Calculus

Problem 29501

함수 f(x)f(x)limx1{(x2+1)f(x)}=6\lim _{x \rightarrow 1}\{(x^{2}+1) f(x)\}=6 일 때, limx1{(x+4)f(x)}\lim _{x \rightarrow 1}\{(x+4) f(x)\} 값을 구하시오.

See Solution

Problem 29502

함수 f(x)={2(x<0)2x(2x)(0x<1)1x(x1)f(x)=\left\{\begin{array}{cl} 2 & (x<0) \\ 2 x(2-x) & (0 \leq x<1) \\ 1-x & (x \geq 1) \end{array}\right. 에서 limx0f(x)+limx1f(x)\lim _{x \rightarrow 0^{-}} f(x)+\lim _{x \rightarrow 1-} f(x) 의 값을 구하시오.

See Solution

Problem 29503

함수 f(x)f(x)에 대해 limx1f(x)2x1=3\lim _{x \rightarrow 1} \frac{f(x)-2}{x-1}=3일 때, limx1{f(x)}22f(x)x2f(x)f(x)\lim _{x \rightarrow 1} \frac{\{f(x)\}^{2}-2 f(x)}{x^{2} f(x)-f(x)}의 값을 구하세요. (f(x)0f(x) \neq 0)

See Solution

Problem 29504

limx03x2+4f(x)2x2f(x)\lim _{x \rightarrow 0} \frac{3 x^{2}+4 f(x)}{2 x^{2}-f(x)}의 값을 구하라, 단 limx0f(x)x=2\lim _{x \rightarrow 0} \frac{f(x)}{x}=2.

See Solution

Problem 29505

두 함수 f(x),g(x)f(x), g(x)의 극한을 이용해 가장 작은 값을 찾으세요: (1) limx5{2f(x)+3}\lim _{x \rightarrow 5}\{2 f(x)+3\}, (2) limx5{3f(x)4g(x)}\lim _{x \rightarrow 5}\{3 f(x)-4 g(x)\}, (3) limx5{5f(x)g(x)}\lim _{x \rightarrow 5}\{5 f(x) g(x)\}, (4) limx56f(x)g(x)\lim _{x \rightarrow 5} \frac{6 f(x)}{g(x)}, (5) limx53f(x)2g(x)4g(x)\lim _{x \rightarrow 5} \frac{3 f(x)-2 g(x)}{4 g(x)}.

See Solution

Problem 29506

두 함수 f(x),g(x)f(x), g(x)가 주어진 조건을 만족할 때, limx15f(x)+2x{g(x)}2\lim _{x \rightarrow-1} \frac{5 f(x)+2 x}{\{g(x)\}^{2}}의 값을 구하시오.

See Solution

Problem 29507

Find the average rate of change of f(x)=3x2+4f(x)=-3x^{2}+4 between x=4x=4 and x=7x=7. Simplify your answer.

See Solution

Problem 29508

Verify the Mean Value Theorem for f(x)={3x2 if x12x if x>1f(x)=\left\{\begin{array}{ll}3-x^{2} & \text { if } x \leq 1 \\ \frac{2}{x} & \text { if } x>1\end{array}\right. on [0,2][0,2] and find values of cc.

See Solution

Problem 29509

Calculate the indefinite integral: x(3x4)2dx\int \sqrt{x}(3 x-4)^{2} \, dx

See Solution

Problem 29510

Find 27[3f(x)9]dx\int_{-2}^{7}[3 f(x)-9] d x given that 27f(x)dx=12\int_{-2}^{7} f(x) d x=-12.

See Solution

Problem 29511

Solve the equation y=5sinx5x4+12e4xy' = 5 \sin x - 5 x^4 + 12 e^{-4x} with the initial condition y(0)=12y(0) = 12.

See Solution

Problem 29512

Calculate the area between the curves f(x)=x2+2xf(x)=x^{2}+2x and g(x)=x+4g(x)=-x+4 from x=4x=-4 to x=2x=2.

See Solution

Problem 29513

Calculate the average value of f(x)=4cos3xsinxf(x)=4 \cos ^{3} x \sin x on [0,2π3][0, \frac{2 \pi}{3}]. Options: a.) 5π8\frac{5 \pi}{8} b.) 45π32\frac{45 \pi}{32} c.) 4532π\frac{45}{32 \pi} d.) 1516\frac{15}{16}

See Solution

Problem 29514

Find the average value and cc from the mean value theorem for f(x)=cosxf(x)=\cos x on [0,π6][0, \frac{\pi}{6}].

See Solution

Problem 29515

Find the definite integral: 13x(2x5)4dx\int_{1}^{3} x(2 x-5)^{4} d x. Choose the correct answer: a.) 24, b.) 923\frac{92}{3}, c.) 2743-\frac{274}{3}, d.) 923-\frac{92}{3}.

See Solution

Problem 29516

Estimate 352x2+4dx\int_{3}^{5} \frac{2}{x^{2}+4} dx using n=4n=4 with Simpson's rule. Round to five decimal places.

See Solution

Problem 29517

Create a second-order ODE with y(x)y(x), find y(x)y'(x) and y(x)y''(x), then verify a solution yC(x)=y(x)+Cy_C(x)=y(x)+C. For what CC does yC(x0)=ky_C(x_0)=k? Provide an IVP example and another ODE to verify.

See Solution

Problem 29518

Find all δ\delta values that satisfy limx25x+4=14\lim _{x \rightarrow 2} 5 x+4=14 with ε=0.5\varepsilon=0.5. Options: δ=0.0333\delta=0.0333, δ=0.01\delta=0.01, δ=0.1\delta=0.1, δ=0.2\delta=0.2.

See Solution

Problem 29519

Find dydx\frac{d y}{d x} for the equation 3x2y45cos(3x)=y5+23 x^{2} y^{4}-5 \cos (3 x)=y^{5}+2.

See Solution

Problem 29520

Find all values of xx where the function f(x)f(x) is not differentiable, given points at (1,2)(1,2), (1,4)(1,4), and a sharp point at (4,3)(-4,3).

See Solution

Problem 29521

Find the derivative of y=x9x2+135x3+27y=\frac{x^{9} \sqrt[5]{x^{2}+13}}{x^{3}+27} using logarithmic differentiation.

See Solution

Problem 29522

Is there an xx in [0,4][0,4] such that f(x)=0f(x)=0 given f(0)=10f(0)=-10 and f(4)=10f(4)=10? Choose: Always true, Always false, Sometimes true.

See Solution

Problem 29523

Find the derivative of y=(log7(4x2+25))3y=\left(\log _{7}\left(4 x^{2}+25\right)\right)^{3}.

See Solution

Problem 29524

Solve the equation xndydx=xmyx^{n} \frac{d y}{d x}=x^{m} y: (a) Find a trivial solution. (b) Find all solutions y=y(x)y=y(x). (c) Is there a unique solution for y(x0)=y0y(x_0)=y_0?

See Solution

Problem 29525

Find the average velocity of the object with position s(t)=5lnts(t)=5 \ln t over the interval [1.5,1.7][1.5,1.7]. Round to 4 decimal places.

See Solution

Problem 29526

Find the derivative of y=tan(34x+1)y=\tan(3^{4x}+1). What is dydx\frac{dy}{dx}?

See Solution

Problem 29527

Find the rate of change of bacteria A(t)=16e0.32tA(t)=16 e^{0.32 t} after 12 hours. Choices: 24,619.97, 744.41, 84.61, 238.21.

See Solution

Problem 29528

Find the limit: limxx5x2x32x\lim _{x \rightarrow-\infty} \frac{x^{5}-x^{2}}{x^{3}-2 x}.

See Solution

Problem 29529

Solve the equation 1xndydx=ym\frac{1}{x^{n}} \frac{d y}{d x}=y^{m} for y=y(x)y=y(x). Discuss trivial/extraneous solutions and FTOC usage. Is the solution unique for y(x0)=y0y(x_0)=y_0?

See Solution

Problem 29530

Find limx1+f(x)\lim _{x \rightarrow-1^{+}} f(x) for the piecewise function f(x)f(x) defined as: f(x)=2+2x2f(x) = -2 + 2x^{2} for x1x \leq -1 and f(x)=1+xf(x) = -1 + x for x>1x > -1.

See Solution

Problem 29531

Find limx3+f(x)\lim _{x \rightarrow-3^{+}} f(x) for the piecewise function f(x)f(x) defined as: f(x)=x28f(x)=x^{2}-8 for x3x \geq-3 and f(x)=5x10f(x)=-5x-10 for x<3x<-3.

See Solution

Problem 29532

Find the derivative of f(x)=ln(x62x57)f(x)=\ln \left(\frac{x^{6}}{2 x^{5}-7}\right).

See Solution

Problem 29533

Estimate the instantaneous velocity of s(t)=5lnts(t)=5 \ln t at t=1.5t=1.5. Consider the average velocity on [1.5,1.7][1.5,1.7].

See Solution

Problem 29534

(a) Create an IVP with a unique solution per the Existence and Uniqueness Theorem and verify it. What do you conclude? (b) Create an IVP without a guaranteed unique solution and demonstrate this. What can you conclude? (c) Can an IVP have a solution despite the Existence and Uniqueness Theorem not guaranteeing it? Provide an example and verify.

See Solution

Problem 29535

Find the derivative of f(x)=15sinx+11x4+3x75f(x)=-15 \sin x+\frac{11}{x^{4}}+3 \sqrt[7]{x}-5.

See Solution

Problem 29536

Find limx2f(x)\lim _{x \rightarrow-2} f(x) for the piecewise function f(x)={2x2+3 if x<2,2x+8 if x2}f(x) = \{-2 x^{2}+3 \text{ if } x<-2, 2 x+8 \text{ if } x \geq-2\}.

See Solution

Problem 29537

Find limx4f(x)\lim _{x \rightarrow 4} f(x) for the piecewise function f(x)={x210 if x<4,9+2x if x>4}f(x) = \{ x^{2}-10 \text{ if } x<4, -9+2x \text{ if } x>4 \}.

See Solution

Problem 29538

Estimate the max error in the volume of a sphere with radius error of 0.5in0.5 \mathrm{in} using V(r)=43πr3V(r)=\frac{4}{3} \pi r^{3}.

See Solution

Problem 29539

Estimate the derivative of f(x)=12x3f(x)=\frac{1}{2} x^{3} at x=2x=-2. Choose from: 6-6, 16\frac{1}{6}, 16-\frac{1}{6}, 6.

See Solution

Problem 29540

Is the function f(x)=x3f(x)=\sqrt[3]{x} differentiable at x=27x=-27? If not, explain why.

See Solution

Problem 29541

Find the derivative of y=arctan(5x21)y=\arctan(5x^2-1). What is dydx\frac{dy}{dx}?

See Solution

Problem 29542

Find the derivative of y=sin(3x24x+1)y=\sin(3x^2-4x+1). What is dydx\frac{dy}{dx}?

See Solution

Problem 29543

Find the linear approximation of f(x)=x5f(x)=\sqrt[5]{x} at x=1x=-1. Which formula represents L(x)L(x)?

See Solution

Problem 29544

Find the tangent line equation for f(x)=1x5f(x)=\frac{1}{x^{5}} at x=1x=1. Options: y=15x+45y=\frac{1}{5} x+\frac{4}{5}, y=5x4y=-5 x-4, y=5x+6y=-5 x+6, y=5x4y=5 x-4.

See Solution

Problem 29545

Find the error in the linear approximation of f(x)=x3f(x)=\sqrt[3]{x} near x=1x=-1 for estimating 0.753\sqrt[3]{-0.75}.

See Solution

Problem 29546

Determine if the function f(x)f(x) is continuous at x=3x=-3:
f(x)={143x2,x>313x,x<3 f(x)=\left\{\begin{array}{ll} 14-3 x^{2}, & x>-3 \\ -13-x, & x<-3 \end{array}\right.

See Solution

Problem 29547

A cube's edges grow at 6.2 cm/s. Find the volume change rate when edges are 10 cm. Options: 5580cm3sec5580 \frac{\mathrm{cm}^{3}}{\mathrm{sec}}, 2700cm3sec2700 \frac{\mathrm{cm}^{3}}{\mathrm{sec}}, 300cm3sec300 \frac{\mathrm{cm}^{3}}{\mathrm{sec}}, 1860gm3sec1860 \frac{g m^{3}}{s e c}.

See Solution

Problem 29548

Find the derivative of y=e5xcos(3x)y=e^{5 x} \cos (3 x). What is dydx\frac{d y}{d x}?

See Solution

Problem 29549

Check if the function f(x)f(x) is continuous at x=2x=-2, where f(x)={9x2,x<23x,x2f(x)=\begin{cases} 9-x^{2}, & x<-2 \\ 3-x, & x \geq-2 \end{cases}.

See Solution

Problem 29550

Find the derivative of f(x)=x6643f(x)=\sqrt[3]{x^{6}-64}. What is f(x)f'(x)?

See Solution

Problem 29551

Find the derivative of f(x)=12sinx+x7cosxf(x)=-12 \sin x+x^{7} \cos x.

See Solution

Problem 29552

Use Newton's method to solve x33x+65=0-x^{3}-3x+65=0 and find the third iteration value. Verify your answer.

See Solution

Problem 29553

Check if the function f(x)f(x) is continuous at x=3x=3, where f(x)=5+x2f(x)=5+x^{2} for x<3x<3 and f(x)=5+3xf(x)=5+3x for x>3x>3.

See Solution

Problem 29554

Find the area between f(x)=cosxf(x)=\cos x and g(x)=2cosxg(x)=2-\cos x from x=0x=0 to x=2πx=2\pi.

See Solution

Problem 29555

Find the limit as yy approaches π2\frac{\pi}{2} for the expression sinycosy1\frac{\sin y}{\cos y - 1}.

See Solution

Problem 29556

Evaluate the limit: limxx6+4x5x+x3\lim _{x \rightarrow \infty} \frac{\sqrt{x^{6}+4 x}}{5 x+x^{3}} and determine if it equals \infty, -\infty, or a specific value.

See Solution

Problem 29557

Calculate the area between the xx-axis and f(x)=x2+4f(x)=-x^{2}+4 from x=1x=-1 to x=3x=3. Options: 343\frac{34}{3}, 283\frac{28}{3}, 293\frac{29}{3}, 203\frac{20}{3}.

See Solution

Problem 29558

Calculate the indefinite integral: (6cscxcotx25x4)dx\int(6 \csc x \cot x - \frac{25}{x^{4}}) \, dx.

See Solution

Problem 29559

Find the total area between f(x)=3x3x210xf(x)=3x^{3}-x^{2}-10x and g(x)=x2+2xg(x)=-x^{2}+2x. Options: 24, 32, 12, or 8 units².

See Solution

Problem 29560

Evaluate the integral 03π415tan9xsec2xdx\int_{0}^{\frac{3 \pi}{4}} 15 \tan ^{9} x \sec ^{2} x \, dx. What is its value?

See Solution

Problem 29561

Find the limit: limxx34+x2\lim _{x \rightarrow-\infty} \frac{x^{3}}{4+x^{2}}.

See Solution

Problem 29562

Evaluate the integral: 03π415tan9xsec2xdx\int_{0}^{\frac{3 \pi}{4}} 15 \tan ^{9} x \sec ^{2} x d x. What is its value?

See Solution

Problem 29563

Determine if the limit is \infty, -\infty, or a specific value: limx(1+x6x5)\lim _{x \rightarrow-\infty}\left(1+x-6 x^{5}\right)

See Solution

Problem 29564

Determine if the limit limx9x6+9x543x3\lim _{x \rightarrow-\infty} \frac{\sqrt{9 x^{6}+9 x^{5}}}{4-3 x^{3}} equals \infty, -\infty, or a specific value.

See Solution

Problem 29565

Find the limit as xx approaches -\infty: limx4x24x6x2+5x3\lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}-4 x}}{6 x^{2}+5 x^{3}}.

See Solution

Problem 29566

Find the limit: limx2xex42x\lim _{x \rightarrow \infty} \frac{2 x-e^{x}}{4-2 x}; is it \infty, -\infty, or a specific value?

See Solution

Problem 29567

Find the average value and values of cc from the mean value theorem for f(x)=3x2+2xf(x)=3x^{2}+2x on [0,2][0,2].

See Solution

Problem 29568

Approximate the area between f(x)=x2+1f(x)=x^{2}+1 and the xx-axis on [1,4][1,4] using a Riemann sum with 6 rectangles.

See Solution

Problem 29569

Find the limit: limx2xex42x\lim _{x \rightarrow \infty} \frac{2 x-e^{x}}{4-2 x} and determine if it's \infty, -\infty, or a specific value.

See Solution

Problem 29570

Determine the limit as xx approaches -\infty for 9x6+9x3x22x3\frac{\sqrt{9 x^{6}+9 x^{3}}}{x^{2}-2 x^{3}}. Is it \infty, -\infty, or a specific value?

See Solution

Problem 29571

Approximate the area between y=14x2+9y=-\frac{1}{4} x^{2}+9, the xx-axis, x=4x=-4, and x=0x=0 using rectangles.

See Solution

Problem 29572

Calculate the average value of f(x)=e2x+3f(x)=e^{2 x}+3 on [0,ln3][0, \ln 3].

See Solution

Problem 29573

Calculate the indefinite integral: 12x915x5+27x43x5dx\int \frac{12 x^{9}-15 x^{5}+27 x^{4}}{3 x^{5}} d x.

See Solution

Problem 29574

Find the derivative of the functions f(x)=1x2f(x) = 1 - x^{2} and f(x)=2x2+1f(x) = 2x^{2} + 1 using f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.

See Solution

Problem 29575

Find 56[f(x)+8]dx\int_{-5}^{6}[-f(x)+8] d x given 56f(x)dx=15\int_{-5}^{6} f(x) d x=-15.

See Solution

Problem 29576

Evaluate the integral: cosxsin7xdx\int \cos x \sin ^{7} x \, dx. Choose the correct answer from the options provided.

See Solution

Problem 29577

Find the limit: limx(2x3)3(x+1)3\lim _{x \rightarrow-\infty}(2 x-3)^{3}(x+1)^{3}.

See Solution

Problem 29578

Find the derivative F(x)F'(x) of the function F(x)=1xt2+16dtF(x)=\int_{-1}^{x} \sqrt{t^{2}+16} dt.

See Solution

Problem 29579

Evaluate the integral: (x2θx+9x6)dx\int\left(\sqrt{x}-2 \theta^{x}+9 x^{6}\right) d x. What is the result?

See Solution

Problem 29580

Determine if the limit limx3x343x3ex\lim _{x \rightarrow-\infty} \frac{3 x^{3}-4}{3 x^{3}-e^{x}} equals \infty, -\infty, or a specific value.

See Solution

Problem 29581

Find the limit: limx9x6+9x3x22x3\lim _{x \rightarrow-\infty} \frac{\sqrt{9 x^{6}+9 x^{3}}}{x^{2}-2 x^{3}}. Is it \infty, -\infty, or a specific value?

See Solution

Problem 29582

Find the derivative f(x)f^{\prime}(x) using the definition for f(x)=3x24x+5f(x)=3 x^{2}-4 x+5.

See Solution

Problem 29583

Evaluate the integral 0π28tan2(7x)dx\int_{0}^{\frac{\pi}{28}} \tan ^{2}(7 x) d x and choose the correct answer from the options.

See Solution

Problem 29584

Find the limit: limnlog2(n2)log10(n10)\lim _{n \rightarrow \infty} \frac{\log _{2}\left(n^{2}\right)}{\log _{10}\left(n^{10}\right)}.

See Solution

Problem 29585

Find the limit: limnn523n32n\lim _{n \rightarrow \infty} \frac{n^{5} \cdot 2^{3 n}}{3^{2 n}}.

See Solution

Problem 29586

Find f(a)f(a), f(a+h)f(a+h), and f(a+h)f(a)h\frac{f(a+h)-f(a)}{h} for f(x)=2+3x2f(x)=-2+3x^{2}.

See Solution

Problem 29587

Solve these integrals and show your work: 1.) (2x+7)dxx2+7x+6\int \frac{(2 x+7) d x}{x^{2}+7 x+6} 2.) xdxx29\int \frac{x d x}{\sqrt{x^{2}-9}} 3.) tan52xsec22xdx\int \tan ^{5} 2 x \sec ^{2} 2 x d x 4.) ln2xxdx\int \frac{\ln 2 x}{x} d x

See Solution

Problem 29588

Determine if the series 60+(54.0)+(48.6)+(43.7)+-60 + (-54.0) + (-48.6) + (-43.7) + \ldots is convergent/divergent and if it has a sum.

See Solution

Problem 29589

Evaluate the integral excos2xdx\int e^{-x} \cos 2 x d x using Integration by Parts. Which statements are true?

See Solution

Problem 29590

Solve these integrals and highlight your final answers:
1. 3y2ydy\int 3^{y} 2^{y} d y
2. dx1sinx\int \frac{d x}{1-\sin x}
3. (sinx+cosx)2dx\int(\sin x+\cos x)^{2} d x
4. (exex)dx\int\left(e^{x}-e^{-x}\right) d x

See Solution

Problem 29591

MULTIPLE CHOICE. Answer with the LETTER before the number.
1. Is 713x\mathbf{7}^{\mathbf{1 - 3 x}} an algebraic function? A. TRUE B. FALSE
2. Which method solves sinxcosxdx\int \sin x \cos x d x? A. F4F_{4} B. F8F_{8} C. F4F_{4} and F8F_{8} D. F4,F8F_{4}, F_{8}, and F9F_{9}
3. For dyy2y2+16\int \frac{d y}{y^{2} \sqrt{y^{2}+16}}, which substitution? A. y=16tanθy=16 \tan \theta B. y=4tanθy=4 \tan \theta C. y=4sinθy=4 \sin \theta D. y=4cosθy=4 \cos \theta
4. What is dyd y? A. dy=16sec2θdθd y=16 \sec ^{2} \theta d \theta B. dy=16secθdθd y=16 \sec \theta d \theta C. dy=4cosθdθd y=4 \cos \theta d \theta D. dy=4sec2θdθd y=4 \sec ^{2} \theta d \theta
5. Evaluate dyy2y2+16\int \frac{d y}{y^{2} \sqrt{y^{2}+16}}. A. y2+16y+C\frac{\sqrt{y^{2}+16}}{y}+C B. y2+16y2+C\frac{\sqrt{y^{2}+16}}{y^{2}}+C C. y2+1616y+C-\frac{\sqrt{y^{2}+16}}{16 y}+C D. y2+1616y+C\frac{\sqrt{y^{2}+16}}{16 y}+C

See Solution

Problem 29592

Evaluate the following integrals and choose the correct answer:
8. 24dzz\int_{2}^{4} \frac{d z}{z}: A.) ln12\ln \frac{1}{2} B.) ln2\ln 2 C.) ln2-\ln 2 D.) 0
9. 0π2sin5xcosxdx\int_{0}^{\frac{\pi}{2}} \sin ^{5} x \cos x d x: A.) 9.55 B.) 16\frac{1}{6} C.) 6 D.) cannot be determined
10. 0ln4dxex+2\int_{0}^{\ln 4} \frac{d x}{e^{x}+2}: A.) 12\frac{1}{2} B.) ln2\ln \sqrt{2} C.) ln2\ln 2 D.) ln32\ln \frac{3}{2}
11. π4π3sec2θtanθdθ\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sec ^{2} \theta}{\tan \theta} d \theta: A.) ln3\ln 3 B.) ln2\ln 2 C.) ln3\ln \sqrt{3} D.) ln13\ln \frac{1}{\sqrt{3}}
12. 12x3+8x+2dx\int_{1}^{2} \frac{x^{3}+8}{x+2} d x: A.) 103\frac{10}{3} B.) 310\frac{3}{10} C.) 203\frac{20}{3} D.) 3
13. 21(x24)5xdx\int_{2}^{1}\left(x^{2}-4\right)^{5} x d x: A.) 4243\frac{4}{243} B.) 4243-\frac{4}{243} C.) 2434\frac{243}{4} D.) 2434-\frac{243}{4}
14. 012(x1)dxx22x+5\int_{0}^{1} \frac{2(x-1) d x}{x^{2}-2 x+5}: A.) ln4\ln 4 B.) ln5\ln 5 C.) ln54\ln \frac{5}{4} D.) ln45\ln \frac{4}{5}
15. Area bounded by x+y=4,x=0,y=0x+y=4, x=0, y=0 is sq. units: A.) 4 B.) 6 C.) 8 D.) 16

See Solution

Problem 29593

Evaluate these integrals and choose the correct answer:
8. 01exdx\int_{0}^{1} e^{x} d x A.) ee B.) e1e-1 C.) e2e^{2} D.) 1e1-e
9. 01(sec23xtan23x)dx\int_{0}^{1}(\sec ^{2} 3 x-\tan ^{2} 3 x) d x A. 1 B. 3 C.) 3x3 x D.) -1
10. 34dx25x2\int_{3}^{4} \frac{d x}{25-x^{2}} A.) 12ln35\frac{1}{2} \ln \frac{3}{5} B.) 13ln25\frac{1}{3} \ln \frac{2}{5} C.) 15ln32\frac{1}{5} \ln \frac{3}{2} D.) 15ln23\frac{1}{5} \ln \frac{2}{3}
11. 0π4tanxdx\int_{0}^{\frac{\pi}{4}} \tan x d x A.) ln2\ln \sqrt{2} B.) ln22\ln \frac{\sqrt{2}}{2} C.) ln2\ln 2 D.) ln22\ln \frac{2}{\sqrt{2}}
12. 0π2sin2xdx\int_{0}^{\frac{\pi}{2}} \sin 2 x d x A.) 0 B.) 1 C.) -1 D.) 2
13. 0πcos2xdx\int_{0}^{\pi} \cos ^{2} x d x A.) π\pi B.) 2π2 \pi C.) π2\frac{\pi}{2} D.) π2-\frac{\pi}{2}
14. 01xexdx\int_{0}^{1} x e^{x} d x A.) 1 B.) 2e2 e C.) ee D.) e1e-1
15. 042dxx2+16\int_{0}^{4} \frac{2 d x}{x^{2}+16} A.) π4\frac{\pi}{4} B.) π12\frac{\pi}{12} C.) π8\frac{\pi}{8} D.) π3\frac{\pi}{3}

See Solution

Problem 29594

1. What is the indefinite integral? A.) specific value B.) particular integral only C.) particular integral + constant D.) integrand + differential. Evaluate ln4ln11exex+5dx\int_{\ln 4}^{\ln 11} \frac{e^{x}}{\sqrt{e^{x}+5}} d x.
2. Which formula finds the antiderivative? A.) F4F_{4} B.) F5F_{5} C.) F6F_{6} D.) F7F_{7}.
3. What is the particular integral? A.) ex+5\sqrt{e^{x}+5} B.) 12ex+5\frac{1}{2} \sqrt{e^{x}+5} C.) 2ex+52 \sqrt{e^{x}+5} D.) 23ex+5\frac{2}{3} \sqrt{e^{x}+5}.
4. What is the value of the integral? A.) 2 B.) 4 C.) ln114\ln \frac{11}{4} D.) e2+5e^{2}+5.
5. Is 8x22x2x3dx\int \frac{8 x-2}{2 x^{2}-x-3} d x a proper rational fraction? A.) TRUE B.) FALSE.
6. Which formula can be used for the antiderivative? A.) F4F_{4} B.) F5F_{5} C.) F6F_{6} D.) F7F_{7}.
7. Find 8x22x2x3dx\int \frac{8 x-2}{2 x^{2}-x-3} d x. A.) ln4x12x2x3+C\ln \frac{4 x-1}{2 x^{2}-x-3}+C B.) ln2x2x3+C\ln \left|2 x^{2}-x-3\right|+C C.) ln(2x2x3)2+C\ln \left(2 x^{2}-x-3\right)^{2}+C D.) ln2(4x1)+C\ln 2(4 x-1)+C.

See Solution

Problem 29595

Find h(4)h^{\prime}(4) for h(x)=f(x)g(x)h(x)=f(x) \cdot g(x), h(x)=f(x)g(x)h(x)=\frac{f(x)}{g(x)}, and h(x)=f(g(x))h(x)=f(g(x)).

See Solution

Problem 29596

Find F(a)F^{\prime}(a) and G(a)G^{\prime}(a) for F(x)=f(x6)F(x)=f\left(x^{6}\right) and G(x)=(f(x))6G(x)=(f(x))^{6}, given a5=13a^{5}=13, f(a)=2f(a)=2, f(a)=12f^{\prime}(a)=12, f(a6)=11f^{\prime}\left(a^{6}\right)=11.

See Solution

Problem 29597

Find tt. Given y=e5x4y=e^{5 x^{4}}, determine dydx=axnebx4\frac{d y}{d x}=a x^{n} e^{b x^{4}}.

See Solution

Problem 29598

Find the derivative of the function fa(x)=(xa)10x2f_{a}(x) = (-x-a) \cdot \frac{10}{x^{2}}.

See Solution

Problem 29599

Find the derivative of esin(x)e^{\sin (x)} and show it equals esin(x)cosn(x)e^{\sin (x)} \cos ^{n}(x).

See Solution

Problem 29600

Find the derivative of ee1xe^{\frac{e}{1-x}} with respect to xx.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord