Calculus

Problem 26601

Find the derivative of f(x)=ln(1x2) f(x) = \ln \left( \frac{1}{x^{2}} \right) and explain each step.

See Solution

Problem 26602

Find the limit: limx±311x310x3\lim _{x \rightarrow \pm \infty} \frac{3-11 x^{3}}{10 x^{3}}

See Solution

Problem 26603

Logistic growth function f(t)=103,0001+5700etf(t)=\frac{103,000}{1+5700 e^{-t}} describes flu cases over time.
a. Initial cases? b. Cases after 4 weeks? c. Maximum possible cases?

See Solution

Problem 26604

Find the steepest tangent slope of f(x)=x+2f(x)=\sqrt{x+2} on [0,1][0,1], the secant line equation, and compare slopes.

See Solution

Problem 26605

Find the derivative of f(x)=ln2+cos2x f(x) = \ln \sqrt{2 + \cos^2 x} and explain each step.

See Solution

Problem 26606

Find the derivatives of these functions: y=6x4y=\frac{6}{\sqrt[4]{x}}, y=2x3y=\frac{-2}{\sqrt[3]{x}}, f(x)=x3+5xf(x)=\frac{x^{3}+5}{x}, g(x)=x34xxg(x)=\frac{x^{3}-4 x}{\sqrt{x}}, g(x)=(8x24x)2g(x)=(8 x^{2}-4 x)^{2}.

See Solution

Problem 26607

Find the tangent line equation to y=(3x22x3)5y=(3 x^{-2}-2 x^{3})^{5} at the point (1,1)(1,1).

See Solution

Problem 26608

Differentiate h(x)=(x2+3)4(4x5)3h(x)=(x^{2}+3)^{4}(4x-5)^{3}.

See Solution

Problem 26609

Find the arc length of y=x36+12xy=\frac{x^{3}}{6}+\frac{1}{2 x} from x=12x=\frac{1}{2} to x=2x=2.

See Solution

Problem 26610

Differentiate the function 81x3\sqrt{8-\frac{1}{x^{3}}} with respect to xx.

See Solution

Problem 26611

Find the derivative of f(x)=ex(sinx+cosx)f(x) = e^x(\sin x + \cos x) and explain each step.

See Solution

Problem 26612

Bestimme die Punkte, an denen die Tangente von f\mathrm{f} parallel zur Linie y=3x+4y=3x+4 ist für: a) f(x)=x3f(x)=x^{3}, b) f(x)=x2f(x)=x^{2}, c) f(x)=x32f(x)=x^{\frac{3}{2}}, d) f(x)=x6f(x)=x^{6}.

See Solution

Problem 26613

Find cc where fave=f(c)f_{a v e}=f(c) and calculate the arc length of y=x36+12xy=\frac{x^{3}}{6}+\frac{1}{2 x} from x=12x=\frac{1}{2} to x=2x=2.

See Solution

Problem 26614

Find kk so that the line y=34x+3y = -\frac{3}{4}x + 3 is tangent to f(x)=kxf(x) = \frac{k}{x}.

See Solution

Problem 26615

Differenzieren Sie die folgenden Funktionen mit der Quotientenregel: a) f(x)=xx1f(x)=\frac{x}{x-1}, b) f(x)=1+2x1+xf(x)=\frac{1+2 x}{1+x}, c) f(x)=15x1+10xf(x)=\frac{1-5 x}{1+10 x}, d) f(x)=x+1x2f(x)=\frac{x+1}{x^{2}}, e) f(x)=axxf(x)=\frac{a \sqrt{x}}{x}, f) f(x)=a+bxabxf(x)=\frac{a+b x}{a-b x}.

See Solution

Problem 26616

Soit u0=0u_{0}=0 et un+1=2un+3un+4u_{n+1}=\frac{2 u_{n}+3}{u_{n}+4}. Étudiez f(x)=2x+3x+4f(x)=\frac{2x+3}{x+4} sur I=[0;1]I=[0;1], montrez que un[0;1]u_n \in [0;1] et que (un)\left(u_n\right) est croissante, puis calculez sa limite.

See Solution

Problem 26617

Differenzieren Sie die folgenden Funktionen mit der Produktregel und überprüfen Sie die Ergebnisse:
a) f(x)=x(1+x2)f(x)=x(1+x^{2}) b) f(x)=xxf(x)=\sqrt{x} \cdot \sqrt{x} c) f(x)=(x21)(2x2+5)f(x)=(x^{2}-1)(2 x^{2}+5) d) f(x)=ax(ax2+b)f(x)=a x(a x^{2}+b) e) f(x)=(x2+1)1xf(x)=(x^{2}+1) \cdot \frac{1}{x} f) f(x)=xxf(x)=\sqrt{x} \cdot x

See Solution

Problem 26618

Ein Handwerker trinkt giftige Flüssigkeit. Konzentration im Blut: 2μg/dl2 \mu \mathrm{g} / \mathrm{dl} und 3μg/dl3 \mu \mathrm{g} / \mathrm{dl}. Bestimmen Sie aa und bb aus h(t)=(at+b)e0,1th(t)=(a t+b) \cdot e^{-0,1 t}. Berechnen Sie die Maximalkonzentration und prüfen Sie die Gefahrenzone ab 6μg/dl6 \mu \mathrm{g} / \mathrm{dl}.

See Solution

Problem 26619

Find the derivative using the product rule for these functions: 1. y=(3x2+2)(2x1)y=(3x^2+2)(2x-1), 2. y=(5x21)(4x+3)y=(5x^2-1)(4x+3), 3. y=(2x5)2y=(2x-5)^2, 4. y=(7x6)2y=(7x-6)^2, 5. k(t)=(r21)2k(t)=(r^2-1)^2, 6. g(t)=(3t2+2)2g(t)=(3t^2+2)^2, 7. y=(x+1)(x+2)y=(x+1)(\sqrt{x}+2), 8. y=(2x3)(x1)y=(2x-3)(\sqrt{x}-1), 9. p(y)=(y1+y2)(2y35y4)p(y)=(y^{-1}+y^{-2})(2y^{-3}-5y^{-4}), 10. q(x)=(x2x3)(3x1+4x4)q(x)=(x^{-2}-x^{-3})(3x^{-1}+4x^{-4}).

See Solution

Problem 26620

Find the integrals: (a) tan2x dx\int \tan ^{2} x \mathrm{~d} x, (b) 1x3lnx dx\int \frac{1}{x^{3}} \ln x \mathrm{~d} x, (c) show e3x1+ex dx=12e2xex+ln(1+ex)+k\int \frac{\mathrm{e}^{3 x}}{1+\mathrm{e}^{x}} \mathrm{~d} x=\frac{1}{2} \mathrm{e}^{2 x}-\mathrm{e}^{x}+\ln(1+\mathrm{e}^{x})+k.

See Solution

Problem 26621

Für welche Funktionen ff gilt f=ff = f'? a) f(x)=3exf(x)=-3 e^{x} b) f(x)=2ex+3f(x)=2 e^{x+3} c) f(x)=1,5ex+32ex2f(x)=1,5 e^{x+3}-2 e^{x-2} d) f(x)=2exf(x)=2 e^{-x}

See Solution

Problem 26622

Berechnen Sie f(x)f^{\prime}(x) für f(x)=6x+3xax2f(x)=\frac{6}{x}+3 \sqrt{x}-a x^{2} oder f(x)=38x4+ab2xπ2f(x)=-\frac{3}{8} x^{-4}+a b^{2} x-\pi^{2}.

See Solution

Problem 26623

Berechne die Steigung der Funktion f(x)=2x2+1f(x)=2 x^{2}+1 bei x0=3x_{0}=3 mit der h-Methode oder der Ableitungsmethode.

See Solution

Problem 26624

Bestimme die Ableitungsfunktion von f(x)=x15f(x)=x^{15}. Fasse zuerst mit Potenzgesetzen zusammen.

See Solution

Problem 26625

Berechnen Sie den Flächeninhalt AA zwischen den Funktionen f(x)=x2+2f(x)=x^{2}+2 und g(x)=x+1g(x)=x+1 im Intervall [1;2][-1 ; 2].

See Solution

Problem 26626

Find critical points of the function f(x)=x54x4+10xxf(x)=\frac{x^{5}-4 x^{4}+10 x}{x}.

See Solution

Problem 26627

Find the limit: limΔx01+Δx111Δx\lim _{\Delta x \rightarrow 0} \frac{|1+\Delta x-1|-|1-1|}{\Delta x}.

See Solution

Problem 26628

Find the limit: limΔx0f(2+Δx)f(2)Δx\lim _{\Delta x \rightarrow 0} \frac{f(2+\Delta x)-f(2)}{\Delta x} for f(x)=45xf(x)=\frac{-4}{5-x}.

See Solution

Problem 26629

Gegeben ist die Funktion f(x)=12x3+92xf(x) = -\frac{1}{2} x^{3} + \frac{9}{2} x. Finde Nullstellen, Symmetrie, Grenzverhalten und skizziere den Graphen.

See Solution

Problem 26630

Find limxc(f(x)g(x))\lim _{x \rightarrow c}(f(x) g(x)) given limxc(f(x)+g(x))=3\lim _{x \rightarrow c}(f(x)+g(x))=3 and limxc(f(x)g(x))=1\lim _{x \rightarrow c}(f(x)-g(x))=-1.

See Solution

Problem 26631

Bestimme die Ableitung von f(x)=(x3)5f(x)=(x^{-3})^{-5} und fasse sie zuerst zu einer Potenz zusammen.

See Solution

Problem 26632

If ff is odd and f(c)=3f^{\prime}(c)=3, what is f(c)f^{\prime}(-c)? A) -3 B) 13\frac{1}{3} C) 3 D) 13\frac{-1}{3}

See Solution

Problem 26633

Given the function f(x)=45xf(x) = \frac{-4}{5-x}, find its derivative and the limit as xx approaches 2.

See Solution

Problem 26634

Find the tangent gradient of y=2x3+15x284xy=2 x^{3}+15 x^{2}-84 x at x=1x=-1 and identify stationary points.

See Solution

Problem 26635

Bestimme die Tangentengleichung von f(x)=x6f(x)=x^{6} bei x0=2x_{0}=2.

See Solution

Problem 26636

Bestimme die Ableitung der Funktionen: a) f(x)=(3x2)3f(x)=(3 x-2)^{3} b) f(x)=24xf(x)=\sqrt{24-x} c) f(x)=(0,5x25x)4f(x)=(0,5 x^{2}-5 x)^{4} d) f(x)=x22xf(x)=\sqrt{x^{2}-2 x} e) f(x)=1x32f(x)=\frac{1}{x^{3}-2} f) f(x)=362x21f(x)=\frac{36}{2 x^{2}-1}

See Solution

Problem 26637

Find h(1)h^{\prime}(-1) if h(x)=f(x)+3g(x)h(x)=f(x)+3g(x), given f(1)=2g(1)f^{\prime}(-1)=2g^{\prime}(-1) and limx1f(x)f(1)x+1=6\lim_{x \to 1} \frac{f(x)-f(-1)}{x+1}=-6. Options: A) -15 B) -2 C) -18 D) 0

See Solution

Problem 26638

Untersuchen Sie die Funktion f(x)=x31f(x)=x^{3}-1: a) Zeichnen Sie f(x)f(x) für 2x2-2 \leq x \leq 2. b) Bestimmen Sie die Steigung bei x=2x=2. c) Geben Sie die Ableitung an. d) Berechnen Sie die Tangentengleichung bei x=2x=2 und diskutieren Sie den Anstieg.

See Solution

Problem 26639

Find the limit: limΔx0f(2+Δx)f(2)Δx\lim _{\Delta x \rightarrow 0} \frac{f(2+\Delta x)-f(2)}{\Delta x} for f(x)=45xf(x)=\frac{-4}{5-x}.

See Solution

Problem 26640

Determine the truth about f(x)=x+2x+2f(x)=\frac{|x+2|}{x+2} at x=2x=-2: A) vertical asymptote B) differentiable C) continuous D) discontinuous.

See Solution

Problem 26641

Berechne das Integral 362xdx\int_{3}^{6} 2 x \, dx und finde den Wert.

See Solution

Problem 26642

Find the limit: limx(2x2+13x2+1)xx2\lim _{x \rightarrow \infty}\left(\frac{2 x^{2}+1}{3 x^{2}+1}\right)^{x-x^{2}}.

See Solution

Problem 26643

Finde die Stammfunktion von f(x)=6x+7f(x)=-6x+7.

See Solution

Problem 26644

Finde eine Stammfunktion von f(x)=23x2f(x)=\frac{2}{3} x^{2}.

See Solution

Problem 26645

Calculate the integral 152x2dx\int_{-1}^{5} 2x^{2} \, dx using the evaluation [23x3]15\left[\frac{2}{3}x^{3}\right]_{-1}^{5}.

See Solution

Problem 26646

Bestimmen Sie die Tangente an den Graphen von ff in P0(x0f(x0))P_{0}(x_{0} \mid f(x_{0})) für die folgenden Funktionen und Punkte: a) f(x)=x4,x0=0,5f(x)=x^{4}, x_{0}=0,5 b) f(x)=2x2,x0=3f(x)=2 x^{-2}, x_{0}=3 c) f(x)=2x33x2,x0=2f(x)=2 x^{3}-3 x^{-2}, x_{0}=2 d) f(x)=1xx32,x0=5f(x)=\frac{1}{x}-x^{\frac{3}{2}}, x_{0}=5

See Solution

Problem 26647

A roller coaster is launched to a height of 23 m23 \mathrm{~m} using a spring.
a. Find the spring constant if compressed to 5.0 m5.0 \mathrm{~m}.
b. Calculate speed at 5.0 m5.0 \mathrm{~m} above the launcher.
c. Determine energy lost going down and its destination.
d. What is the period of oscillation with max mass?

See Solution

Problem 26648

Evaluate the integral from 1 to 2 of the function 4sin3x32x4 \sin 3 x - \frac{3}{2 x}.

See Solution

Problem 26649

A particle moves along the xx axis. When is it moving towards the origin based on the given position and velocity data?

See Solution

Problem 26650

Calculate the area under the curve y=cos(t)y=\cos(t) from t=0t=0 to t=2πt=2\pi.

See Solution

Problem 26651

How much will you have after investing \4500at4500 at 3.8\%$ interest compounded continuously for 20 years?

See Solution

Problem 26652

A pizza pan cools from 425F425^{\circ} \mathrm{F} to 130F130^{\circ} \mathrm{F} after 55 minutes at room temperature 72F72^{\circ} \mathrm{F}. When does this happen? Also, find when it reaches 230F230^{\circ} \mathrm{F} and describe the cooling trend.

See Solution

Problem 26653

Find the elasticity function E(p)E(p) for the demand D(p)=200e0.8pD(p)=200 e^{-0.8 p} and calculate it at price \$3.

See Solution

Problem 26654

Evaluate the integral from 1 to 2 of the function 2x+42x + 4.

See Solution

Problem 26655

Find the speed of a 1.5 kg1.5 \mathrm{~kg} book dropped from 5.0m just before it hits the ground. Use mghmgh for energy.

See Solution

Problem 26656

What is the acceleration if velocity is 2 m/s at 0s and 22 m/s at 100s? Choose from: -0.4, -0.2, 0.2, 0.4 m/s².

See Solution

Problem 26657

Find the derivative of f(x)=3x8lnxf(x)=-3 x^{8} \ln x and evaluate f(e3)f^{\prime}(e^{3}).

See Solution

Problem 26658

Find the derivative f(x)f'(x) of the function f(x)=4log9(x)f(x)=4 \log_{9}(x) and evaluate f(5)f'(5).

See Solution

Problem 26659

Find the derivative of the function f(t)=3t47t+2etf(t)=3 t^{4}-7 t+2 e^{t}, denoted as f(t)f^{\prime}(t).

See Solution

Problem 26660

Find the derivative of the function f(x)=ln(x218x+86)f(x)=\ln(x^{2}-18x+86). What is f(x)f^{\prime}(x)?

See Solution

Problem 26661

Differentiate the function f(x)=e2xf(x)=e^{2 x}. Provide f(x)=f^{\prime}(x)=.

See Solution

Problem 26662

Differentiate the function G(x)=e8xG(x)=e^{-8 x} without simplifying the derivative. Find G(x)=G^{\prime}(x)=.

See Solution

Problem 26663

Find the derivative of f(x)=3e5x5f(x)=3 e^{-5 x-5}. What is f(x)=?f^{\prime}(x)=?

See Solution

Problem 26664

Differentiate the function h(x)=e5xx6h(x)=\frac{e^{-5 x}}{x^{6}} without simplifying the derivative. Find h(x)=h^{\prime}(x)=.

See Solution

Problem 26665

Find the second derivative of the functions x(t)=at3x(t) = a t^{3} and y(t)=bty(t) = b t with respect to tt.

See Solution

Problem 26666

Differentiate the function G(x)=ex7+11xG(x)=e^{x^{7}+11 x} without simplifying the derivative. Find G(x)=G^{\prime}(x)=

See Solution

Problem 26667

Differentiate the function F(x)=4ex2F(x)=-4 e^{x^{2}} without simplifying the derivative. Find F(x)=F^{\prime}(x)=.

See Solution

Problem 26668

Find the derivative of the function f(x)=(4x2+3x+5)ln(2x+3)f(x)=\left(4 x^{2}+3 x+5\right) \ln (-2 x+3).

See Solution

Problem 26669

Find the derivative of f(x)=ln(5x13x7)f(x)=\ln \left(\frac{5 x-1}{3 x-7}\right). What is f(x)f^{\prime}(x)?

See Solution

Problem 26670

Determine the intervals where the curve defined by x(t)=2t2x(t)=2-t^{2} and y(t)=t2+t3y(t)=t^{2}+t^{3} is concave up or down.

See Solution

Problem 26671

Find the horizontal asymptote, global max/min, domain, intercepts, and critical points of x+2ex\frac{x+2}{e^{x}}.

See Solution

Problem 26672

Find the derivative of the function f(x)=ln(x2+10x+31)f(x)=\ln(x^{2}+10x+31). What is f(x)f^{\prime}(x)?

See Solution

Problem 26673

How long will it take for a pie cooling from 140F140^{\circ} \mathrm{F} to reach 80F80^{\circ} \mathrm{F} using T(t)=68e0.0174t+72T(t)=68 e^{-0.0174 t}+72?

See Solution

Problem 26674

Integrate: (2x3+312x3)dx\int\left(2 x^{3}+3-\frac{1}{2 x^{3}}\right) dx

See Solution

Problem 26675

Find the derivative of the function f(x)=ln(4x27x+6)f(x)=\ln \left(\sqrt{\frac{4 x-2}{7 x+6}}\right). What is f(x)f^{\prime}(x)?

See Solution

Problem 26676

Differentiate: f(x)=ln(x5+2x4)f(x)=\ln \left(\frac{x^{5}+2}{x^{4}}\right) to find f(x)f^{\prime}(x).

See Solution

Problem 26677

Find the derivative f(x)f'(x) for the function f(x)=(lnx)4f(x)=(\ln x)^{4} and evaluate f(e2)f'(e^{2}).

See Solution

Problem 26678

Find the growth rate of infected people after 12 days using I(t)=3700e0.086tI(t)=3700 e^{0.086 t}. What are the units?

See Solution

Problem 26679

Find the growth rate of infected people after 10 days using I(t)=5200e0.087tI(t)=5200 e^{0.087 t}. What are the units?

See Solution

Problem 26680

A marketing model is given by f(t)=550+255log7(t)f(t)=550+255 \log_{7}(t). Find f(9)f^{\prime}(9) and interpret f(9)=838f(9)=838 and f(16)=8f^{\prime}(16)=8.

See Solution

Problem 26681

Find the elasticity function E(p)E(p) for the demand D(p)=200e0.8pD(p)=200 e^{-0.8 p} and calculate it at price $3\$ 3.

See Solution

Problem 26682

Find critical points for f(x)=x3x29x+9f(x)=x^{3}-x^{2}-9x+9:
1. Identify local minima/maxima.
2. Find zeros of f(x)f(x).

Explain differences between zeros of f(x)f(x) and its derivative.

See Solution

Problem 26683

Find local extrema and zeros of the function f(x)=x3x29x+9f(x)=x^{3}-x^{2}-9x+9. Explain critical points and the difference between zeros of ff and its derivative.

See Solution

Problem 26684

Bestimme die Ableitungen für: a) f(x)=12sin(x)f(x)=12 \cdot \sin (x), b) f(x)=2cos(x)f(x)=-2 \cdot \cos (x), c) f(x)=5cos(x)f(x)=\sqrt{5} \cdot \cos (x), d) f(x)=1πsin(x)f(x)=\frac{1}{\pi} \cdot \sin (x), e) f(x)=5x3sin(x)f(x)=5 x^{3}-\sin (x), f) f(x)=2cos(x)sin(x)f(x)=2 \cos (x)-\sin (x).

See Solution

Problem 26685

An airplane flies at 600mph600 \mathrm{mph} at 7 miles altitude. Find the distance change rate from observer when x=5x=5 miles.

See Solution

Problem 26686

Find the critical number of the function f(x)=(3x+9)e2xf(x)=(3 x+9) e^{2 x}.
x= x=

See Solution

Problem 26687

A cylinder's radius decreases at 7 ft/s with a volume of 72 ft³. When height is 2 ft, find the height's rate of change. Use V=πr2hV=\pi r^{2} h. Round to three decimal places.

See Solution

Problem 26688

Find the critical numbers AA and BB for the function f(x)=x2e14xf(x)=x^{2} e^{14 x} over the intervals (,A](-\infty, A], [A,B][A, B], and [B,)[B, \infty).

See Solution

Problem 26689

Invest \$16,000 at 7.2\% interest. Find: A) Future value after 29 years. B) Rate of change at 6 years. C) Time for \$4,690.31 change. D) Average change from year 29 to 32.

See Solution

Problem 26690

Find the revenue function R(x)=30e0.03xxR(x)=30 e^{-0.03 x} \cdot x. Determine the units sold and price for maximum revenue.

See Solution

Problem 26691

Find dydt\frac{d y}{d t} for y=x32xy=x^{3}-2x at x=2x=2 and dxdt=4\frac{d x}{d t}=4.

See Solution

Problem 26692

Evaluate the limit: limx3x29x+3\lim _{x \rightarrow-3} \frac{x^{2}-9}{x+3}

See Solution

Problem 26693

Find the derivative of the function f(t)=7t47t+7etf(t)=7 t^{4}-7 t+7 e^{t}. What is f(t)f^{\prime}(t)?

See Solution

Problem 26694

Find the tangent line y=mx+by=m x+b to f(x)=4x+1017exf(x)=4 x+10-17 e^{x} at (0,7)(0,-7); determine mm and bb.

See Solution

Problem 26695

Find the radius and interval of convergence for the series n=2x2nn(lnn)2\sum_{n=2}^{\infty} \frac{x^{2 n}}{n(\ln n)^{2}}.

See Solution

Problem 26696

Find the derivative f(x)f'(x) of f(x)=4ln(3+x)f(x)=4 \ln(3+x) and calculate f(1)f'(1).

See Solution

Problem 26697

Find the derivative of the function f(x)=7ex6f(x)=7 e^{x-6}. What is dfdx\frac{d f}{d x}?

See Solution

Problem 26698

Find the absolute maximum and minimum of f(x)=3x26x+3f(x)=3 x^{2}-6 x+3 on the interval 0x90 \leq x \leq 9.

See Solution

Problem 26699

Find the derivative using the product rule of (8x62x4)(4ex9)(-8 x^{6}-2 x^{4})(4 e^{\wedge} x-9).

See Solution

Problem 26700

Find the limit: limh02csc(7π4+h)2csc(7π4)h\lim _{h \rightarrow 0} \frac{2 \csc \left(\frac{7 \pi}{4}+h\right)-2 \csc \left(\frac{7 \pi}{4}\right)}{h}

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord