Calculus

Problem 6501

Gegeben ist f(x)=xf(x)=x. Finde die Stammfunktion FF durch den Punkt P(11,5)P(1 \mid 1,5).

See Solution

Problem 6502

Gegeben ist f(x)=xf(x)=x. Finde die Stammfunktion FF, die durch den Punkt P(11,5)P(1 \mid 1,5) geht.

See Solution

Problem 6503

Find the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for the function f(x)=2x+8f(x)=2x+8, where h0h \neq 0.

See Solution

Problem 6504

Find the first and second derivatives f(x)f'(x) and f(x)f''(x) for these functions:
(a) f(x)=(x23x+5)x2xf(x)=\left(x^{2}-3 x+5\right) x^{2 x}, (b) f(x)=xix+3f(x)=x^{i x+3}, (c) f(x)=sin3xf(x)=\sin 3 x, (d) f(x)=tan4xf(x)=\tan 4 x, (e) f(x)=cos(5x2)f(x)=\cos \left(5 x^{2}\right), (f) f(x)=2e3xcos5xf(x)=2 e^{3 x} \cos 5 x.

See Solution

Problem 6505

Find the end behavior of f(x)=6x46x2+1f(x)=-6 x^{4}-6 x^{2}+1 using limxf(x)\lim _{x \rightarrow \infty} f(x) and limxf(x)\lim _{x \rightarrow-\infty} f(x).

See Solution

Problem 6506

Analyze the end behavior of f(x)=7x2x3+4x2f(x)=7 x^{2}-x^{3}+4 x-2 using limxf(x)\lim _{x \rightarrow \infty} f(x) and limxf(x)\lim _{x \rightarrow-\infty} f(x).

See Solution

Problem 6507

Find the sum of the series: 36+12+4+36 + 12 + 4 + \cdots. Is it a finite sum or does it not exist? Choose A or B.

See Solution

Problem 6508

Find the limit and check continuity at y=1y=1: limy1sec(ysec2ytan2y1)\lim _{y \rightarrow 1} \sec \left(y \sec ^{2} y-\tan ^{2} y-1\right).

See Solution

Problem 6509

Find the limit of f(x)=2x4f(x)=\frac{2}{x}-4 as xx \to \infty and xx \to -\infty. What is limxf(x)\lim_{x \to \infty} f(x)?

See Solution

Problem 6510

Find the limit as xx approaches infinity: limxsin20x16x=\lim _{x \rightarrow \infty} \frac{\sin 20 x}{16 x}=\square.

See Solution

Problem 6511

Why does f(x)=0f(x)=0 have a solution between x=5x=5 and x=7x=7 if f(5)<0f(5)<0 and f(7)>0f(7)>0? Explain and sketch.

See Solution

Problem 6512

If h(x)=f(x)g(x)h(x)=f(x) \cdot g(x) is continuous at x=0x=0, must f(x)f(x) and g(x)g(x) be continuous at x=0x=0? Explain.

See Solution

Problem 6513

Calculate the average rate of change of f(x)=xf(x)=\sqrt{x} from x1=9x_{1}=9 to x2=64x_{2}=64. Simplify your answer.

See Solution

Problem 6514

Find the critical number(s) of the function f(x)=x23/11x12/11f(x)=x^{23/11}-x^{12/11}.

See Solution

Problem 6515

Find the critical numbers of the function f(x)=x15/7+x8/7f(x)=x^{15/7}+x^{8/7}.

See Solution

Problem 6516

Calculate the average rate of change for f(x)=x2+8xf(x)=x^{2}+8x from x=4x=4 to x=6x=6. Simplify your answer.

See Solution

Problem 6517

Find the critical numbers of the function f(x)=23x33x280x10f(x)=\frac{2}{3}x^3 - 3x^2 - 80x - 10.

See Solution

Problem 6518

Find where the cost function C(x)=x32x2+4x+40C(x)=x^{3}-2 x^{2}+4 x+40 is decreasing and increasing for x>0x>0.

See Solution

Problem 6519

Which functions are continuous for all real numbers: h(x)=sin(x)h(x)=\sin(x) or f(x)=cos(x)f(x)=\cos(x)? Choose: A) hh only, B) ff only, C) both, D) neither.

See Solution

Problem 6520

Find the intervals where the profit function P(x)=R(x)C(x)P(x) = R(x) - C(x) is increasing, given:
C(x)=0.13x20.00006x3C(x) = 0.13x^{2} - 0.00006x^{3} and R(x)=0.886x20.0002x3R(x) = 0.886x^{2} - 0.0002x^{3}.

See Solution

Problem 6521

Show that for small xx, sin3xcos4x3x24x3\sin 3x \cos 4x \approx 3x - 24x^3. Approximate sin0.3cos0.4\sin 0.3 \cos 0.4 and find the percentage error.

See Solution

Problem 6522

Find local and absolute extreme values of a function ff with given points (a,b)(a,b), (u,v)(u,v), (c,d)(c,d), (x,y)(x,y).

See Solution

Problem 6523

Find intervals where the drug concentration K(t)=12tt2+4K(t)=\frac{12 t}{t^{2}+4} is increasing and decreasing.

See Solution

Problem 6524

Estimate the increase in metabolic rate PP when body mass mm changes from 102 kg to 103 kg using P=73.3m3/4P=73.3 m^{3/4}.

See Solution

Problem 6525

Lös differentialekvationen y(t)=110(y(t)10)y^{\prime}(t)=-\frac{1}{10}(y(t)-10) med y(0)=2022y(0)=2022.

See Solution

Problem 6526

Find the growth rate when M=125 kgM=125 \mathrm{~kg}, given dMdt=14\frac{d M}{d t}=14 kg/year at M=100 kgM=100 \mathrm{~kg}.
Also, how much mass must M=0.7 kgM=0.7 \mathrm{~kg} gain to double its growth rate?

See Solution

Problem 6527

Find dBdI\frac{d B}{d I} for B=kI2/3B=k I^{2/3} and dHdW\frac{d H}{d W} for H=kW3/2H=k W^{3/2}. Identify the correct statements.

See Solution

Problem 6528

Given the piecewise function f(x)f(x), determine which statement about its continuity and differentiability at x=1x=-1 and x=2x=2 is TRUE.

See Solution

Problem 6529

Find the slope of the tangent line to 2y2=x4y+cg(x)2y^2=x^4y+c g(x) at (1,3) given g(1)=1g'(1)=-1. Choices: 2+c2+c, c242\frac{c-24}{2}, 24c24-c, c-c, 12c11\frac{12-c}{11}.

See Solution

Problem 6530

Given the function g(v)=v375v+6g(v)=v^{3}-75v+6, find g(v)g^{\prime}(v), where g(v)=0g^{\prime}(v)=0, and identify critical numbers.

See Solution

Problem 6531

Find the tangent line equation for f(x)=2x2+g(x)f(x)=2x^{2}+g(x) at x=3x=3, given g(3)=1g(3)=1 and g(3)=2g'(3)=2.

See Solution

Problem 6532

Consider the piecewise function f(x)f(x) defined as follows:
1. 2x2+52x^2 + 5 for x<1x < -1
2. x3+8x^3 + 8 for 1x2-1 \leq x \leq 2
3. 3x+103x + 10 for x>2x > 2

Which statement about the continuity and differentiability of ff at x=1x = -1 and x=2x = 2 is TRUE?

See Solution

Problem 6533

Find the derivative of the function f(x)=3cos(6ln(x))f(x)=3 \cos (6 \ln (x)), denoted as f(x)f^{\prime}(x).

See Solution

Problem 6534

Find the limit: limx1+9x64x3\lim _{x \rightarrow \infty} \frac{\sqrt{1+9 x^{6}}}{4-x^{3}}.

See Solution

Problem 6535

Find the function f(x)f(x) and the number aa such that limh0h3h=f(a)\lim _{h \rightarrow 0} \frac{h^{3}}{h} = f^{\prime}(a). f(x)= f(x)= a= a=

See Solution

Problem 6536

Find the derivative of the function f(x)=8x3arctan(4x4)f(x)=8 x^{3} \arctan \left(4 x^{4}\right). What is f(x)f^{\prime}(x)?

See Solution

Problem 6537

Find the limit: limx[ln(4+x2)ln(7+x)]\lim _{x \rightarrow \infty}\left[\ln \left(4+x^{2}\right)-\ln (7+x)\right].

See Solution

Problem 6538

Find the function f(x)f(x) and the number aa such that limith0h3h=f(a)\operatorname{limit}_{h \rightarrow 0} \frac{h^{3}}{h} = f^{\prime}(a). f(x)=a= f(x)=\square \\ a=\square

See Solution

Problem 6539

Find the limit: limx(x2+2x5)\lim _{x \rightarrow-\infty}\left(x^{2}+2 x^{5}\right). Enter \infty, -\infty, or DNE if it doesn't exist.

See Solution

Problem 6540

Calculate the limit: limx5x62x+1\lim _{x \rightarrow \infty} \frac{5 x-6}{2 x+1}. Enter ' \infty ', '- \infty ', or DNE if it doesn't exist.

See Solution

Problem 6541

Find the derivative of f(x)=3x11+t5dtf(x) = \int_{3}^{x} \frac{1}{1+t^{5}} dt and evaluate f(12)f'(12).

See Solution

Problem 6542

Find the tangent line equation for f(x)=(5x1)12f(x)=(5 x-1)^{\frac{1}{2}} at point P=(1,f(1))P=(1, f(1)).

See Solution

Problem 6543

Find the limit: limx(25x2+x5x)\lim _{x \rightarrow \infty}\left(\sqrt{25 x^{2}+x}-5 x\right). Enter ω\omega, -\infty, or DNE if it doesn't exist.

See Solution

Problem 6544

Find when the function f(x)=cos(6x)+3xf(x)=\cos (6 x)+3 x is decreasing on [0,π3][0, \frac{\pi}{3}].

See Solution

Problem 6545

Find the limit: limx(e5xcos(x))\lim _{x \rightarrow \infty}\left(e^{-5 x} \cos (x)\right). Enter \infty, -\infty, or DNE if it doesn't exist.

See Solution

Problem 6546

Find the derivative dydx\frac{d y}{d x} of the function y=x10cos(x)y=x^{10 \cos (x)}.

See Solution

Problem 6547

A stone is thrown from a 650 ft roof at 18 ft/s. Find its height after 5 seconds, when it hits the ground, and its impact velocity.

See Solution

Problem 6548

Find the limits as xx \to \infty and xx \to -\infty for f(x)=(2x)(1+x)2(1x)4f(x)=(2-x)(1+x)^{2}(1-x)^{4}.

See Solution

Problem 6549

Find the intervals where the polynomial function f(x)f(x), with derivative f(x)=2(x+5)3(x3)2(x4)f^{\prime}(x)=-2(x+5)^{3}(x-3)^{2}(x-4), is increasing.

See Solution

Problem 6550

Find the function f(x)f(x) and the number aa such that limith0h3h=f(a)\operatorname{limit}_{h \rightarrow 0} \frac{h^{3}}{h} = f^{\prime}(a). f(x)=a= f(x)= \\ a=

See Solution

Problem 6551

Calculate the limit: limtt+t26tt2\lim _{t \rightarrow \infty} \frac{\sqrt{t}+t^{2}}{6 t-t^{2}}. Enter \infty, -\infty, or DNE if it doesn't exist.

See Solution

Problem 6552

Find the limit: limxx49x2+xx3x+3\lim _{x \rightarrow \infty} \frac{x^{4}-9 x^{2}+x}{x^{3}-x+3}. Enter \infty, -\infty, or DNE if it doesn't exist.

See Solution

Problem 6553

Find the limit: limx6x5xx4+5\lim _{x \rightarrow-\infty} \frac{6 x^{5}-x}{x^{4}+5}. Enter \infty, -\infty, or DNE if it doesn't exist.

See Solution

Problem 6554

Let C(q)C(q) be cost and R(q)R(q) be revenue of producing qq items.
(a) Estimate C(54)C(54) given C(50)=4500C(50)=4500 and C(50)=23C'(50)=23.
(b) Find profit from the 51st51^{\text{st}} item using C(50)=23C'(50)=23 and R(50)=38R'(50)=38.
(c) Should the company produce the 101st101^{\text{st}} item if C(100)=35C'(100)=35 and R(100)=38R'(100)=38?

See Solution

Problem 6555

Find the derivative of h(x)=1x2+3x1h(x)=\frac{1}{x^{2}+3 x-1} using the chain rule.

See Solution

Problem 6556

Find g(π2)g^{\prime}\left(\frac{\pi}{2}\right) for g(x)=ln((f(x))2+Asinx)g(x)=\ln((f(x))^{2}+A \sin x) given f(π2)=4f\left(\frac{\pi}{2}\right)=4 and f(π2)=3f^{\prime}\left(\frac{\pi}{2}\right)=3.

See Solution

Problem 6557

Determine the roots, asymptotes, or critical points of h(x)=1x2+3x1h(x)=\frac{1}{x^{2}+3 x-1} using the chain rule.

See Solution

Problem 6558

Find zyx=1y=e\left.\frac{\partial z}{\partial y}\right|_{\substack{x=1 \\ y=e}} for z=xyxz=x y^{x}: A. 6 B. 1e\frac{1}{e} C. 1 D. 1+1e1+\frac{1}{e}

See Solution

Problem 6559

Find the value of limx0f(x)sin(1x3)\lim _{x \rightarrow 0} f(x) \sin \left(\frac{1}{x^{3}}\right) if limx0f(x)=0\lim _{x \rightarrow 0} f(x)=0.

See Solution

Problem 6560

Find the derivative of f(x)=3(49x)4f(x) = 3(4-9x)^4 using the chain rule.

See Solution

Problem 6561

Given a continuous function ff with f(2)=4f(-2)=-4, f(2)=1f(2)=1, and limxf(x)=0\lim_{x \to \infty} f(x)=0, which statement is TRUE?

See Solution

Problem 6562

Find the derivative of y=cscx+tanxy=\csc \sqrt{x}+\sqrt{\tan x} using the chain rule.

See Solution

Problem 6563

Find f(π4)f\left(\frac{\pi}{4}\right) given f(x)=9sin(3x)f''(x)=-9 \sin(3x), f(0)=1f'(0)=-1, and f(0)=1f(0)=-1.

See Solution

Problem 6564

A stone is thrown from a 650 ft roof at 18 ft/s. Find its height after 5s, when it hits the ground, and its impact velocity.

See Solution

Problem 6565

Determine which limit cannot be found using the Squeeze Theorem for the function f(x)f(x) defined by the inequalities.

See Solution

Problem 6566

If y=f(x)y=f(x) is not differentiable at x=0x=0, which statement is always TRUE?

See Solution

Problem 6567

Given a continuous function ff on [0,3][0,3] with values f(0)=2f(0)=-2, f(1)=2f(1)=2, and f(2)=kf(2)=k, which statement is always TRUE?

See Solution

Problem 6568

Find g(3)g'(3) for g(x)=Af(x)e4xg(x)=\frac{A f(x)}{e^{4 x}} given f(3)=1f(3)=1, f(3)=4f'(3)=4.

See Solution

Problem 6569

Approximate a root of 3x3+6x+2=03 x^{3}+6 x+2=0 using Newton's method with initial guess x1=1x_{1}=-1. Find x2x_{2} and x3x_{3}.

See Solution

Problem 6570

Given a continuous function ff on [0,3][0,3] with values f(0)=2f(0)=-2, f(1)=2f(1)=2, and f(2)=kf(2)=k, which statement is always TRUE?

See Solution

Problem 6571

An inverted pyramid with a square base (sides 6 cm6 \mathrm{~cm}) and height 10 cm10 \mathrm{~cm} is filled at 75 cm3/s75 \mathrm{~cm}^3/\mathrm{s}. Find the water level rise rate when it's 6 cm6 \mathrm{~cm}.

See Solution

Problem 6572

Calculate the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=1x+8f(x)=\frac{1}{x+8}, where h0h \neq 0.

See Solution

Problem 6573

Given the piecewise function f(x)f(x), which statements about its continuity and differentiability at x=1x=-1 and x=2x=2 are true?

See Solution

Problem 6574

Find the xx-intercept of the tangent line to f(x)=(3x1)4(2x+2)2f(x)=(3x-1)^{4}(2x+2)^{2} at the yy-axis crossing point.

See Solution

Problem 6575

Find the volume change rate of a cube with side ss at s=6s=6. (Answer as a whole number: cubic units/unit increase.)

See Solution

Problem 6576

Find the rate of change of power P(R)=2.5R(R+0.5)2P(R)=\frac{2.5 R}{(R+0.5)^{2}} W at R=10ΩR=10 \Omega. Round to four decimal places.

See Solution

Problem 6577

Find dy/dxdy/dx for the equation 4y2xy15=04y^{2} - xy - 15 = 0 at the point (17,5)(17,5).

See Solution

Problem 6578

Find the farthest distance to the left of the origin for the particle with position s(t)=t4200t2s(t)=t^{4}-200 t^{2}.

See Solution

Problem 6579

Find the rate of change of qq with respect to pp given p=20q2+5p=\frac{20}{q^{2}+5}.

See Solution

Problem 6580

Find F(2)F^{\prime}(2) for F(x)=f(g(x))F(x)=f(g(x)) using f(3)=7,f(3)=5,g(2)=3,g(2)=3f(3)=7, f^{\prime}(3)=-5, g(2)=3, g^{\prime}(2)=-3.

See Solution

Problem 6581

Find the population change rate in 8 years for P(t)=30(45+4t)21900tP(t)=30(45+4t)^{2}-1900t.

See Solution

Problem 6582

Find the derivative of y=((x+6)(x2+4))9y=((x+6)(x^{2}+4))^{9}.

See Solution

Problem 6583

Find dy/dxd y / d x using implicit differentiation for the equation yx+1=4y \sqrt{x+1}=4.

See Solution

Problem 6584

Find the derivative of y=e4x(2x7)5y=e^{4 x}(2 x-7)^{5} using the chain rule.

See Solution

Problem 6585

Find the derivative dydx\frac{d y}{d x} for the equation (x2+y2)(x2+y2+x)=8xy2(x^{2}+y^{2})(x^{2}+y^{2}+x)=8 x y^{2}.

See Solution

Problem 6586

Find the derivative of y=tan(4xex)y=\tan(4xe^{x}) using the chain rule.

See Solution

Problem 6587

Find f(1)f^{\prime \prime \prime}(1) for f(x)=2ln(x+1)f(x)=2 \ln (x+1).

See Solution

Problem 6588

Find the rate of change of voltage dVdv\frac{d V}{d v} for B=8B=8, l=0.8l=0.8, where V(v)=BlvV(v)=-B l v. Answer to one decimal place. dVdv= \frac{d V}{d v}=

See Solution

Problem 6589

Find the limit of f(x)=34x2f(x)=3-\frac{4}{x-2} as xx approaches 22 from the left.

See Solution

Problem 6590

Find the derivative f(x)f'(x) of the function f(x)=5x36+3xf(x)=\frac{5 \sqrt{x^{3}}}{6}+\frac{3}{\sqrt{x}} and calculate f(6)f'(6).

See Solution

Problem 6591

Find the derivative of f(x)=ln1+2x212x2f(x)=\ln \sqrt{\frac{1+2 x^{2}}{1-2 x^{2}}}.

See Solution

Problem 6592

Find the derivative of the function f(x)=exx3x2+3f(x)=\frac{e^{x}\sqrt[3]{x}}{x^{2}+3}, i.e., compute f(x)f^{\prime}(x).

See Solution

Problem 6593

Using Ohm's Law V=IRV=IR with V=15 VV=15 \mathrm{~V}, find the average rate of change of II from R=8R=8 to R=8.1R=8.1. Then, find the rate of change of II at R=8R=8 and the rate of change of RR at I=2.3I=2.3. Provide answers to three decimal places.

See Solution

Problem 6594

Find the rate of change of qq with respect to pp for p=20q2+5p=\frac{20}{q^{2}+5}.

See Solution

Problem 6595

Find the average rate of change of f(x)=x8x+4f(x)=\frac{x-8}{x+4} on [3,5][3,5] and [x,x+h][x, x+h] as reduced fractions.

See Solution

Problem 6596

Is the function f(x)=x8+0.018f(x)=\sqrt[8]{x^{8}+0.01} differentiable at x=0x=0? True or False?

See Solution

Problem 6597

Find the derivative of the function f(x)=extan2xf(x)=e^{x} \tan^{2} x.

See Solution

Problem 6598

正の整数 kk に対し、次の不等式を示せ:1(k+1)πAk1kπ\frac{1}{\sqrt{(k+1) \pi}} \leq A_{k} \leq \frac{1}{\sqrt{k \pi}}Ak=kπ(k+1)πsin(x2)dxA_{k}=\int_{\sqrt{k \pi}}^{\sqrt{(k+1) \pi}}\left|\sin \left(x^{2}\right)\right| d x

See Solution

Problem 6599

Find g(2)g^{\prime \prime}(2) given g(2)=3g(2)=3 and g(x)=x3g(x)g^{\prime}(x)=x^{3} g(x). Choices: a. 228 b. 114 c. 456 d. 57 e. 342

See Solution

Problem 6600

Find the tangent line to the curve ysin6x=xcos6yy \sin 6 x = x \cos 6 y at the point (π6,π12)\left(\frac{\pi}{6}, \frac{\pi}{12}\right).

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord