}{4}} \tan ^{3} x \sec ^{3} x d x

See Solution

Problem 29720

Evaluate the integrals using partial fractions:
1. 11x+72x2+7x4dx\int \frac{11 x+7}{2 x^{2}+7 x-4} d x
2. 02x2x2+2x+1dx\int_{0}^{2} \frac{x^{2}}{x^{2}+2 x+1} d x

See Solution

Problem 29721

Evaluate the following integrals using trigonometric substitution: a. π4π44x2dx\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sqrt{4-x^{2}} \, dx b. 4dx(x21)3\int^{4} \frac{dx}{\sqrt{(x^{2}-1)^{3}}}

See Solution

Problem 29722

Evaluate the following integrals using partial fractions: a. 11x+72x2+7x4dx\int \frac{11 x+7}{2 x^{2}+7 x-4} d x b. 02x2x2+2x+1dx\int_{0}^{2} \frac{x^{2}}{x^{2}+2 x+1} d x

See Solution

Problem 29723

Approximate the integral 121xdx\int_{1}^{2} \frac{1}{x} dx using (a) the Trapezoidal Rule and (b) the Midpoint Rule with n=5n=5.

See Solution

Problem 29724

Evaluate the improper integrals:
1. 0xe2xdx\int_{0}^{\infty} x e^{-2 x} d x
2. 2x2+1dx\int_{-\infty}^{\infty} \frac{2}{x^{2}+1} d x

See Solution

Problem 29725

Une pierre tombe d'une tour en 1,2 s. Quel est sa vitesse au sol ? (12 m/s)(-12 \mathrm{~m} / \mathrm{s})

See Solution

Problem 29726

Calculate the definite integral from 1 to 6: 162xdx\int_{1}^{6} 2^{x} \, dx.

See Solution

Problem 29727

Evaluate the integral: 1e52xdx\int_{1}^{e^{5}} \frac{2}{x} \, dx

See Solution

Problem 29728

Evaluate the integral: 03/221x2dx\int_{0}^{\sqrt{3} / 2} \frac{2}{\sqrt{1-x^{2}}} d x exactly.

See Solution

Problem 29729

Find the exact value of the integral 0π/43+cos3(x)cos2(x)dx\int_{0}^{\pi / 4} \frac{3+\cos ^{3}(x)}{\cos ^{2}(x)} dx.

See Solution

Problem 29730

Exercice 8: Soit f(x)=x33x+1f(x)=x^{3}-3x+1. Trouvez les limites en -\infty et ++\infty, étudiez les variations et montrez que f(x)=0f(x)=0 a trois solutions.

See Solution

Problem 29731

Find dydx\frac{d y}{d x} for the equation y2=x2+sinxyy^{2}=x^{2}+\sin x \cdot y.

See Solution

Problem 29732

Exercice 10 : Soit f(x)=(5x2+5)exf(x)=\left(-5 x^{2}+5\right) e^{x}, calculez les limites en -\infty et ++\infty, étudiez les variations et trouvez la tangente en x=0x=0.

See Solution

Problem 29733

Find the initial velocity and acceleration of an auto with x(t)=27t4.0t3x(t)=27t-4.0t^{3} at t=0t=0. Choices are A-E.

See Solution

Problem 29734

Find the limit: limx1e11x2\lim _{x \rightarrow-1^{-}} e^{\frac{-1}{1-x^{2}}}.

See Solution

Problem 29735

Find the radius of convergence for the series n=16nn!nnxn\sum_{n=1}^{\infty} \frac{6^{n} n !}{n^{n}} x^{n}.

See Solution

Problem 29736

Zadanie 1. Pokaż, że jeśli limnbn=0\lim _{n \rightarrow \infty} b_{n}=0, to szereg n=0(bnbn+p)\sum_{n=0}^{\infty}(b_{n}-b_{n+p}) jest zbieżny i znajdź jego sumę w zależności od bnb_{n} i pp.

See Solution

Problem 29737

Bestimme die Ableitung von f(x)=2x2+1f(x)=2 x^{2}+1 bei x0=2x_{0}=2 und allgemein bei x0x_{0}. Auch für g(x)=ax2+cg(x)=a \cdot x^{2}+c.

See Solution

Problem 29738

Is the function f(x)={3ln(1+x)x0x5+xx<0f(x)=\left\{\begin{array}{ll} 3 \ln (1+x) & x \geq 0 \\ x^{5}+x & x<0 \end{array}\right. continuous on R\mathbb{R}?

See Solution

Problem 29739

Find the limit: limx0sin(3x)tan(7x)\lim _{x \rightarrow 0} \frac{\sin (3 x)}{\tan (7 x)}.

See Solution

Problem 29740

1. Determine if the series n=0n503n\sum_{n=0}^{\infty} \frac{n^{50}}{3^{n}} converges or diverges.
2. Determine if the series n=1arctan(n)n2\sum_{n=1}^{\infty} \frac{\arctan (n)}{n^{2}} converges or diverges.
3. Find the radius of convergence for n=16nn!nnxn\sum_{n=1}^{\infty} \frac{6^{n} n !}{n^{n}} x^{n}.
4. Evaluate the limit limxexsin(x2)\lim _{x \rightarrow-\infty} e^{x} \sin \left(x^{2}\right) or state it does not exist.
5. Evaluate the limit limx0sin(3x)tan(7x)\lim _{x \rightarrow 0} \frac{\sin (3 x)}{\tan (7 x)} or state it does not exist.

See Solution

Problem 29741

Find the limit: limxexsin(x2)\lim _{x \rightarrow-\infty} e^{x} \sin \left(x^{2}\right), or state if it does not exist.

See Solution

Problem 29742

Aufgaben: Finde die Stammfunktionen für die folgenden Funktionen: a) f(x)=4x3+2x21f(x)=4 x^{3}+2 x^{2}-1, b) f(x)=x54x3f(x)=x^{5}-4 x^{3}, c) f(x)=x32x+7f(x)=-x^{3}-2 x+7, d) f(x)=34x2+87x3f(x)=\frac{3}{4} x^{2}+\frac{8}{7} x^{3}, e) f(x)=0,24x75,4xf(x)=0,24 x^{7}-5,4 x, f) f(x)=25x4+33x2f(x)=-25 x^{4}+33 x^{2}, g) f(x)=2x315x2f(x)=2 x^{3}-15 x^{2}, h) f(x)=162x854x5f(x)=162 x^{8}-54 x^{5}.

See Solution

Problem 29743

Bestimmen Sie die ersten drei Ableitungen von ff für die Funktionen: a) (2x3)ex(2x-3)e^x, b) (x2+1)ex(x^2+1)e^x, c) (5x2+1)ex(5x^2+1)e^{-x}, d) 5x2e14x5x^2e^{-\frac{1}{4}x}. Erklären Sie den Vorteil des Ausklammerns.

See Solution

Problem 29744

1. Find the limit: limx1e11x2\lim _{x \rightarrow -1^{-}} e^{\frac{-1}{1-x^{2}}}.
2. Is the function f(x)={3ln(1+x)x0x5+xx<0f(x)=\begin{cases} 3 \ln (1+x) & x \geq 0 \\ x^{5}+x & x<0 \end{cases} continuous on R\mathbb{R}? (YES / NO)
3. Does the function from question 2 have an inverse? (YES / NO)
4. For f(x)=x21+x+x2f(x)=\frac{x^{2}}{1+x+x^{2}} on (2,)(-2, \infty): (a) Does ff have a maximum? (YES / NO) (b) Does ff have a minimum? (YES / NO) (c) For which xx is ff decreasing?
5. For f(x)=n=0e2nxf(x)=\sum_{n=0}^{\infty} e^{-2 n x}: (a) For which xRx \in \mathbb{R} is f(x)f(x) defined? (b) Calculate f(x)f^{\prime}(x).

See Solution

Problem 29745

Find the limit as xx approaches -\infty for the expression exsin(x2)e^{x} \sin(x^{2}).

See Solution

Problem 29746

Bewerte die Aussagen: a) f(x0)=0ff^{\prime}(x_{0})=0 \Rightarrow f hat Extremstelle bei x0x_{0}; b) 2. Grades Funktion hat immer Extremstelle; c) globales Maximum ist lokal.

See Solution

Problem 29747

Find the limits: 1) limxexsin(x2)\lim _{x \rightarrow-\infty} e^{x} \sin \left(x^{2}\right) and 2) limx0sin(3x)tan(7x)\lim _{x \rightarrow 0} \frac{\sin (3 x)}{\tan (7 x)}.

See Solution

Problem 29748

Find the domain of f(x)=n=0e2nxf(x) = \sum_{n=0}^{\infty} e^{-2 n x} and compute f(x)f^{\prime}(x).

See Solution

Problem 29749

Find limn(e1)k=01ek(1+2n)n\lim _{n \rightarrow \infty} \frac{(e-1) \sum_{k=0}^{\infty} \frac{1}{e^{k}}}{\left(1+\frac{2}{n}\right)^{n}}.

See Solution

Problem 29750

Determine if the series n=1n!sin(1/n)nn\sum_{n=1}^{\infty} \frac{n ! \sin (1 / n)}{n^{n}} converges or diverges.

See Solution

Problem 29751

Gegeben sind die Funktionen f(x)=0,5x2f(x)=0,5 x^{2} und g(x)=3x3+1g(x)=3 x^{3}+1. Bestimme den Differenzenquotienten für die Intervalle: a) I=[0;2]I=[0 ; 2] b) I=[1;3]I=[-1 ; 3] c) I=[1;1]I=[-1 ; 1] d) I=[2;1]I=[-2 ;-1]

See Solution

Problem 29752

Determine the radius of convergence for the series n=12n(n+1n)xn\sum_{n=1}^{\infty} 2^{n}\left(n+\frac{1}{n}\right) x^{n}.

See Solution

Problem 29753

Evaluate the integral 1x2cos2(1x)dx\int \frac{1}{x^{2}} \cos^{2}\left(\frac{1}{x}\right) dx using the substitution u=1xu=-\frac{1}{x}.

See Solution

Problem 29754

Evaluate the integral 9r2dr1r3\int \frac{9 r^{2} d r}{\sqrt{1-r^{3}}} using the substitution u=1r3u=1-r^{3}.

See Solution

Problem 29755

Finde die Tangentengleichung der Funktion f(x)=cos(0,5x)f(x)=\cos(0,5 x) bei x1=2πx_{1}=2 \pi und x2=π3x_{2}=\frac{\pi}{3}.

See Solution

Problem 29756

Bestimme die Tangentengleichung t:y=x+\mathrm{t}: \mathrm{y}=\square \mathrm{x}+ für f(x)=x23f(x)=x^{2}-3 im Punkt P(12)P(1|-2).

See Solution

Problem 29757

Evaluate the integral: x1/2sin(x3/2+1)dx\int x^{1 / 2} \sin \left(x^{3 / 2}+1\right) d x

See Solution

Problem 29758

Bestimme die Tangentengleichung an f(x)=x23f(x)=x^{2}-3 im Punkt P(12)P(1|-2). Tangentengleichung: y=x+y=\square x+

See Solution

Problem 29759

Bestimme den Ausdruck dfda+dfdbdfdc\frac{d f}{d a}+\frac{d f}{d b}-\frac{d f}{d c} für f(a,b,c)=3a2b3b2c+3ac2f(a, b, c)=3 a^{2} b-3 b^{2} c+3 a c^{2}.

See Solution

Problem 29760

Bestimme die Tangentengleichungen an f(x)=x23f(x)=x^{2}-3 bei P(12)P(1|-2) und an f(x)=1xf(x)=\frac{1}{x} bei P(212)P(2|\frac{1}{2}).

See Solution

Problem 29761

Evaluate the integral: 3y73y2dy\int 3 y \sqrt{7-3 y^{2}} d y

See Solution

Problem 29762

Evaluate the integral: x4xdx\int x \sqrt{4-x} \, dx

See Solution

Problem 29763

Find the limit: limxex+1ex1\lim _{x \rightarrow \infty} \frac{e^{-x}+1}{e^{-x}-1}. What is the value?

See Solution

Problem 29764

Find the limit: limx1x2+2x3x1\lim _{x \rightarrow 1^{-}} \frac{x^{2}+2 x-3}{|x-1|} or state if it doesn't exist.

See Solution

Problem 29765

Υπολογίστε την παράγωγο της συνάρτησης f(x)=1ex+1f(x)=\frac{1}{e^{x}+1} για xRx \in \mathbb{R}.

See Solution

Problem 29766

Bestimme die Integrale: a) 25xdx\int_{2}^{5} x \, dx b) 11(2x+1)dx\int_{-1}^{1}(2x+1) \, dx mithilfe von Flächen.

See Solution

Problem 29767

Find the limit: limxsin(1x)x\lim _{x \rightarrow \infty} \frac{\sin \left(\frac{1}{x}\right)}{x}. What is the result?

See Solution

Problem 29768

Find the limit: limxπ6cos3x14sin2x\lim _{x \rightarrow \frac{\pi}{6}} \frac{\cos 3 x}{1-4 \sin ^{2} x}.

See Solution

Problem 29769

Find the radius of convergence for the series n=12n(n+1n)xn\sum_{n=1}^{\infty} 2^{n}\left(n+\frac{1}{n}\right) x^{n}.

See Solution

Problem 29770

Is the function f(x)={3ln(1+x)x0x5+xx<0f(x)=\begin{cases} 3 \ln (1+x) & x \geq 0 \\ x^{5}+x & x<0 \end{cases} continuous on R\mathbb{R}? (YES / NO) Does it have an inverse? (YES / NO)

See Solution

Problem 29771

Is the function f(x)={3ln(1+x)x0x5+xx<0f(x)=\begin{cases} 3 \ln (1+x) & x \geq 0 \\ x^{5}+x & x<0 \end{cases} continuous on R\mathbb{R}? (YES / NO)

See Solution

Problem 29772

Find the change in momentum from t=0t=0 to tt given dpdt=4ti^+3t2j^\frac{dp}{dt} = 4t \hat{i} + 3t^2 \hat{j}. Options: a. t3i^+2t2j^t^3 \hat{i} + 2t^2 \hat{j} b. 4i^+6j^4 \hat{i} + 6 \hat{j} c. 2t2i^+t3j^2t^2 \hat{i} + t^3 \hat{j} d. 2t3i^+t2j^2t^3 \hat{i} + t^2 \hat{j}

See Solution

Problem 29773

Find the force on a 3 kg3 \mathrm{~kg} particle system at t=1t=1 sec, given v=2t2i^+3tj^\vec{v}=2 t^{2} \hat{i}+3 t \hat{j}. Choices: a. 16i^+12j^16 \hat{i}+12 \hat{j} b. 8i^+6j^8 \hat{i}+6 \hat{j} c. 8i^+12j^8 \hat{i}+12 \hat{j} d. 12i^+9j^12 \hat{i}+9 \hat{j}.

See Solution

Problem 29774

Find critical points and determine concavity for the function y=5x+75xy=\frac{5 x+7}{5 x}, x0x \neq 0, using derivatives.

See Solution

Problem 29775

In Dagoberts Geldspeicher ist die Höhe h(t)=e0,05tth'(t) = e^{-0,05t} \cdot t m/d. Bestimme die Höhenfunktion h(t)h(t).

See Solution

Problem 29776

Find the change in momentum of a particle with dpdt=4ti^+3t2j^\frac{dp}{dt} = 4t \hat{i} + 3t^{2} \hat{j} from t=0t=0 to tt.

See Solution

Problem 29777

Find points of inflection for f(x)=3x+(x+2)25f(x)=3x+(x+2)^{\frac{2}{5}} and identify concave up/down intervals.

See Solution

Problem 29778

Gjeni pikën (a,b)(a, b) ku y=2x2+12y=\frac{2 x^{2}+1}{2} dhe y=1+4xxy=\frac{1+4 x}{x} janë tangjente dhe pingule. Gjeni koeficientin këndor dhe ekuacionin e drejtëzës.

See Solution

Problem 29779

Një vijë kubike ka ekuacionin y=x3+x2+2x+1y=x^{3}+x^{2}+2x+1. Gjeni tangjentën në x=0x=0 dhe koordinatat e pikave B, C, dhe sipërfaqen e trekëndëshit BCO\mathrm{BCO}.

See Solution

Problem 29780

Find where the tangent line to y=f(x)=x3ln(x)y=f(x)=x^{3} \ln (x) is horizontal for x(0,)x \in (0, \infty).

See Solution

Problem 29781

Find the extremum points of the line y=x36x2y = x^3 - 6x^2. Determine their coordinates and nature using the second derivative.

See Solution

Problem 29782

Is the function f(x)={(x1)sin(1x1)x11x=1f(x)=\left\{\begin{array}{ll}(x-1) \sin \left(\frac{1}{x-1}\right) & x \neq 1 \\ -1 & x=1\end{array}\right. continuous on R\mathbb{R}?

See Solution

Problem 29783

Find the extremum points of y=2x3+30x2+1y=2x^3+30x^2+1 and explain their characteristics.

See Solution

Problem 29784

Find the extremum points of y=2x+30x2+1y=2x+30x^{2}+1 and describe their nature.

See Solution

Problem 29785

Find the inverse transform of L1{10s+2s26s+5}\mathcal{L}^{-1}\left\{\frac{10 s+2}{s^{2}-6 s+5}\right\}.

See Solution

Problem 29786

Lancez une bille B1B_{1} de masse mm pour atteindre B2B_{2}. Trouvez v0v_{0} et vv avec g=10 m/s2g=10 \mathrm{~m/s^2}, α=30\alpha=30^\circ, D=8 mD=8 \mathrm{~m}, h=1 mh=1 \mathrm{~m}.

See Solution

Problem 29787

Bestimme die erste Ableitung von f(x)=5xf(x)=5 \sqrt{x}.

See Solution

Problem 29788

Find the derivative of f(x)=2x39x2+12x+7f(x)=2 x^{\wedge} 3-9 x^{\wedge} 2+12 x+7. Identify the coordinates and nature of the two extremum points.

See Solution

Problem 29789

Bestimme die Punkte, an denen die Funktion ff eine Steigung von -2 hat: a) f(x)=x2+3x+5f(x)=x^{2}+3 x+5, b) f(x)=2x38xf(x)=2 \sqrt{x^{3}}-8 x.

See Solution

Problem 29790

Find the combined profit/loss function from supplier 4x2+20x-4x^2 + 20x and distributor x240x+100x^2 - 40x + 100, then differentiate to find the optimum value.

See Solution

Problem 29791

Find f(3)f^{\prime}(3) for the function f(x)=0.5x2+4xf(x) = -0.5x^2 + 4x using the limit definition of the derivative.

See Solution

Problem 29792

Berechnen Sie die Fläche zwischen dem Graphen von f(x)=12x2f(x)=\frac{1}{2} x^{2}, der Tangente in P(34,5)P(3 \mid 4,5) und der xx-Achse.

See Solution

Problem 29793

Find the limit: limx03+x+3x\lim _{x \rightarrow 0} \frac{-\sqrt{3}+\sqrt{x+3}}{x} (2 marks)

See Solution

Problem 29794

Bestimmen Sie die Ableitung von f(t)=2sint2+costf(t) = \frac{2 \cdot \sin t}{2 + \cos t}.

See Solution

Problem 29795

Find the derivative of y=e2xsec3xy=e^{2 x} \sec 3 x given that d(secx)dx=secxtanx\frac{d(\sec x)}{d x}=\sec x \tan x.

See Solution

Problem 29796

Find the limit of j(x+h)j(x)h\frac{j(x+h)-j(x)}{h} for j(x)=4x2j(x)=4^{x-2}.

See Solution

Problem 29797

Determine if the limit exists: limh067+h67h\lim _{h \rightarrow 0} \frac{\frac{6}{7+h}-\frac{6}{7}}{h}. If yes, find its value.

See Solution

Problem 29798

Determine if the limit exists: limx9x3+4x46x48x35\lim _{x \rightarrow \infty} \frac{9 x^{3}+4 x-4}{6 x^{4}-8 x^{3}-5}. What is its value?

See Solution

Problem 29799

Find constants aa and bb such that for curve CC: dydx=1abx2\frac{dy}{dx}=\frac{1}{a\sqrt{b-x^2}}.

See Solution

Problem 29800

Choose the correct limit: If limx5f(x)=8\lim_{x \rightarrow 5^{-}} f(x)=8 and limx5+f(x)=2\lim_{x \rightarrow 5^{+}} f(x)=2, then limx5f(x)\lim_{x \rightarrow 5} f(x) is? Options: does not exist, \infty, 8, -8.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord