Calculus

Problem 26201

Solve the ODE: dydx=y(56x)x(57y)\frac{d y}{d x}=\frac{y(5-6 x)}{x(5-7 y)}.

See Solution

Problem 26202

Find the Laplace Transform of f(t)={t,0t<10,t1f(t)=\begin{cases}t, & 0 \leq t<1 \\ 0, & t \geq 1\end{cases}. What is L{f(t)}L\{f(t)\}?

See Solution

Problem 26203

Show that 0π/2n=1cosnxn2dx=n=0(1)n(2n+1)3\int_{0}^{\pi / 2} \sum_{n=1}^{\infty} \frac{\cos n x}{n^{2}} dx=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{3}} and prove n=1fn(x)\sum_{n=1}^{\infty} f_{n}(x) lacks property C\mathscr{C} on [0,1][0,1].

See Solution

Problem 26204

Find coefficients ana_n and bnb_n from the series u(x,t)u(x, t) given initial conditions. Which option is correct?

See Solution

Problem 26205

Solve 2y+yy=12 y^{\prime \prime}+y^{\prime}-y=-1 with y(0)=1y(0)=1 and y(0)=2y^{\prime}(0)=2. Find y(0)y^{\prime \prime \prime}(0).

See Solution

Problem 26206

Solve yy2y=3y^{\prime \prime}-y^{\prime}-2 y=3 with y(0)=2y(0)=2 and y(0)=1y^{\prime}(0)=1. Find y(0)y^{\prime \prime \prime}(0). A. 10 B. -10 C. 13 D. -13

See Solution

Problem 26207

Given the demand function q=D(p)=5268pq=D(p)=526-8p, find: a. Domain of D(p)D(p); b. D(p)D'(p); c. Elasticity E(p)E(p); d. For p=$45p=\$45, is demand elastic or inelastic? Effect on revenue? e. If price increases by 1\%, how does demand change?

See Solution

Problem 26208

Find a0,a4,b5a_{0}, a_{4}, b_{5} from the Fourier series f(x)=23+4π2n=1(1)n+1n2cos(nπx)f(x)=\frac{2}{3}+\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} \cos (n \pi x). Options: A, B, C, D, E.

See Solution

Problem 26209

Find the sum of the series S=2010+5S_{\infty}=20-10+5-\cdots. Choices: 403\frac{40}{3}, 203\frac{20}{3}, 40, or diverges.

See Solution

Problem 26210

Classify the ODE: dydx=y(26x)x(19y)\frac{d y}{d x}=\frac{y(2-6 x)}{x(1-9 y)}. Choose: 1st order, linear/homogeneous or non-homogeneous?

See Solution

Problem 26211

Find a0,a4,b5a_{0}, a_{4}, b_{5} for the Fourier series f(x)=23+4π2n=1(1)n+1n2cos(nπx)f(x)=\frac{2}{3}+\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} \cos (n \pi x).

See Solution

Problem 26212

Find the coefficients a0,a2,b4a_{0}, a_{2}, b_{4} from the Fourier series f(x)=23+4π2n=1(1)nn2sin(nπx)f(x)=\frac{2}{3}+\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \sin (n \pi x).

See Solution

Problem 26213

Evaluate the integral: exdx1e2x\int \frac{e^{x} d x}{\sqrt{1-e^{2 x}}}

See Solution

Problem 26214

Calculate the average value of f(x)=8xf(x)=8x on the interval [5,7][5,7].

See Solution

Problem 26215

Evaluate the integral using substitution: π/32π4cos3xsinxdx\int_{\pi / 3}^{2 \pi} 4 \cos ^{3} x \sin x \, dx.

See Solution

Problem 26216

Evaluate the integral: dxxlnx3\int \frac{d x}{x \ln x^{3}}.

See Solution

Problem 26217

Calculate the total in a savings account with an investment of \$ 2250 at 9.0\% for 15 years with continuous compounding. Round to two decimals.

See Solution

Problem 26218

Evaluate the integral: csc(z+π4)cot(z+π4)dz\int \csc \left(z+\frac{\pi}{4}\right) \cot \left(z+\frac{\pi}{4}\right) dz

See Solution

Problem 26219

Evaluate the integral: sin2xcos4xdx\int \sin 2 x \cos 4 x \, dx

See Solution

Problem 26220

Find xx where f(x)=x+1f(x)=\sqrt{x+1} equals its average value on the interval [0,15][0,15].

See Solution

Problem 26221

Calculate the area between the curve y=6x1+x2y=\frac{6 x}{1+x^{2}} and the xx-axis for 4x4-4 \leq x \leq 4.

See Solution

Problem 26222

Evaluate the integral: x2(x310)4dx\int x^{2}\left(x^{3}-10\right)^{4} dx

See Solution

Problem 26223

Evaluate the integral using substitution: 0π/1616tan4xdx\int_{0}^{\pi / 16} 16 \tan 4 x \, dx.

See Solution

Problem 26224

Evaluate the integral from 0 to 1: 013x+3dx\int_{0}^{1} \sqrt{3 x+3} \, dx.

See Solution

Problem 26225

Integrate the function 14(2x3)614(2 x-3)^{6} from 1-1 to 1.51.5. What is the result?

See Solution

Problem 26226

Differentiate sin4(3x)\sin^{4}(3x) with respect to xx.

See Solution

Problem 26227

Evaluate the integral using substitutions: (2r5)cos3(2r5)2+103(2r5)2+10dr\int \frac{(2 r-5) \cos \sqrt{3(2 r-5)^{2}+10}}{\sqrt{3(2 r-5)^{2}+10}} d r

See Solution

Problem 26228

Evaluate the integral from 0 to 1: 013x+3dx\int_{0}^{1} \sqrt{3 x+3} \, dx.

See Solution

Problem 26229

Evaluate the integral: 8dx2564x2\int \frac{8 d x}{\sqrt{25-64 x^{2}}}.

See Solution

Problem 26230

Find the integral of sin2xcos4x\sin 2x \cos 4x with respect to xx: sin2xcos4xdx\int \sin 2x \cos 4x \, dx.

See Solution

Problem 26231

Calculate the integral tan5xsec3xdx\int \tan ^{5} x \sec ^{3} x \, dx.

See Solution

Problem 26232

Evaluate the integral: 8dx2564x2\int \frac{8 d x}{\sqrt{25-64 x^{2}}}

See Solution

Problem 26233

Evaluate the integral sin2xcos4xdx\int \sin 2x \cos 4x \, dx.

See Solution

Problem 26234

Calculate the integral 0π2cos3xdx\int_{0}^{\frac{\pi}{2}} \cos ^{3} x \, dx.

See Solution

Problem 26235

Evaluate the integral cot2xcsc4xdx\int \cot^{2} x \csc^{4} x \, dx.

See Solution

Problem 26236

Evaluate the integral dxx24x+13\int \frac{d x}{x^{2}-4 x+13}.

See Solution

Problem 26237

Evaluate the integral: x3x4+9dx\int x^{3} \sqrt{x^{4}+9} \, dx

See Solution

Problem 26238

Calcula el integral definido usando el Teorema Fundamental del Cálculo: 132x+3x+1dx\int_{1}^{3} \frac{2 x+3}{x+1} d x

See Solution

Problem 26239

Evaluate the integral using the Fundamental Theorem of Calculus: 0π2cos3xdx\int_{0}^{\frac{\pi}{2}} \cos ^{3} x \, dx.

See Solution

Problem 26240

Calcula el integral definido usando el Teorema Fundamental del Cálculo: 0π2cos3xdx\int_{0}^{\frac{\pi}{2}} \cos ^{3} x \, dx

See Solution

Problem 26241

Find the value(s) of cc satisfying the Mean Value Theorem for f(x)=tan1xf(x) = \tan^{-1}x on [3,3][-\sqrt{3}, \sqrt{3}].

See Solution

Problem 26242

Evaluate the integral using substitution: 143xxdx\int_{1}^{4} \frac{3-\sqrt{x}}{\sqrt{x}} d x.

See Solution

Problem 26243

Evaluate the integral using the Fundamental Theorem of Calculus: 0π3tan3xsecxdx\int_{0}^{\frac{\pi}{3}} \frac{\tan ^{3} x}{\sec x} d x.

See Solution

Problem 26244

Calculate the area between the curve y=8x2+4y=\frac{8}{x^{2}+4}, the xx-axis, yy-axis, and line x=2x=2.

See Solution

Problem 26245

Evaluate the integral 01dxex+ex\int_{0}^{1} \frac{d x}{e^{x}+e^{-x}} using the Fundamental Theorem of Calculus.

See Solution

Problem 26246

Find the acceleration of an object with position s(t)=8t34t2s(t) = 8t^3 - 4t^2 m at time t=4t = 4 s.

See Solution

Problem 26247

A basketball is thrown up at 5.0ms5.0 \frac{\mathrm{m}}{\mathrm{s}}. What is its maximum height without air resistance?

See Solution

Problem 26248

Find the integral of cot2xcsc4x\cot^{2} x \csc^{4} x with respect to xx: cot2xcsc4xdx\int \cot^{2} x \csc^{4} x \, dx.

See Solution

Problem 26249

Solve the equation y4y+3y=1y^{\prime \prime}-4 y^{\prime}+3 y=1 for 0t<60 \leq t<6 and 00 for t6t \geq 6, with y(0)=y(0)=0y(0)=y^{\prime}(0)=0. Find f(t)f(t) and g(t)g(t).

See Solution

Problem 26250

Find the maximum of f(x)=x3+2x2+2f(x)=-x^{3}+2 x^{2}+2 for 2x3-2 \leq x \leq 3.

See Solution

Problem 26251

Calculate the integral: dxx24x+13\int \frac{d x}{x^{2}-4 x+13}.

See Solution

Problem 26252

Find the acceleration of the object at t=4t=4 s given the position function s(t)=8t34t2s(t)=8t^{3}-4t^{2}.

See Solution

Problem 26253

Calculate the integral from 1 to 3 of the function 2x+3x+1\frac{2 x+3}{x+1}.

See Solution

Problem 26254

Find the absolute extreme values of f(x)f(x) given the behavior of its derivative f(x)f'(x) as described.

See Solution

Problem 26255

Evaluate the integral 0π3tan3xsecxdx\int_{0}^{\frac{\pi}{3}} \frac{\tan ^{3} x}{\sec x} d x.

See Solution

Problem 26256

Evaluate the integral 01dxex+ex\int_{0}^{1} \frac{d x}{e^{x}+e^{-x}}.

See Solution

Problem 26257

Calculate the area between the curve y=8x2+4y=\frac{8}{x^{2}+4}, the xx-axis, yy-axis, and the line x=2x=2.

See Solution

Problem 26258

Find the final speed of an object dropped from a height of 193.9 m193.9 \mathrm{~m}.

See Solution

Problem 26259

A lighthouse is 2 km from the shore. When θ=π/4\theta=\pi/4, find the speed of light spot BB on the shore. Round to 1 decimal.

See Solution

Problem 26260

What are the horizontal asymptotes for the function F(x)=2x25x2F(x)=\frac{2x^2 -5}{x^2}? Choose A, B, or C.

See Solution

Problem 26261

Find the coordinates of the relative maximum. The relative max occurs at the point ()(\square).

See Solution

Problem 26262

Verify if (1,3) is on the curve 4x2+2xy+y2=194 x^{2}+2 x y+y^{2}=19 and find the tangent line at that point.

See Solution

Problem 26263

Evaluate the integral sin4θcosθdθ\int \sin ^{4} \theta \cos \theta d \theta and verify by differentiating your result.

See Solution

Problem 26264

Find f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=2xf(x)=2x. What is the result? A) 1 B) 2 C) hh D) 2h2h

See Solution

Problem 26265

Calculate the integral: (3x2+85x)dx\int\left(\frac{3}{x^{2}}+\frac{8}{5 x}\right) d x

See Solution

Problem 26266

Evaluate the integral: 1sin2xcosxdx\int \frac{1-\sin ^{2} x}{\cos x} d x

See Solution

Problem 26267

Given differentiable functions f(x)f(x) and g(x)g(x) with f(2)=g(2)f(-2)=g(-2) and f(x)<g(x)f'(x)<g'(x) for all xx, which statements are true?

See Solution

Problem 26268

Find the derivative of the function f(x)=xxf(x) = \frac{\sqrt{x}}{x}.

See Solution

Problem 26269

Find the definite integrals to calculate the volume of a soap dish rotated around the yy-axis with fm(x)=xm+1f_{m}(x)=x^{m}+1, y=2y=2, x=2x=2.

See Solution

Problem 26270

10. For the function f(x)f(x), find the units of f(x)f^{\prime}(x) and determine if you should "speed up" or "slow down" at f(101)=0.74f^{\prime}(101)=0.74.

See Solution

Problem 26271

Estimate the temperature of tea after 48 seconds if it starts at 70C70^{\circ} \mathrm{C} using dTdt=0.05(T20) \frac{d T}{d t}=-0.05(T-20).

See Solution

Problem 26272

Calculate the volume of a soap dish with a circular base radius of 2 cm2 \mathrm{~cm} and total volume 7.5πcm37.5 \pi \mathrm{cm}^{3}. Use fm(x)=xm+1f_{m}(x)=x^{m}+1 and y=2y=2 for the cross-section. Find the value of mm.

See Solution

Problem 26273

Find the function f(x)f(x) such that limnk=1n(4+kn)33n=1215f(x)dx\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(4+\frac{k}{n}\right)^{3} \frac{3}{n}=\int_{12}^{15} f(x) d x. Choices: 316x3\frac{3}{16} x^{3}, x3x^{3}, 3x33 x^{3}, 127x3\frac{1}{27} x^{3}, 4x34 x^{3}.

See Solution

Problem 26274

Bestimme die Ableitungsfunktion von ff: a) f(x)=2x+x3f(x)=2 x+x^{3}, b) f(x)=5xf(x)=5 x, c) f(x)=ax2f(x)=a x^{2}, d) f(x)=axnf(x)=a x^{n}, e) f(x)=2x2+4xf(x)=2 x^{2}+4 x, f) f(x)=12x2+5f(x)=\frac{1}{2} x^{2}+5, g) f(x)=2x33x2+2f(x)=2 x^{3}-3 x^{2}+2, h) f(x)=ax3+bx+cf(x)=a x^{3}+b x+c.

See Solution

Problem 26275

Find the derivative of the function f(x)=xx1f(x) = \frac{x}{\sqrt{x}-1} and explain how to calculate it.

See Solution

Problem 26276

Compressed air escapes a container with pressure PP. The rate of decrease is given by dP dt=k(PA)\frac{\mathrm{d} P}{\mathrm{~d} t}=-k \sqrt{ }(P-A). Solve for PP given P=5AP=5A at t=0t=0 and P=2AP=2A at t=2t=2. Find tt when P=AP=A and express PP in terms of AA and tt.

See Solution

Problem 26277

Find the derivative of the function f(x)=sinxx2f(x) = \frac{\sin x}{x^{2}}. What is f(x)f'(x)?

See Solution

Problem 26278

Find the derivative of f(x)=xx1f(x)=\frac{x}{\sqrt{x}-1} and explain the process.

See Solution

Problem 26279

Soit la fonction f:[2,+[Bf : [2,+\infty[ \rightarrow B définie par f(x)=1xf(x) = \frac{1}{x}. 1- Trouvez Df. 2- Montrez que ff est décroissante sur [2,+[[2,+\infty[.

See Solution

Problem 26280

Find the curve where the gradient at (x,y)(x, y) is proportional to yx+1\frac{y}{\sqrt{x+1}} and passes through (0,1)(0,1) and (3,e)(3, e). Express yy as y=exp(x+11)y=\exp (\sqrt{x+1}-1).

See Solution

Problem 26281

Solve the equation e2xdydx=4xy2e^{2 x} \frac{d y}{d x}=4 x y^{2} with y=1y=1 at x=0x=0, finding yy in terms of xx.

See Solution

Problem 26282

Solve the equation e3tdxdt=cos22xe^{3 t} \frac{d x}{d t}=\cos ^{2} 2 x with x(0)=0x(0)=0 for xx in terms of tt.

See Solution

Problem 26283

Solve the differential equation dx dt=x2(1+2x)\frac{\mathrm{d} x}{\mathrm{~d} t}=x^{2}(1+2 x) with x=1x=1 at t=0t=0 for tt in terms of xx.

See Solution

Problem 26284

Solve the differential equation xlnx+tdx dt=0x \ln x + t \frac{\mathrm{d} x}{\mathrm{~d} t} = 0 with x=ex=\mathrm{e} at t=2t=2. Find x(t)x(t).

See Solution

Problem 26285

Express yy in terms of xx. Given 76lnx+tdxdt=076 \ln x + t \frac{dx}{dt} = 0 and x=ex=e when t=2t=2, solve for xx in terms of tt.

See Solution

Problem 26286

A plantation of area 20 km220 \mathrm{~km}^{2} is infected by a disease. Show that xx and tt satisfy dx dt=19x20x\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{19 x}{20-x}. Find k=19k=19. Solve for xx and show x=e0.9+0.05xx=\mathrm{e}^{0.9+0.05 x} when t=1t=1.

See Solution

Problem 26287

A water tank is a hemisphere with radius rr. Water depth hh decreases at rate proportional to h\sqrt{h}. Show hh and tt satisfy:
dh dt=B2rh12h32. \frac{\mathrm{d} h}{\mathrm{~d} t}=-\frac{B}{2 r h^{\frac{1}{2}}-h^{\frac{3}{2}}}.
Then, solve for tt in terms of hh and rr.

See Solution

Problem 26288

Find the derivative of the function f(x)=1xf(x) = \frac{1}{\sqrt{x}}.

See Solution

Problem 26289

Gjeni derivatën e funksionit f(x)=(x3)(x+1)f(x)=(x-3)(x+1) në lidhje me xx.

See Solution

Problem 26290

Find the derivative of f(x)=x2x+2f(x)=\frac{x^{2}}{\sqrt{x+2}} using g(x)=x2g(x)=x^2 and h(x)=x+2h(x)=\sqrt{x+2}.

See Solution

Problem 26291

Find the limit: limx02sin(x)sin(2x)xsin(x)\lim _{x \rightarrow 0} \frac{2 \sin (x)-\sin (2 x)}{x-\sin (x)}.

See Solution

Problem 26292

Find the derivative of f(x)=x1x2 f(x) = x \sqrt{1 - x^2} and explain each step clearly.

See Solution

Problem 26293

Find the limit: limx0ln(ex+xex)x2=\lim _{x \rightarrow 0} \frac{\ln \left(e^{-x}+x e^{-x}\right)}{x^{2}}= ?

See Solution

Problem 26294

Find the derivative of f(x)=x1x2f(x) = x \sqrt{1 - x^2}.

See Solution

Problem 26295

Find the derivative of f(t)=1t22f(t) = \sqrt{\frac{1}{t^{2} - 2}} and explain each step in detail.

See Solution

Problem 26296

Find the derivative of f(x)=(x+5x2+2)2f(x)=\left(\frac{x+5}{x^{2}+2}\right)^{2} and explain each step.

See Solution

Problem 26297

Find F(x)=0xetan1t1+t2dtF(x)=\int_{0}^{x} \frac{e^{\tan^{-1} t}}{1+t^{2}} dt given ddxtan1x=11+x2\frac{d}{dx} \tan^{-1} x=\frac{1}{1+x^{2}}.

See Solution

Problem 26298

Determine the truth of these statements about the function f(x)=x31exf(x)=\frac{x^{3}}{1-e^{x}} for x0x \neq 0 and f(0)=0f(0)=0.

See Solution

Problem 26299

KPK_{P}KIK_{I} 的单位,给定粒子速度 v(t)v(t) 满足方程 v(t)=1mf(v(t))KPv(t)+KI0tv(s)dsv^{\prime}(t)=\frac{1}{m} f(v(t))-K_{P} v(t)+K_{I} \int_{0}^{t} v(s) d s

See Solution

Problem 26300

Evaluate the integral: (sin3(x)3sin2(x))(sin4(x)4sin3(x))6cos(x)dx\int\left(\sin ^{3}(x)-3 \sin ^{2}(x)\right)\left(\sin ^{4}(x)-4 \sin ^{3}(x)\right)^{6} \cos (x) d x.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord