Calculus

Problem 14801

Estimate Δy\Delta y for y=sin(2x)y=\sin(2x) at x=0x=0 with Δx=0.1\Delta x=0.1 using linear approximation and find error \%.

See Solution

Problem 14802

Find the tangent line equation at the point on the curve where x=t3+1x=t^{3}+1, y=t10+ty=t^{10}+t, for t=1t=-1.

See Solution

Problem 14803

Find the equation of the tangent line to f(x)=532xx213x3f(x)=\frac{5}{3}-2x-x^{2}-\frac{1}{3}x^{3} with maximum slope.

See Solution

Problem 14804

Find the derivative of the function 1x\frac{1}{x} with respect to xx.

See Solution

Problem 14805

Find the maximum area of a rectangle with one corner on the graph of y=10x2+1y=\frac{10}{x^{2}+1} and adjacent sides on the axes.

See Solution

Problem 14806

Find the absolute max and min of f(x)=26x2f(x)=2-6 x^{2} for 3x2-3 \leq x \leq 2. What are their values and locations?

See Solution

Problem 14807

Find the derivative of yy where y=cos1(6x3)y=\cos^{-1}(6x^3).

See Solution

Problem 14808

Find the derivative of ln(xx+4)\ln \left(\frac{x}{x+4}\right) with respect to xx.

See Solution

Problem 14809

Apply Rolle's Theorem to f(x)=2x28x3f(x)=2 x^{2}-8 x-3 on [0,4][0,4]. How many cc satisfy f(c)=0f^{\prime}(c)=0? What is cc? Also, which condition fails for [3,11][-3,11]: f(a)f(b)f(a) \neq f(b), continuity, or differentiability?

See Solution

Problem 14810

Determine the local min and max of the function f(x)=1+3x+27x1f(x)=1+3x+27x^{-1}.

See Solution

Problem 14811

Find the average slope of f(x)=5x35xf(x)=5 x^{3}-5 x on [2,2][-2,2] and determine the two values of cc where f(c)f^{\prime}(c) equals this slope.

See Solution

Problem 14812

Apply Rolle's Theorem to f(x)=2x28x3f(x)=2 x^{2}-8 x-3 on [0,4][0,4]. How many cc values exist where f(c)=0f'(c)=0? What is cc?

See Solution

Problem 14813

Find the derivative of h(x)=ex4x+5h(x)=e^{x^{4}-x+5}.

See Solution

Problem 14814

Find the inflection points of f(x)=12x5+30x4160x3+2f(x) = 12x^5 + 30x^4 - 160x^3 + 2 and determine DD, EE, and FF.

See Solution

Problem 14815

Evaluate the limit: limxln(x)x20=\lim _{x \rightarrow \infty} \frac{\ln (x)}{x^{20}}=

See Solution

Problem 14816

Apply Rolle's Theorem to f(x)=2x28x7f(x)=2x^{2}-8x-7 on [0,4][0,4]. How many cc values exist where f(c)=0f'(c)=0? What is cc?

See Solution

Problem 14817

Evaluate these limits: (a) limx(27x2+26x3)=\lim_{x \to \infty}(-27x^2 + 26x^3) = and (b) limx(27x2+26x3)=\lim_{x \to -\infty}(-27x^2 + 26x^3) = .

See Solution

Problem 14818

Evaluate these limits: (a) limx5+5x26+4x=\lim _{x \rightarrow \infty} \frac{\sqrt{5+5 x^{2}}}{6+4 x}=; (b) limx5+5x26+4x=\lim _{x \rightarrow-\infty} \frac{\sqrt{5+5 x^{2}}}{6+4 x}=

See Solution

Problem 14819

Show there are no tangents to y=6x3+2x2y=6 x^{3}+2 x^{2} with slope -5. Verify with a graphing calculator.

See Solution

Problem 14820

Find the first and second derivatives of g(x)=6x39x2108xg(x)=6 x^{3}-9 x^{2}-108 x. Evaluate g(3)g^{\prime \prime}(3).

See Solution

Problem 14821

Find functions gg where g(x)=5x2+3x+5xg^{\prime}(x)=\frac{5 x^{2}+3 x+5}{\sqrt{x}}.

See Solution

Problem 14822

Find the horizontal asymptotes by calculating these limits:
1. limx3x2+2x\lim _{x \rightarrow \infty} \frac{-3 x}{2+2 x}
2. limx5x9x3+11x12\lim _{x \rightarrow-\infty} \frac{5 x-9}{x^{3}+11 x-12}
3. limxx23x61315x2\lim _{x \rightarrow \infty} \frac{x^{2}-3 x-6}{13-15 x^{2}}
4. limxx2+6x129x\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+6 x}}{12-9 x}
5. limxx2+6x129x\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+6 x}}{12-9 x}

See Solution

Problem 14823

Evaluate the limit using L'Hôpital's Rule: limx0(cot(21x)121x)=\lim _{x \rightarrow 0}\left(\cot (21 x)-\frac{1}{21 x}\right) =

See Solution

Problem 14824

Find f(x)f^{\prime}(x) from f(x)=8x3f^{\prime \prime}(x)=8 x-3 with f(3)=1f^{\prime}(-3)=-1, and f(3)=2f(-3)=2. Then find f(2)f(2).

See Solution

Problem 14825

Find the antiderivative F(x)F(x) of f(x)=7x27x7f(x)=\frac{7}{x^{2}}-\frac{7}{x^{7}} with F(1)=0F(1)=0.

See Solution

Problem 14826

Find f(t)f(t) given that f(t)=2(3t2)f^{\prime \prime}(t)=2(3 t-2) and the conditions f(1)=2f^{\prime}(1)=2, f(1)=4f(1)=4.

See Solution

Problem 14827

Find f(0)f(0) if f(t)=3sin(2t)f'(t)=3 \sin(2t) and f(π2)=6f\left(\frac{\pi}{2}\right)=6.

See Solution

Problem 14828

Identify which functions are anti-derivatives of f(x)=sin(x)cos(x)f(x)=\sin (x) \cos (x) from the given options: (A) F1(x)F_{1}(x), (B) F2(x)F_{2}(x), (C) F3(x)F_{3}(x).

See Solution

Problem 14829

Evaluate the limit: limx0(1x2csc2(x))=\lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}-\csc ^{2}(x)\right)=

See Solution

Problem 14830

True or false: For a differentiable function ff, is it true that ddx[f(x)]=f(x)2x\frac{d}{d x}[f(\sqrt{x})]=\frac{f^{\prime}(x)}{2 \sqrt{x}}?

See Solution

Problem 14831

Given functions ff and gg with values in the table, compute:
1. ddxf(g(x))x=1\left.\frac{d}{d x} f(g(x))\right|_{x=1}
2. ddxg(f(x))x=1\left.\frac{d}{d x} g(f(x))\right|_{x=1}
3. ddxf(x3x2)x=2\left.\frac{d}{d x} f\left(x^{3}-x^{2}\right)\right|_{x=2}
4. ddx(g(x)3g(x)2)x=2\left.\frac{d}{d x}\left(g(x)^{3}-g(x)^{2}\right)\right|_{x=2}

See Solution

Problem 14832

True or false: For a one-to-one function, is the derivative of the inverse given by ddx[f1(x)]=f2(x)f(x)\frac{d}{dx}[f^{-1}(x)] = -f^{-2}(x) f'(x)?

See Solution

Problem 14833

Choose the option equal to the derivative of sin1(ax)\sin^{-1}(a x):
A: a1+(ax)2\frac{a}{1+(a x)^{2}} B: $\frac{a}{\sqrt{1-(a x)^{2}}$ C: $-a \sin^{-2}(a x)$ D: $a \cos(a x)$ E: $-a \sin^{-2}(a x) \cos(a x)$ F: None of the above

See Solution

Problem 14834

Given the functions ff and gg, calculate the following derivatives at specified points:
1. ddxf(g(x))x=1\left.\frac{d}{d x} f(g(x))\right|_{x=1}
2. ddxg(f(x))x=1\left.\frac{d}{d x} g(f(x))\right|_{x=1}
3. ddxf(x3x2)x=2\left.\frac{d}{d x} f\left(x^{3}-x^{2}\right)\right|_{x=2}
4. ddx(g(x)3g(x)2)x=2\left.\frac{d}{d x}\left(g(x)^{3}-g(x)^{2}\right)\right|_{x=2}

See Solution

Problem 14835

Find the unique anti-derivative FF of f(x)=3e3x+2e2x+4exe2xf(x)=\frac{3 e^{3 x}+2 e^{2 x}+4 e^{-x}}{e^{2 x}} with F(0)=0F(0)=0.

See Solution

Problem 14836

Given a(t)=5sin(t)a(t)=5 \sin(t) and v(0)=9 m/sv(0)=-9 \ \mathrm{m/s}, find v(t)v(t), displacement from 0 to 3, and total distance traveled.

See Solution

Problem 14837

Find the derivative of ln(13x)\ln\left(\frac{13}{x}\right) with respect to xx.

See Solution

Problem 14838

Evaluate the limit: limxx13/x=\lim _{x \rightarrow \infty} x^{13 / x}=

See Solution

Problem 14839

Find the displacement and total distance of the object with velocity v(t)=t22t3v(t)=t^{2}-2t-3 from t=0t=0 to t=7t=7.

See Solution

Problem 14840

An object's acceleration is a(t)=4sin(t)a(t)=4 \sin (t) with initial velocity v(0)=2 m/sv(0)=-2 \mathrm{~m/s}. Find v(t)v(t), displacement, and total distance from t=0t=0 to t=3t=3.

See Solution

Problem 14841

Object accelerates with a(t)=4sin(t)a(t)=4 \sin(t), v(0)=2v(0)=-2. Find v(t)v(t), displacement from 0 to 3, and total distance traveled.

See Solution

Problem 14842

Given values for functions ff and gg, compute the following derivatives at specified points:
1. ddxf(g(x))x=1\left.\frac{d}{d x} f(g(x))\right|_{x=1}
2. ddxg(f(x))x=1\left.\frac{d}{d x} g(f(x))\right|_{x=1}
3. ddxf(x3x2)x=2\left.\frac{d}{d x} f\left(x^{3}-x^{2}\right)\right|_{x=2}
4. ddx(g(x)3g(x)2)x=2\left.\frac{d}{d x}\left(g(x)^{3}-g(x)^{2}\right)\right|_{x=2}

See Solution

Problem 14843

Determine the horizontal asymptotes by calculating these limits:
1. limx4x2+2x\lim _{x \rightarrow \infty} \frac{-4 x}{2+2 x}
2. limx5x6x3+9x10\lim _{x \rightarrow-\infty} \frac{5 x-6}{x^{3}+9 x-10}
3. limxx213x12810x2\lim _{x \rightarrow \infty} \frac{x^{2}-13 x-12}{8-10 x^{2}}
4. limxx2+5x76x\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+5 x}}{7-6 x}
5. limxx2+5x76x\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+5 x}}{7-6 x}

See Solution

Problem 14844

Evaluate the limit: limx1exe4ln(x)\lim _{x \rightarrow 1} \frac{e^{x}-e}{4 \ln (x)}.

See Solution

Problem 14845

Find the limit: limx015x3sin(x)x\lim _{x \rightarrow 0} \frac{15 x^{3}}{\sin (x)-x}.

See Solution

Problem 14846

Find H(b)=limxln(1+bx)xH(b)=\lim _{x \rightarrow \infty} \frac{\ln \left(1+b^{x}\right)}{x} for b>1b>1 and 0<b10<b \leq 1.

See Solution

Problem 14847

Evaluate the limit: limxex(x319x2+4)=\lim _{x \rightarrow \infty} e^{-x}(x^{3}-19 x^{2}+4)=

See Solution

Problem 14848

Approximate 64.4\sqrt{64.4} using the tangent line of f(x)=xf(x)=\sqrt{x} at x=64x=64. Find L(x)=L(x)=. Provide 9 significant figures.

See Solution

Problem 14849

Given the speed function f(t)=44000(t+20)2f(t)=\frac{44000}{(t+20)^{2}} for 0t60 \leq t \leq 6, explain the distance estimates using sums and averages.

See Solution

Problem 14850

Find the local max and min of f(x)=2+9x+36x1f(x)=2+9x+36x^{-1}. Determine the xx-values and their function values.

See Solution

Problem 14851

Find dxdt\frac{d x}{d t} at x=4x=-4 given y=2x24y=2 x^{2}-4 and dydt=4\frac{d y}{d t}=-4.

See Solution

Problem 14852

Evaluate the integral: 5+4x1+x2dx\int \frac{5+4 x}{1+x^{2}} d x

See Solution

Problem 14853

Find H(b)=limxln(1+bx)xH(b)=\lim _{x \rightarrow \infty} \frac{\ln(1+b^{x})}{x} for b>1b>1 and 0<b10<b \leq 1.

See Solution

Problem 14854

Find the limit as xx approaches 0 from the right: limx0+xsin(2x)\lim _{x \rightarrow 0^{+}} x^{\sin (2 x)}.

See Solution

Problem 14855

Estimate the area between the x\mathrm{x}-axis and y=sinxy=\sin x for 0xπ0 \leq x \leq \pi.

See Solution

Problem 14856

Estimate Δy\Delta y for y=sin(4x)y=\sin(4x) with Δx=0.2\Delta x=0.2 at x=0x=0 using linear approximation. Find the percentage error.

See Solution

Problem 14857

Find the inflection points of f(x)=12x5+60x4240x3+6f(x) = 12x^{5} + 60x^{4} - 240x^{3} + 6. What are the values of D,ED, E, and FF?

See Solution

Problem 14858

Find the total number of cars passing an intersection from t=0t=0 to t=2t=2 for r(t)=300+700t150t2r(t)=300+700t-150t^{2}.

See Solution

Problem 14859

Evaluate the limit using L'Hôpital's Rule:
limx1(1+ln(x))4/(x1)= \lim _{x \rightarrow 1}(1+\ln (x))^{4 /(x-1)}=

See Solution

Problem 14860

Bestimmen Sie die Ableitung der Funktion g(x)=10xg(x) = -\frac{10}{x}, also g(x)g'(x).

See Solution

Problem 14861

Find the total words memorized in 15 minutes using the rate M(t)=0.002t2+0.8tM^{\prime}(t)=-0.002 t^{2}+0.8 t.

See Solution

Problem 14862

Find the displacement formula for a particle with velocity v(t)=145tv(t)=14-5t and total distance traveled at t=0.5t=0.5 seconds.

See Solution

Problem 14863

Find the displacement and total distance for the velocity v(t)=t2t20v(t)=t^{2}-t-20 from t=0t=0 to t=8t=8.

See Solution

Problem 14864

Find the displacement formula for a particle with velocity v(t)=126tv(t)=12-6t and total distance at t=0.5t=0.5 seconds.

See Solution

Problem 14865

Find the number of cars passing through an intersection from 6 am to 9 am given r(t)=500+1000t210t2r(t)=500+1000 t-210 t^{2}.

See Solution

Problem 14866

Find the average slope of the function f(x)=3x36xf(x)=3 x^{3}-6 x on [2,2][-2,2] and identify the two values of cc where f(c)f'(c) equals this slope.

See Solution

Problem 14867

Evaluate these limits: (a) limx11+6x22+9x=\lim _{x \rightarrow \infty} \frac{\sqrt{11+6 x^{2}}}{2+9 x}= (b) limx11+6x22+9x=\lim _{x \rightarrow-\infty} \frac{\sqrt{11+6 x^{2}}}{2+9 x}=

See Solution

Problem 14868

Kreuzen Sie an, ob die Ableitungen für die Funktionen f4(x)=x76+98f_{4}(x)=x^{76}+98 und f5(x)=x24f_{5}(x)=\sqrt[4]{x^{2}} korrekt sind.

See Solution

Problem 14869

Find the third derivative of f(x)=x44.5x2+5.0625f(x) = x^{4} - 4.5x^{2} + 5.0625.

See Solution

Problem 14870

An object moves with velocity v(t)=t2+4t5v(t)=t^{2}+4t-5. Find displacement and total distance from t=0t=0 to t=7t=7.

See Solution

Problem 14871

Find an antiderivative of the function f(x)=4x8+5x59x24f(x)=4 x^{8}+5 x^{5}-9 x^{2}-4. Do not include +c+c.

See Solution

Problem 14872

Evaluate these limits: (a) limx11+6x22+9x=\lim _{x \rightarrow \infty} \frac{\sqrt{11+6 x^{2}}}{2+9 x}=, (b) limx11+6x22+9x=\lim _{x \rightarrow-\infty} \frac{\sqrt{11+6 x^{2}}}{2+9 x}=.

See Solution

Problem 14873

Find values of cc where f(c)=0f'(c)=0 for f(x)=2x220x6f(x)=2x^2-20x-6 on [3,7][3,7]. What condition fails for [0,14][0,14]?

See Solution

Problem 14874

Find the average slope of f(x)=3x36xf(x)=3 x^{3}-6 x on [2,2][-2,2] and the values of cc where f(c)f^{\prime}(c) equals this slope.

See Solution

Problem 14875

Determine the extrema and inflection points of the function f(x)=x44.5x2+5.0625f(x)=x^{4}-4.5 x^{2}+5.0625.

See Solution

Problem 14876

The object's acceleration is a(t)=6sin(t)a(t)=6 \sin (t) and initial velocity is v(0)=3 m/sv(0)=-3 \mathrm{~m/s}.
a) Find v(t)v(t). b) Calculate displacement from time 0 to 3. c) Determine total distance traveled from time 0 to 3.

See Solution

Problem 14877

Berechnen Sie die Summe: π2ni=1ncos(iπ2n)\frac{\pi}{2 n} \sum_{i=1}^{n} \cos \left(\frac{i \pi}{2 n}\right).

See Solution

Problem 14878

Find the derivative of the function f(x)=e5x2f(x) = e^{5 x^{2}}.

See Solution

Problem 14879

Find an antiderivative of the function f(x)=4x8+5x59x24f(x)=4 x^{8}+5 x^{5}-9 x^{2}-4. Do not include +c+c.

See Solution

Problem 14880

Untersuchen Sie die Funktion f2(t)=0,01at3+0,3at2+50f_{2}(t)=-0,01 a t^{3}+0,3 a t^{2}+50 für a=2a=2. Bestimmen Sie den maximalen Kurs und die Trendwende.

See Solution

Problem 14881

Eine Aktie kostet 50 \.UntersuchedieFunktion. Untersuche die Funktion f_{a}(t)=-0,01 a t^{3}+0,3 a t^{2}+50fu¨r für a=2und und a=-1$. Bestimme Maximalwerte und Trendwenden.

See Solution

Problem 14882

Find a value for aa if FF is an antiderivative of ff:
a) f(x)=3x2;F(x)=xaf(x)=3 x^{2} ; F(x)=x^{a}
b) f(x)=2x;F(x)=x2af(x)=2 x ; F(x)=x^{2}-a
c) f(x)=2x;F(x)=x2+1+af(x)=2 x ; F(x)=x^{2}+1+a
d) f(x)=(a+1)x;F(x)=xa+1f(x)=(a+1) \cdot x ; F(x)=x^{a+1}
Use a graphing calculator.

See Solution

Problem 14883

Gegeben ist die Funktion h(t)=13t3+2t2+21t+10h(t)=-\frac{1}{3} t^{3}+2 t^{2}+21 t+10. Bestimmen Sie Extrempunkte, Höhe zu t=0t=0, Wachstumsraten und vergleichen Sie mit 27 cm27 \mathrm{~cm}/Woche. Ermitteln Sie die Höhe der "Goldene Gloria" und den größten Höhenunterschied zu "Sonnenstern".

See Solution

Problem 14884

Bestimmen Sie den Berührpunkt und die Gleichung der Tangente an f(x)=13x332x2f(x) = \frac{1}{3}x^3 - \frac{3}{2}x^2, die durch P(0,98)P(0, \frac{9}{8}) und N(12,0)N(\frac{1}{2}, 0) verläuft.

See Solution

Problem 14885

Ein Heißluftballon hat die Geschwindigkeit v(t)=0,12t2+1,2tv(t)=-0,12 t^{2}+1,2 t und startet bei h(0)=520 mh(0)=520 \mathrm{~m}.
a) Finde die Höhenfunktion h(t)h(t). b) Bestimme die maximale Höhe. c) Wann erreicht der Ballon die Start-Höhe?

See Solution

Problem 14886

Find the limit as xx approaches 3 from the left of 23x\frac{2}{|3-x|}.

See Solution

Problem 14887

Find the limit as xx approaches -1 for the expression x2+6x+5x23x4\frac{x^{2}+6 x+5}{x^{2}-3 x-4}.

See Solution

Problem 14888

Berechnen Sie die Ableitungen der Funktionen:
a) f(x)=(5x)(3+x)f(x)=(5-x)(3+x)
b) g(x)=3x(0,5x+1)2g(x)=3x(0,5x+1)^{2}
c) h(x)=1x(x2+5x)h(x)=\frac{1}{x}(x^{2}+5x) mit verschiedenen Ableitungsregeln.

See Solution

Problem 14889

Finde die Extrem- und Wendepunkte für die Funktionen: a) f(x)=x(x+3)2f(x)=x \cdot(x+3)^{2}, b) f(t)=(3t1)2f(t)=(3 t-1)^{2}, c) g(x)=(2x5)3150xg(x)=(2 x-5)^{3}-150 x, d) g(t)=t2(2t+5)g(t)=t^{2} \cdot(2 t+5), e) h(x)=(34x)2+32xh(x)=(3-4 x)^{2}+32 x, f) h(t)=(13t+2)2th(t)=\left(\frac{1}{3} t+2\right)^{2} \cdot t.

See Solution

Problem 14890

Ein Bogenschütze schießt einen Pfeil. Höhe: h(t)=60t5t2h(t)=60 t-5 t^{2}. Fragen: a) Abschussgeschwindigkeit? b) Gipfelhöhe und Flugzeit? c) Geschwindigkeit 100 km/h100 \mathrm{~km/h}? d) Abschusswinkel α\alpha und Maximalhöhe bei f(x)=1,70+0,035x0,0005x2f(x)=1,70+0,035 x-0,0005 x^{2}? Trifft er das Ziel (Durchmesser 10 cm10 \mathrm{~cm}, M(80|1,34)?

See Solution

Problem 14891

Gegeben sind die Funktionen f(x)=x2+4f(x)=-x^{2}+4 und g(x)=x25x+6g(x)=x^{2}-5x+6. Bestimme Ableitungen, Steigungen, Extrempunkte, Tangente und Schnittwinkel.

See Solution

Problem 14892

Find the derivative of cos(y2)\cos(y^2) with respect to xx, using the chain rule, where yy is a function of xx.

See Solution

Problem 14893

Find 26f(4x)dx\int_{2}^{6} f(4-x) d x given 26f(x)dx=10\int_{-2}^{6} f(x) d x=10 and 26f(x)dx=3\int_{2}^{6} f(x) d x=3.

See Solution

Problem 14894

Berechnen Sie die Fläche unter der Kurve f(x)=x45x2+4f(x) = x^4 - 5x^2 + 4 im Intervall von -2 bis 0.

See Solution

Problem 14895

Berechnen Sie den Inhalt der gefärbten Fläche mit dem Integral A1=20(x3+4x)dxA_{1}=\left|\int_{-2}^{0}\left(-x^{3}+4 x\right) d x\right|.

See Solution

Problem 14896

Berechne die Fläche unter der Funktion f(x)=x4+2x3+x2f(x) = -x^4 + 2x^3 + x^2 im Intervall von 0 bis 2: A=02f(x)dxA=\int_{0}^{2} f(x) d x.

See Solution

Problem 14897

Zeigen Sie, dass F(x)=(2x28x16)e12xF(x)=\left(-2 x^{2}-8 x-16\right) \cdot e^{-\frac{1}{2} x} eine Stammfunktion zu f(x)=x2e12xf(x)=x^{2} \cdot e^{-\frac{1}{2} x} ist. Berechnen Sie die Flächeninhalte für x=2x=2 und x=10,20,50,x=10, 20, 50, \ldots.

See Solution

Problem 14898

Evaluate 01cosx2dx\int_{0}^{1} \cos x^{2} dx and 01sinx2dx\int_{0}^{1} \sin x^{2} dx using Maclaurin series. Approximate 01tanx2dx\int_{0}^{1} \tan x^{2} dx.

See Solution

Problem 14899

Find the trapezoidal approximation of 112f(x)dx\int_{1}^{12} f(x) dx using intervals [1,3],[3,5],[5,9],[9,12][1,3],[3,5],[5,9],[9,12]. Choices: (A) 97 (B) 115 (C) 128 (D) 136.

See Solution

Problem 14900

Differentiate the function: 5x2e(4y2)5 x^{2} - e^{(4 y^{2})}. What is ddx\frac{d}{d x} of this expression?

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord