Calculus

Problem 17101

Calculate the integral: sen3xcosxdx\int \frac{\operatorname{sen}^{3} x}{\sqrt{\cos x}} d x

See Solution

Problem 17102

When the stock price P(t)\mathrm{P}(\mathrm{t}) is at its highest, what are the signs of P(t)\mathrm{P}^{\prime}(\mathrm{t}) and P(t)\mathrm{P}^{\prime \prime}(\mathrm{t})? Explain.

See Solution

Problem 17103

Find f(x)f^{\prime}(x) for f(x)=3ex29x+4f(x)=3 e^{x^{2}-9 x+4} at x=0x=0 and where the tangent is horizontal.

See Solution

Problem 17104

Find the increase in cost from producing 0 to 900 bikes using the marginal cost function C(x)=200x3C^{\prime}(x)=200-\frac{x}{3}. Set up and evaluate the integral. The increase in cost is \$ \square (round to the nearest dollar).

See Solution

Problem 17105

Fish Population Dynamics: Given p(N)=r1+0.1Np(N)=\frac{r}{1+0.1 N}, find equilibria for Nt+1=(r1+0.1Nt)NtN_{t+1}=\left(\frac{r}{1+0.1 N_{t}}\right) N_{t} with r=2.5r=2.5. Then check stability using the derivative test.

See Solution

Problem 17106

Determine where the graph of f(x)=x12+9x2f(x) = x^{12} + 9x^{2} is concave up, concave down, and find inflection points.

See Solution

Problem 17107

Bestimmen Sie die Ableitung der folgenden Funktionen: a) f(x)=3x3+2x2f(x)=3 x^{3}+2 x^{2}, b) f(t)=t4t+1f(t)=t^{4}-t+1, c) f(x)=(3+x)(3x)f(x)=(3+x)(3-x), d) f(x)=3x32x2f(x)=3 x^{3} \cdot 2 x^{2}, e) f(x)=3x24a2f(x)=3 x^{2}-4 a^{2}, f) f(a)=3x24a2f(a)=3 x^{2}-4 a^{2}, g) f(x)=2(xa)2f(x)=2(x-a)^{2}, h) f(t)=t2(2t)2f(t)=t^{2}-(2-t)^{2}.

See Solution

Problem 17108

Find the limit: limnk=2n(1+1k)=\lim _{n \rightarrow \infty} \prod_{k=2}^{n}\left(1+\frac{1}{k}\right)=

See Solution

Problem 17109

Find f(x)f^{\prime}(x) and the tangent line at x=2x=2 for f(x)=9x2xf(x)=\frac{9 x}{2^{x}}.

See Solution

Problem 17110

Find the derivative of 5x2=sin(xy2)5 - x^{2} = \sin(x \cdot y^{2}) with respect to xx using implicit differentiation.

See Solution

Problem 17111

Find the indefinite integral: (r7)(r+7)dr\int(r-7)(r+7) \, dr (use CC for the constant).

See Solution

Problem 17112

Calculate the indefinite integral and use CC for the constant: (8z5+3z)dz\int\left(\frac{8}{z^{5}}+\frac{3}{\sqrt{z}}\right) dz

See Solution

Problem 17113

Calculate the indefinite integral: (5t23+1t23)dt\int\left(5 \sqrt[3]{t^{2}}+\frac{1}{\sqrt[3]{t^{2}}}\right) d t. Use constant CC.

See Solution

Problem 17114

Find the derivative f(x)f^{\prime}(x) of the function f(x)=9x2xf(x)=\frac{9 x}{2^{x}}.

See Solution

Problem 17115

Find f(x)f^{\prime}(x) and the tangent line at x=2x=2 for f(x)=x(1x)2f(x)=x(1-x)^{2}.

See Solution

Problem 17116

Find the derivative f(x)f^{\prime}(x) for the function f(x)=ex7x2+1f(x)=\frac{e^{x}}{7 x^{2}+1}.

See Solution

Problem 17117

Identify which of the following series statements are implied by the n\boldsymbol{n}-th term test. Select all that apply:
1. n=1(1)nn\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} converges.
2. n=0n1n+1\sum_{n=0}^{\infty} \frac{n-1}{n+1} diverges.
3. n=0e2n2+3\sum_{n=0}^{\infty} e^{-2 n^{2}+3} converges.
4. n=01n2+3n+2\sum_{n=0}^{\infty} \frac{1}{n^{2}+3 n+2} converges.
5. n=1(1)nn+13n+2\sum_{n=1}^{\infty}(-1)^{n} \frac{n+1}{3 n+2} diverges.
6. 1n\sum^{\infty} \frac{1}{n} diverges.

See Solution

Problem 17118

Find the antiderivative of dxdt=8et3\frac{d x}{d t}=8 e^{t}-3 with the condition x(0)=5x(0)=5. What is x(t)=x(t)=\square?

See Solution

Problem 17119

Find the limit: limnn2+3nn\lim _{n \rightarrow \infty} \sqrt{n^{2}+3 n}-n.

See Solution

Problem 17120

Bestimmen Sie die Ableitungen von f(x)f(x) für: a) e4xe^{-4 x}, b) ex2e^{x^{2}}, c) e2x+1e^{2 x+1}, d) exe^{-\sqrt{x}}, e) 2e0,5x2 \cdot e^{0,5 x}, f) xex3x-e^{x^{3}}, g) (1x)ex(1-x) \cdot e^{x}, h) x2exx^{2} \cdot e^{-x}.

See Solution

Problem 17121

A patient has a temperature of 104°F changing at t23tt^{2}-3t °/hr for 0t30 \leq t \leq 3.
(a) Find T(t)T(t). (b) Calculate T(2)T(2) and round to one decimal place.

See Solution

Problem 17122

Bestimmen Sie die Stammfunktion für die folgenden Funktionen: a) f(x)=14x2f(x)=\frac{1}{4} x^{-2}, b) f(x)=3x4f(x)=\frac{3}{x^{4}}, c) f(x)=0,3x10f(x)=0,3 x^{-10}, d) f(x)=0,15x6f(x)=0,15 x^{-6}, e) f(x)=5x6f(x)=\frac{-5}{x^{6}}, f) f(x)=x2+2xx5f(x)=\frac{x^{2}+2 x}{x^{5}}, g) f(x)=x(x+1)x4f(x)=\frac{x(x+1)}{x^{4}}, h) f(x)=6x221x3x7f(x)=\frac{6 x^{2}-21 x}{3 x^{7}}.

See Solution

Problem 17123

Der DAX sinkt jede Woche um 2.9%2.9\%. Nach 100 Wochen, was ist sein Wert in Dezimalform? Geben Sie das Ergebnis gerundet an!

See Solution

Problem 17124

Explain when the minimum of a function f(x,y)f(x, y) is higher than its maximum. What type of extrema is this? Provide an example and graph.

See Solution

Problem 17125

Find the derivatives of these functions:
1. f(x)=2x4+3x24x+2f(x)=-2 x^{4}+3 x^{2}-4 x+2, f(x)=14x4+38x345x2f(x)=\frac{1}{4} x^{4}+\frac{3}{8} x^{3}-\frac{4}{5} x^{2}, f(x)=x46x22.25f(x)=-x^{4}-6 x^{2}-2.25, f(x)=(x6)2(x+1)f(x)=-(x-6)^{2}(x+1), f(x)=116(x5+x31)f(x)=\frac{1}{16}(x^{5}+x^{3}-1), I(t)=0.125t41.5t23I(t)=0.125 t^{4}-1.5 t^{2}-3, f(x)=ax2+bx+c+dxf(x)=a x^{2}+b x+c+\frac{d}{x}.
2. f(x)=6ex+7f(x)=6 e^{x}+7, f(x)=12x2+4x+5exf(x)=\frac{1}{2} x^{2}+4 x+5 e^{x}, f(x)=ex(ex3)f(x)=e^{x}(e^{-x}-3).
3. f(x)=2x3sin(x)+4f(x)=2 x-3 \sin (x)+4, f(x)=4cos(x)8sin(x)f(x)=4 \cos (x)-8 \sin (x).
4. Find the instantaneous rate of change for: f(x)=1.25(cos(x)+2ex1)f(x)=1.25(\cos (x)+2 e^{x}-1), f(x)=a2(x3)+aexf(x)=\frac{a}{2}(x-3)+a e^{x}, f(u)=7sin(u)3eu+sin(0.5)+3e2f(u)=7 \sin (u)-3 e^{u}+\sin (0.5)+3 e^{2}.

See Solution

Problem 17126

Find the limit infimum: limn+((3n1)cos(nπ)n+7)=\varliminf_{n \rightarrow+\infty}\left(\frac{(3 n-1) \cos (n \pi)}{n}+7\right)=

See Solution

Problem 17127

Find the rate of change of the bacteria population, given by N(x)=121001+99e0.25xN(x)=\frac{12100}{1+99 e^{-0.25 x}}, at x=4x=4 hours. Round to the nearest integer.

See Solution

Problem 17128

Find the derivatives of these functions: a) f(x)=6ex+7f(x)=6 e^{x}+7, c) f(x)=12x2+4x+5exf(x)=\frac{1}{2} x^{2}+4 x+5 e^{x}, e) f(x)=ex(ex3)f(x)=e^{x}(e^{-x}-3).

See Solution

Problem 17129

Differentiate these functions: a) f(x)=2x3sin(x)+4f(x)=2x-3\sin(x)+4 b) f(x)=4cos(x)8sin(x)f(x)=4\cos(x)-8\sin(x)

See Solution

Problem 17130

A pyramid's volume is V=x2h3V=\frac{x^{2} h}{3}. If h=150h=150 m and x=60x=60 m, find the volume's decrease rate with dx/dt=0.004dx/dt=-0.004 m/yr.

See Solution

Problem 17131

Find the rate of change of the bacteria population, N(x)=120001+99e0.25xN(x)=\frac{12000}{1+99 e^{-0.25 x}}, at x=1x=1 hour. Round to the nearest integer.

See Solution

Problem 17132

Find the rate of change of the bacteria population at x=1x=1 hour using N(x)=120001+99e0.25xN(x)=\frac{12000}{1+99 e^{-0.25 x}}.

See Solution

Problem 17133

Find the rate of change of the bacteria population, given N(x)=130001+99e0.3xN(x)=\frac{13000}{1+99 e^{-0.3 x}}, at x=3x=3.

See Solution

Problem 17134

Berechnen Sie den Grenzwert der Reihe: limN+k=2N43k22k\lim _{N \rightarrow+\infty} \sum_{k=2}^{N} \frac{4 \cdot 3^{k}}{2^{2 k}}

See Solution

Problem 17135

What are the units and meaning of (g1)(20)\left(g^{-1}\right)^{\prime}(20) for the average daily emails g(t)g(t) in millions?

See Solution

Problem 17136

Find the derivatives of these functions:
a) f(x)=2x4+3x24x+2f(x)=-2 x^{4}+3 x^{2}-4 x+2
c) $f(x)=\frac{1}{4} x^{4}+\frac{3}{8} x^{3}-\frac{4}{5} x^{2$
e) f(x)=x46x22.25f(x)=-x^{4}-6 x^{2}-2.25
g) f(x)=(x6)2(x+1)f(x)=-(x-6)^{2}(x+1)
i) f(x)=116(x5+x31)f(x)=\frac{1}{16}(x^{5}+x^{3}-1)
k) I(t)=0.125t41.5t23I(t)=0.125 t^{4}-1.5 t^{2}-3
m) f(x)=ax2+bx+c+dxf(x)=a x^{2}+b x+c+\frac{d}{x}

See Solution

Problem 17137

Calculate 3k=11(k+1)23 \sum_{k=1}^{\infty} \frac{1}{(k+1)^{2}}.

See Solution

Problem 17138

Find the intervals where the function g(x)=7(7e2x+3)2g(x)=7(7 e^{-2 x}+3)^{2} is increasing or decreasing using g(x)g^{\prime}(x).

See Solution

Problem 17139

Find the integral of 2x+5x2+5x+7\frac{2 x+5}{\sqrt{x^{2}+5 x+7}} with respect to xx.

See Solution

Problem 17140

Design a closed rectangular crate with a square base and volume 5184ft35184 \mathrm{ft}^{3}. Minimize material cost: top/sides at \$2/ft², bottom at \$10/ft². What are the dimensions?

See Solution

Problem 17141

Find the absolute extrema of f(x)=ln(8x22x7)f(x)=\ln(8x^{2}-2x-7) on [6.4,18.9][6.4,18.9]. Round answers to two decimal places.

See Solution

Problem 17142

Find the integral of xexx e^{x} with respect to xx.

See Solution

Problem 17143

Find the integral of 1xlnx\frac{1}{x \ln x} with respect to xx.

See Solution

Problem 17144

Leite die Funktion f(x)f(x) für die folgenden Fälle ab: a) 2ex2 \cdot e^{x}, b) ex+x2e^{x}+x^{2}, c) 14ex\frac{1}{4} \cdot e^{x}, d) ex-e^{x}, e) ex+exe^{x}+e^{x}, f) 1ex1-e^{x}, g) 1,5ex-1,5 \cdot e^{x}, h) 32ex3^{2} \cdot e^{x}.

See Solution

Problem 17145

Evaluate the following limits: a. limx1(9x2)\lim _{x \rightarrow-1}(9-x^{2}) b. limx0x+202x+5\lim _{x \rightarrow 0} \sqrt{\frac{x+20}{2 x+5}} c. limx5x1\lim _{x \rightarrow 5} \sqrt{x-1}

See Solution

Problem 17146

Evaluate the following limits and explain if any do not exist: a. limx0+x4\lim _{x \rightarrow 0^{+}} x^{4} b. limx2(x24)\lim _{x \rightarrow 2^{-}}(x^{2}-4) c. limx3(x24)\lim _{x \rightarrow 3^{-}}(x^{2}-4) d. limx1+1x3\lim _{x \rightarrow 1^{+}} \frac{1}{x-3} e. limx3+1x+2\lim _{x \rightarrow 3^{+}} \frac{1}{x+2} f. limx31x3\lim _{x \rightarrow 3} \frac{1}{x-3}

See Solution

Problem 17147

Find the integral of ln(x7)dx\ln \left(x^{7}\right) d x.

See Solution

Problem 17148

Evaluate the integral 3xe3xdx\int 3x e^{3x} dx.

See Solution

Problem 17149

Find the time tt (from 6 A.M.) when the speed f(t)=20t40t+50f(t)=20t-40\sqrt{t}+50 is lowest, and determine that speed.

See Solution

Problem 17150

Find the integral of x(x2+3)54x\left(x^{2}+3\right)^{\frac{5}{4}} with respect to xx.

See Solution

Problem 17151

Evaluate the integral: ln(x3)dx\int \ln \left(x^{3}\right) d x

See Solution

Problem 17152

Find the integral of 2xe2x2 x e^{2 x} with respect to xx.

See Solution

Problem 17153

Minimize average cost for C(x)=0.2(0.01x2+120)C(x)=0.2(0.01 x^{2}+120), where xx is units produced. What is the optimal production level?

See Solution

Problem 17154

Evaluate the integral of lnxx\frac{\ln x}{x} with respect to xx: lnxxdx\int \frac{\ln x}{x} d x.

See Solution

Problem 17155

Bestimmen Sie die Ableitungen von f(x)=0,5x4+4x2x+1f(x)=-0,5 x^{4}+4 x^{2}-x+1, g(x)=0,5x4+4x2x+8g(x)=-0,5 x^{4}+4 x^{2}-x+8, h(x)=0,5x4+4x2x2h(x)=-0,5 x^{4}+4 x^{2}-x-2 und vergleichen Sie diese.

See Solution

Problem 17156

Maximize revenue: Show that if R(x)R(x) is concave down (R(x)<0R''(x)<0), then Rˉ(x)=R(x)\bar{R}(x)=R'(x) gives max average revenue.

See Solution

Problem 17157

Maximize profit for the Pulsar TV with demand p=0.05x+600p=-0.05 x+600 and cost C(x)=0.000002x30.03x2+400x+80,000C(x)=0.000002 x^{3}-0.03 x^{2}+400 x+80,000. Find optimal xx.

See Solution

Problem 17158

Die Funktion s(t)=16t3+12t2s(t)=\frac{1}{6} t^{3}+\frac{1}{2} t^{2} beschreibt die Bewegung eines Objekts. Berechne die mittlere und Momentangeschwindigkeit nach 3 Sekunden und erkläre den Unterschied.

See Solution

Problem 17159

Find the production level xx for maximum profit given P(x)=0.004x+20P^{\prime}(x)=-0.004 x+20 and fixed costs of \$16,000/month. What is the max profit?

See Solution

Problem 17160

Bestimme aa und bb für f(x)=x3+ax2+x+bf(x)=x^{3}+a x^{2}+x+b mit f(0)=2f(0)=-2 und f(1)=0f'(1)=0. Berechne dann 02f(x)dx\int_{0}^{2} f(x) d x und das Volumen VV für x1=0x_{1}=0 und x2=2x_{2}=2.

See Solution

Problem 17161

Calculate the integral from 2 to 4 of the constant function 3: 243dx\int_{2}^{4} 3 d x.

See Solution

Problem 17162

Find the integral x41x5dx\int \frac{x^{4}}{1-x^{5}} d x.

See Solution

Problem 17163

Find the derivative of f(x)=x4xf(x)=x^{4 x} using logarithmic differentiation. What is f(x)=?f^{\prime}(x)=?

See Solution

Problem 17164

Find the life expectancy function g(t)g(t) given g(t)=5.45218(1+1.09t)0.9g'(t)=\frac{5.45218}{(1+1.09 t)^{0.9}} and g(0)=50.02g(0)=50.02. What is g(100)g(100)?

See Solution

Problem 17165

Find the slope of the tangent line to 2x6+9xy8y3=17802 x^{6}+9 x y-8 y^{3}=-1780 at (1,6)(-1,6). The slope is \square.

See Solution

Problem 17166

Find the first partial derivative of f(x,y)=(7x2+3y)3f(x, y)=(7 x^{2}+3 y)^{3} with respect to xx.

See Solution

Problem 17167

Find the first partial derivative of f(x,y)=ln(3x+y2)f(x, y)=\ln \left(\sqrt{3 x+y^{2}}\right) with respect to yy.

See Solution

Problem 17168

Identify which statements about series are implied by the nn-th term test. Select all that apply.

See Solution

Problem 17169

Gegeben sind die Funktionen f(x)=0,75x31,25x21f(x)=0,75 x^{3}-1,25 x^{2}-1 und g(x)=x21g(x)=x^{2}-1. a) Zeichne die Graphen von ff und gg. b) Berechne 03(g(x)f(x))dx\int_{0}^{3}(g(x)-f(x)) d x und erkläre das Ergebnis. c) Bestimme die Bogenlänge von ff für a=0a=0 und b=3b=3 mit L=ab1+(f(x))2 dxL=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} \mathrm{~d} x.

See Solution

Problem 17170

Find the first derivative of x35x22xx\frac{x^{3}-5 x^{2}}{2 x \sqrt{x}} with respect to xx. Which option is correct?

See Solution

Problem 17171

Find the second partial derivatives fxx,fyyf_{xx}, f_{yy}, and fxyf_{xy} for the function f=ln(5x)+3xln(y)f=\ln (5 x)+3 x \ln (y).

See Solution

Problem 17172

Find the first derivative with respect to xx of the expression x35x22xx\frac{x^{3}-5 x^{2}}{2 x \sqrt{x}}.

See Solution

Problem 17173

Find the first derivative of x35x22xx\frac{x^{3}-5 x^{2}}{2 x \sqrt{x}} with respect to xx. Choose from options A-F.

See Solution

Problem 17174

What is the increase in satisfaction from consuming one more unit of good xx when x=20x=20 and y=30y=30 for U(x,y)=2lnx+lnyU(x, y)=2 \ln x+\ln y?

See Solution

Problem 17175

Find the first derivative of x35x22xx\frac{x^{3}-5 x^{2}}{2 x \sqrt{x}}.

See Solution

Problem 17176

Find the first derivative of x35x22xx\frac{x^{3}-5 x^{2}}{2 x \sqrt{x}} with respect to xx. Choose the correct option.

See Solution

Problem 17177

Encuentra la expresión de la primera derivada respecto a xx de x35x22xx\frac{x^{3}-5 x^{2}}{2 x \sqrt{x}}.

See Solution

Problem 17178

Find the first derivative of x35x22xx\frac{x^{3}-5 x^{2}}{2 x \sqrt{x}} with respect to xx. Which option is correct?

See Solution

Problem 17179

Find the infinite sum S=n=1anS=\sum_{n=1}^{\infty} a_{n} given ST=2T3T+5S_{T}=\frac{2 T-3}{T+5}. Options: 0, 1, 2, 3, 4, 5.

See Solution

Problem 17180

Find the derivative of the function f(x)=5sin1(x2)f(x)=5 \sin^{-1}(x^{2}). What is f(x)=f'(x)=\square?

See Solution

Problem 17181

Find the derivative of g(x)=ln(x5)g(x)=\ln (\sqrt[5]{x}) and set it equal to II.

See Solution

Problem 17182

Find the derivative of the function f(x)=ln(3x4)f(x)=\ln(3x^{4}). What is f(x)f^{\prime}(x)?

See Solution

Problem 17183

Find the limit: limx5x27x13x2\lim _{x \rightarrow \infty} \frac{5 x^{2}-7 x}{1-3 x^{2}}

See Solution

Problem 17184

Find the derivative of the function f(x)=x2tan1(3x)f(x)=x^{2} \tan^{-1}(3x). What is f(x)f'(x)?

See Solution

Problem 17185

Calculate the limit: limnn(n3+n+23n)\lim _{n \rightarrow \infty} n\left(\sqrt[3]{n^{3}+n+2}-n\right).

See Solution

Problem 17186

A rodeo rider is thrown off a bronco from 1.6 m1.6 \mathrm{~m} high with an initial speed of 4.0 m/s4.0 \mathrm{~m/s}. Find: (a) maximum height reached, (b) speed upon hitting the ground.

See Solution

Problem 17187

Calculate the indefinite integral and include the constant CC: (8z5+3z)dz\int\left(\frac{8}{z^{5}}+\frac{3}{\sqrt{z}}\right) d z

See Solution

Problem 17188

Calculate the indefinite integral and include the constant CC for the result:
(24x3+8x5)dx\int(24 x^{3}+8 x-5) \, dx

See Solution

Problem 17189

Calculate the indefinite integral: (9x3)dx\int(9 \sqrt{x}-3) \, dx and include the constant CC.

See Solution

Problem 17190

Calculate the integral 03x2dx\int_{0}^{3} x^{2} d x.

See Solution

Problem 17191

Differentiate the function xelnx2x e^{\ln x^{2}} with respect to xx.

See Solution

Problem 17192

If ff and gg are twice differentiable with g(x)=cf(x)g(x)=c^{f(x)} and g(x)=h(x)c(x)g^{\prime}(x)=h(x) c^{\prime(x)}, find h(x)h(x).

See Solution

Problem 17193

Find ddx[g(f2(x))]\frac{d}{d x}[g(f^{2}(x))] at x=16x=16 using the values for ff and gg provided in the table.

See Solution

Problem 17194

Find the demand elasticity EE at price p=6p=6 and the price pp where elasticity is unitary.
(a) E(6)=E(6)=\square (b) p=p=\square

See Solution

Problem 17195

Find the cost, average cost, and marginal cost at production level 1650 for C(x)=78400+400x+x2C(x)=78400+400x+x^{2}. Also, determine the production level that minimizes average cost and the minimal average cost.

See Solution

Problem 17196

Find the profit from selling 26 answering machines using P(x)=20x0.9x2240P(x)=20x-0.9x^2-240. Also, approximate using marginal profit.

See Solution

Problem 17197

Given f(x)=2x4x2+1f(x)=2 x \sqrt{4 x^{2}+1}, find critical values and intervals for increasing and decreasing behavior.

See Solution

Problem 17198

Find the demand elasticity for Q=4732p2Q=47 \sqrt{32-p^{2}} at p=2p=2 and determine when it is unitary.

See Solution

Problem 17199

Evaluate the integral 02x(x21)3dx\int_{0}^{2} x\left(x^{2}-1\right)^{3} d x.

See Solution

Problem 17200

Find the mass of a radioactive material at t=0t=0 and after 20 years using m(t)=225e0.045tm(t)=225 e^{-0.045 t}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord