Calculus

Problem 4501

Find the derivative of the function f(x)=(x+1)2f(x)=-(x+1)^{2} using the limit of the difference quotient and compute f(1)f^{\prime}(1).

See Solution

Problem 4502

A ball is dropped from a building 480 m high. Use d(t)=4.9t2d(t)=4.9 t^{2} to find average velocity for 6t7,6.1,6.01,6.0016 \leq t \leq 7, 6.1, 6.01, 6.001. What is the instantaneous velocity at t=6t=6 s?

See Solution

Problem 4503

Find the derivative of f(x)=5tan(3x)+cos(x2)f(x)=5 \tan (3 x)+\cos (x^{2}).

See Solution

Problem 4504

Evaluate the limits or explain their non-existence: (a) limx1x3+1x35x26x\lim _{x \rightarrow-1} \frac{x^{3}+1}{x^{3}-5 x^{2}-6 x}; (b) limx32x27x+12\lim _{x \rightarrow 3} \frac{2}{x^{2}-7 x+12}.

See Solution

Problem 4505

Find the derivative of f(x)=5x2sin(9x)f(x)=5 x^{2} \sin (9 x).

See Solution

Problem 4506

Find values of cc for continuity of f(x)f(x) at x=2x=2 and check if f(x)f(x) is continuous at x=1x=1.

See Solution

Problem 4507

Give an example of a function ff that is continuous at a=2a=2 but not differentiable there, or explain why.

See Solution

Problem 4508

Find a function ff that is continuous at a=2a=2 but not differentiable at that point.

See Solution

Problem 4509

Find a function gg that is differentiable at a=3a=3 but lacks a limit at a=3a=3.

See Solution

Problem 4510

Find the limits or state if they don't exist: (a) limx1x3+1x35x26x\lim _{x \rightarrow-1} \frac{x^{3}+1}{x^{3}-5 x^{2}-6 x}; (b) limx32x27x+12\lim _{x \rightarrow 3} \frac{2}{x^{2}-7 x+12}.

See Solution

Problem 4511

Find a function hh that has a limit at a=2a=-2, is defined at a=2a=-2, but is not continuous at a=2a=-2.

See Solution

Problem 4512

Aufgabe 1: Bestimmen Sie den Schnittpunkt der Tangenten an f(x)=12x22xf(x)=-\frac{1}{2} x^{2}-2 x in A(1,1.5)A(-1, 1.5) und B(1,2.5)B(1, 2.5). Aufgabe 2: Finden Sie Stammfunktionen für f(x)=x3f(x)=x^{3}, f(x)=1x4f(x)=\frac{1}{x^{4}}, f(x)=3x413x2+12f(x)=3 x^{4}-\frac{1}{3} x^{2}+12, f(x)=1xf(x)=\frac{1}{\sqrt{x}}. Aufgabe 3: Bestimmen Sie Wendepunkte von f(x)=0,5x4x36x2+2f(x)=0,5 x^{4}-x^{3}-6 x^{2}+2 und deren Informationen. Aufgabe 4: Berechnen Sie den Gesamtinhalt AA zwischen f(x)=x45x2+4f(x)=x^{4}-5 x^{2}+4 und der xx-Achse, Nullstellen bei x1=2,x2=1,x3=1,x4=2x_{1}=-2, x_{2}=-1, x_{3}=1, x_{4}=2. Aufgabe 5: Finde Werte für kRk \in R, sodass kk+1(k2+2x)dx=9\int_{k}^{k+1}(k^{2}+2 x) dx=9.

See Solution

Problem 4513

Finde für jede Funktion ff eine Stammfunktion FF: a) f(x)=x3f(x)=x^{3} b) f(x)=1x4f(x)=\frac{1}{x^{4}} c) f(x)=3x413x2+12f(x)=3 x^{4}-\frac{1}{3} x^{2}+12 d) f(x)=1xf(x)=\frac{1}{\sqrt{x}}

See Solution

Problem 4514

Find f(6)f^{\prime}(6) if f(x)=13g(x)+15h(x)f(x)=\frac{1}{3} g(x)+\frac{1}{5} h(x), given g(6)=5g^{\prime}(6)=5 and h(6)=15h^{\prime}(6)=15.

See Solution

Problem 4515

Find the derivative of y=6ln(x+8)x2y=\frac{6 \ln (x+8)}{x^{2}}. Which differentiation rule helps most: A. chain, B. power, C. sum, D. quotient?

See Solution

Problem 4516

Find the limit as xx approaches 3 for the expression 2x218x+3\frac{2 x^{2}-18}{x+3}.

See Solution

Problem 4517

Find the slope of the tangent line for y=3x1/2+x3/2y=3 x^{1/2}+x^{3/2} at x=4x=4.

See Solution

Problem 4518

Find the limit: limx32x218x+3\lim _{x \rightarrow 3} \frac{2 x^{2}-18}{x+3}.

See Solution

Problem 4519

Estimate the population in 2030 using p(t)=37.75(1.021)tp(t)=37.75(1.021)^{t} and find the rate of change at t=30t=30.

See Solution

Problem 4520

Find the slope of the tangent line for y=x46x3+5y=x^{4}-6 x^{3}+5 at x=2x=2 and its equation. How to find the slope? A. Substitute xx into the equation and solve for yy. B. Set the derivative to zero and solve for xx. C. Substitute 2 into the derivative and evaluate. D. Substitute yy into the equation and solve for xx.

See Solution

Problem 4521

Find the limit of the difference quotient for the derivative of f(x)=(x+4)2f(x)=-(x+4)^{2}.

See Solution

Problem 4522

Find the slope of the tangent line for y=x46x3+5y=x^{4}-6 x^{3}+5 at x=2x=2. Choose the correct method from the options.

See Solution

Problem 4523

Gegeben ist die Änderungsrate ff eines Tankinhalts.
a) Zeichne den Graphen der Integralfunktion I3(x)=3xf(t)dtI_{-3}(x)=\int_{-3}^{x} f(t) dt.
b) Erkläre die Bedeutung der Integralfunktion.
c) Was lässt sich über den Tankinhalt am Tag 7 sagen?

See Solution

Problem 4524

Find the slope of the tangent line for y=x46x3+5y=x^{4}-6 x^{3}+5 at x=2x=2. Choose the correct method: A, B, C, or D.

See Solution

Problem 4525

Find the derivative: f(x)=limh0(x+h+4)2+(x+4)2hf^{\prime}(x)=\lim _{h \rightarrow 0} \frac{-(x+h+4)^{2}+(x+4)^{2}}{h}.

See Solution

Problem 4526

Bestimme die Stellen, an denen die Funktion f(x)=x2f(x)=x^{2} die Steigung hat: a) 6, b) -2, c) 0, d) -4.

See Solution

Problem 4527

Find the bullet's acceleration when fired straight down from a cliff, ignoring air resistance. Use 9.8m/s29.8 \, m/s^2 for gravity.

See Solution

Problem 4528

Finde die x-Werte, an denen die Funktionen f(x)=23x310xf(x)=\frac{2}{3} x^{3}-10 x und g(x)=2x2+6x4g(x)=2 x^{2}+6 x-4 die gleiche Steigung haben.

See Solution

Problem 4529

Bestimme die Stellen, an denen der Graph von f(x)=2x2+2f(x)=2 x^{2}+2 die Steigung m=4m=4 hat und dieselbe Steigung wie g(x)=x34x1g(x)=x^{3}-4 x-1.

See Solution

Problem 4530

Ein Pkw beschleunigt. a) Skizzieren Sie den Geschwindigkeitsgraphen v. b) Untersuchen Sie v'. c) Deuten Sie v(2)=3v(2)=3 und v(12)=1v'(12)=1 im Kontext.

See Solution

Problem 4531

Find the rate of change of sales for the function S(t)=102100e0.4tS(t)=102-100 e^{-0.4 t} at (a) 1 year, (b) 5 years. What happens to the rate over time? Does it ever equal zero?

See Solution

Problem 4532

Is the derivative of f(t)=ln(t)f(t)=\ln(t) equal to f(t)=1/tf^{\prime}(t)=1/t true or false? Explain.

See Solution

Problem 4533

Is the derivative of f(t)=ln(t)f(t)=\ln (t) equal to f(t)=1/tf^{\prime}(t)=1 / t true or false? Explain your reasoning.

See Solution

Problem 4534

Find the derivative of u(x)=C(x)u(x)=C(x) where v(x)=xv(x)=x. What is u(x)u^{\prime}(x)? A. C(x)C^{\prime}(x) B. 1C(x)\frac{1}{C^{\prime}(x)} C. C(x)C(x)C(x) \cdot C^{\prime}(x)

See Solution

Problem 4535

What is the quotient rule for the derivative of f(x)=u(x)v(x)f(x)=\frac{u(x)}{v(x)}? A, B, or C?

See Solution

Problem 4536

Find the derivative of u(x)=C(x)u(x)=C(x) and v(x)=xv(x)=x. What are u(x)u^{\prime}(x) and v(x)v^{\prime}(x)?

See Solution

Problem 4537

Beurteilen Sie, ob der Grenzwert von f(x)=0,001x40,11x2+3f(x) = 0,001 x^{4}-0,11 x^{2}+3 im Unendlichen 0 ist.

See Solution

Problem 4538

Bestimmen Sie die Ableitungen der Funktionen: a) f(x)=x4f(x)=x^{-4}, b) f(x)=x1f(x)=x^{-1}, c) g(x)=x2g(x)=x^{-2}, d) h(x)=x12h(x)=x^{\frac{1}{2}}, e) g(x)=x13g(x)=x^{\frac{1}{3}}.

See Solution

Problem 4539

Leiten Sie folgende Funktionen ab: a) f(x)=x4f(x)=x^{-4}, b) f(x)=x1f(x)=x^{-1}, c) g(x)=x2g(x)=x^{-2}, d) h(x)=x12h(x)=x^{\frac{1}{2}}, e) g(x)=x13g(x)=x^{\frac{1}{3}}.

See Solution

Problem 4540

Find the marginal average cost function Cˉ(x)\bar{C}^{\prime}(x) and verify using the quotient rule.

See Solution

Problem 4541

Untersuchen Sie das Krümmungsverhalten der Funktionen: a) f(x)=x2+2x+4f(x)=-x^{2}+2x+4, b) f(x)=x3xf(x)=x^{3}-x, c) f(x)=x33x29x5f(x)=x^{3}-3x^{2}-9x-5, d) f(x)=x4+x2f(x)=x^{4}+x^{2}, e) f(x)=x46x2f(x)=x^{4}-6x^{2}, f) f(x)=14x4+3x22f(x)=\frac{1}{4}x^{4}+3x^{2}-2, g) f(x)=13x620x2f(x)=\frac{1}{3}x^{6}-20x^{2}, h) f(x)=120x5+12x4+32x3f(x)=\frac{1}{20}x^{5}+\frac{1}{2}x^{4}+\frac{3}{2}x^{3}, i) f(x)=(x+2)2(x1)23f(x)=(x+2)^{2}(x-1)^{2}-3.

See Solution

Problem 4542

Find the derivative of f(x)=(5x+2)3f(x) = (5x + 2)^3.

See Solution

Problem 4543

Untersuchen Sie die Krümmung der Funktion f(x)=x4+x2f(x)=x^{4}+x^{2}.

See Solution

Problem 4544

Schreibe die Funktion als Potenz mit Basis x und finde die Ableitung. a) f(x)=xf(x)=\sqrt{x} b) f(x)=x3f(x)=\sqrt[3]{x} c) f(x)=x4f(x)=\sqrt[4]{x} d) f(x)=x25f(x)=\sqrt[5]{x^{2}} e) f(x)=1x3f(x)=\frac{1}{\sqrt{x^{3}}}

See Solution

Problem 4545

For a 134-lb female, find the height's BMI change rate by deriving f(h)=703(134)h2f(h)=\frac{703(134)}{h^{2}}. Calculate f(64)f^{\prime}(64). Round final answer to two decimal places.

See Solution

Problem 4546

Find the marginal revenue for the demand function p=150+80lnxp=150+\frac{80}{\ln x}, and revenue for x=8x=8.

See Solution

Problem 4547

Bestimmen Sie die Ableitungen für folgende Funktionen: a) f(x)=3x4f(x)=3 x^{4}, b) f(x)=2xf(x)=2 \sqrt{x}, c) f(x)=13x3f(x)=\frac{1}{3} x^{3}, d) f(x)=14xf(x)=\frac{1}{4} \sqrt{x}, e) f(x)=21xf(x)=-2 \cdot \frac{1}{x}, f) f(x)=141x2f(x)=\frac{1}{4} \cdot \frac{1}{x^{2}}.

See Solution

Problem 4548

Bestimmen Sie die Ableitung von ff und formen Sie die Funktion um: a) f(x)=x(x3)f(x)=x \cdot(x-3), b) f(x)=5x3x35f(x)=\frac{5}{x^{3}}-\frac{x^{3}}{5}, c) f(x)=(x+4)2f(x)=(x+4)^{2}, d) f(x)=x4+1x2f(x)=\sqrt[4]{x}+\frac{1}{x^{2}}, e) f(x)=x(x+1x)f(x)=x \cdot\left(x+\frac{1}{x}\right), f) f(x)=2x3x5f(x)=\frac{2}{\sqrt{x}}-\frac{3}{x^{5}}.

See Solution

Problem 4549

Find the marginal revenue for the demand function p=150+80lnxp=150+\frac{80}{\ln x} and revenue for x=8x=8.

See Solution

Problem 4550

Untersuchen Sie das Krümmungsverhalten der Funktion f(x)=x33x29x5f(x)=x^{3}-3 x^{2}-9 x-5.

See Solution

Problem 4551

Bestimme den Wert von a, für den die Funktion fa(x)=x4(a+1)x2+af_{a}(x)=x^{4}-(a+1) x^{2}+a an x=1x=1 einen Extrempunkt hat.

See Solution

Problem 4552

Schreibe die Funktionstermine um, um einen konstanten Faktor zu erhalten, und leite sie dann ab: a) f(x)=x42f(x)=\frac{x^{4}}{2} b) f(x)=7xf(x)=\frac{7}{x} c) f(x)=3x2f(x)=-\frac{3}{x^{2}} d) f(x)=53x3f(x)=\frac{5}{3 x^{3}} e) f(x)=(3x)3f(x)=(3 x)^{3} f) f(x)=9xf(x)=\sqrt{9 x}

See Solution

Problem 4553

Show that the derivative of y=knpy = kn^p is kpn1p\frac{kp}{n^{1-p}} and describe its behavior as nn increases.

See Solution

Problem 4554

Schreibe die Funktionstermine um, um konstante Faktoren zu erhalten, und leite sie dann ab: a) f(x)=x42f(x)=\frac{x^{4}}{2}, b) f(x)=7xf(x)=\frac{7}{x}, c) f(x)=3x2f(x)=-\frac{3}{x^{2}}, d) f(x)=53x3f(x)=\frac{5}{3 x^{3}}, e) f(x)=(3x)3f(x)=(3 x)^{3}, f) f(x)=9xf(x)=\sqrt{9 x}.

See Solution

Problem 4555

Bestimmen Sie die Ableitungen der folgenden Funktionen: a) f(x)=ax2f(x)=a x^{2}, b) g(y)=2y3g(y)=-2 y^{3}, c) h(t)=vth(t)=v t, d) f(a)=5abf(a)=5 a b, e) f(x)=k2f(x)=k^{2}, f) s(t)=3ats(t)=\frac{3}{a \sqrt{t}}.

See Solution

Problem 4556

Given Y=knpY=kn^p with 0<p<10<p<1, show dYdn=kpn1p\frac{d Y}{d n}=\frac{k p}{n^{1-p}} and explain diminishing returns.

See Solution

Problem 4557

Find the derivative of y=(4x2+5)(3x4)y=(4 x^{2}+5)(3 x-4) using the product rule. Which option is correct?

See Solution

Problem 4558

Find the derivative of y=(13x226x+26)e8xy=(13 x^{2}-26 x+26)e^{-8 x}. What rule do you use first?

See Solution

Problem 4559

Fehlerbeschreibung und -korrektur:
a) f(x)=x26f(x)=x^{2}-6, f(x)=2x6f^{\prime}(x)=2x-6
b) f(x)=a2+xf(x)=a^{2}+x, f(x)=1f^{\prime}(x)=1
c) f(x)=x2(3x1)f(x)=x^{2}(3x-1), f(x)=2x(3x1)+x23f^{\prime}(x)=2x(3x-1)+x^{2} \cdot 3

See Solution

Problem 4560

Zeigen Sie, dass die 1. Ableitungen von f(x)=0,25x4x3f(x)=0,25 x^{4}-x^{3} und g(x)=0,2x50,75x4g(x)=0,2 x^{5}-0,75 x^{4} die gleichen Nullstellen haben.

See Solution

Problem 4561

Find the derivative of y=(13x226x+26)e8xy=(13x^2-26x+26)e^{-8x}. Identify the first rule to apply. dydx=\frac{dy}{dx} =

See Solution

Problem 4562

Find the derivative using the product rule for the function with derivative:
dydx=(13x226x+26)ddx(e8x)+e8xddx(13x226x+26) \frac{d y}{d x}=\left(13 x^{2}-26 x+26\right) \frac{d}{d x}\left(e^{-8 x}\right)+e^{-8 x} \frac{d}{d x}\left(13 x^{2}-26 x+26\right)
Choose the correct expression from the options.

See Solution

Problem 4563

Find the derivative of y=(13x226x+26)e8xy=(13 x^{2}-26 x+26) e^{-8 x}.

See Solution

Problem 4564

Find the derivative of y=e12xy=e^{12 x}. Which rule applies: A, B, C, or D?

See Solution

Problem 4565

Gegeben ist die Funktion f(t)=5t330t2+60tf(t)=5 t^{3}-30 t^{2}+60 t für Niederschlag in mm\mathrm{mm}.
a) Berechne f(1)f(1), f(2)f(2), f(3)f(3). b) Bestimme f(1)f^{\prime}(1) und erkläre seine Bedeutung. c) Zeige, dass es am Ende des 2. Tages eine Regenpause gab. d) Finde den Zeitpunkt tt mit maximalem Regen und berechne die Regenstärke.

See Solution

Problem 4566

Is it true or false that a constant function's derivative is always 0? Explain your reasoning.

See Solution

Problem 4567

Find the derivative of y=e12xy=e^{12 x}. Which rule applies? A. ddx[eg(x)]=eg(x)g(x)\frac{d}{d x}\left[e^{g(x)}\right]=e^{g(x)} g^{\prime}(x) B. ddx[e]=0\frac{\mathrm{d}}{\mathrm{dx}}[e]=0 C. ddx[ax]=(lna)ax\frac{d}{d x}\left[a^{x}\right]=(\ln a) a^{x} D. ddx[ex]=ex\frac{\mathrm{d}}{\mathrm{dx}}\left[e^{\mathrm{x}}\right]=e^{\mathrm{x}}

See Solution

Problem 4568

Differentiate y=e12xy=e^{12 x}. Which rule applies? A. ddx[eg(x)]=eg(x)g(x)\frac{d}{d x}\left[e^{g(x)}\right]=e^{g(x)} g^{\prime}(x) B. ddx[e]=0\frac{\mathrm{d}}{\mathrm{dx}}[e]=0 C. ddx[ax]=(lna)ax\frac{d}{d x}\left[a^{x}\right]=(\ln a) a^{x} D. ddx[ex]=ex\frac{d}{d x}\left[e^{x}\right]=e^{x}

See Solution

Problem 4569

Gegeben sind die Funktionen f(x)=0,25x4x3f(x)=0,25 x^{4}-x^{3} und g(x)=0,2x50,75x4g(x)=0,2 x^{5}-0,75 x^{4}. Zeigen Sie, dass die 1. Ableitungen von ff und gg die gleichen Nullstellen haben. Untersuchen Sie mit der 2. Ableitung, ob Hoch- oder Tiefpunkte existieren und skizzieren Sie die Graphen.

See Solution

Problem 4570

What is the instantaneous rate of change at the vertex of an upright parabola? (a) -1 (b) 0 (c) 1 (d) \infty

See Solution

Problem 4571

Leite f(x)=exxf(x)=\frac{e^{x}}{x} zweimal ab.

See Solution

Problem 4572

Finde die Wendepunkte der Funktion f(x)=x3+6x2f(x)=x^{3}+6 x^{2}.

See Solution

Problem 4573

A diver on a 10m platform dives, height at tt seconds is h(t)=10÷2t4.9t3h(t)=10 \div 2 t-4.9 t^{3}. Find: (a) height at t=1t=1; (b) avg. rate change in first second; (c) instant. rate change at t=1t=1.

See Solution

Problem 4574

A diver on a 10m platform dives. The height after tt seconds is h(t)=104.9t2h(t)=10 - 4.9 t^{2}. Find:
(a) Height at t=1t=1 second. (b) Average rate of change in the first second. (c) Instantaneous rate of change at t=1t=1 second.

See Solution

Problem 4575

Bestimmen Sie den Wendepunkt und die Wendetangente für f(x)=0,5x33x2+5xf(x)=0,5 x^{3}-3 x^{2}+5 x und die anderen Funktionen.

See Solution

Problem 4576

Finde den Wendepunkt und die Wendetangente für f(x)=x3+3x2+x+2f(x)=x^{3}+3x^{2}+x+2 und f(x)=x33x2+4x+4f(x)=-x^{3}-3x^{2}+4x+4.

See Solution

Problem 4577

Find the average rate of change of the height h(t)=18t0.8t2h(t)=18t-0.8t^{2} for 10t1510 \leq t \leq 15 on the Moon.

See Solution

Problem 4578

Determine the inflection points of the function f(x)=2x3+6xf(x) = -2x^3 + 6x.

See Solution

Problem 4579

Find the change in gravity gg when moving a distance Δr=x\Delta r = x from Earth's center: Δgg×(2xr)\Delta g \approx g \times\left(-\frac{2 x}{r}\right). Is Δg\Delta g positive or negative? Calculate the percentage change in gg from sea level to Mount Elbert (4.35 km) with Earth's radius 6400 km.

See Solution

Problem 4580

Given the function s(t)=t418t2+81s(t)=t^{4}-18 t^{2}+81, find:
(a) Velocity v(t)v(t) and acceleration a(t)a(t) functions. (b) Position, velocity, speed, and acceleration at t=2t=2. (c) When is the particle stopped? (d) When is the particle speeding up or slowing down?

See Solution

Problem 4581

Bestimmen Sie die Stammfunktion von 5x5x.

See Solution

Problem 4582

Bestimmen Sie die Ableitung von f(x)=ex2f(x) = e^{x^{2}}.

See Solution

Problem 4583

An element has a half-life of 1.5 billion years. Find the age of rocks with 5%5\% and 60%60\% of the original element remaining.

See Solution

Problem 4584

A diver on a 10 m10 \mathrm{~m} platform has height h(t)=10+2t4.9t2h(t)=10+2t-4.9t^{2}. Find when they hit the water and their rate of height change.

See Solution

Problem 4585

A rocket launches at 128 ft/s from a 65-ft structure. What is its maximum height?

See Solution

Problem 4586

Find the average rate of change of area with respect to radius for circles from 0 cm0 \mathrm{~cm} to 100 cm100 \mathrm{~cm} and at 120 cm120 \mathrm{~cm}.

See Solution

Problem 4587

Find the time tt when the pilot reaches maximum altitude using h(t)=16t2+90t+10000h(t)=-16 t^{2}+90 t+10000. Relate max altitude to tangent slope.

See Solution

Problem 4588

A particle moves on the circle x2+y2=25x^{2}+y^{2}=25. At (3,4)(3,4) with dxdt=6\frac{d x}{d t}=6, find dydt\frac{d y}{d t}.

See Solution

Problem 4589

Find the average rate of change of the ship's height h(t)=sinπ5th(t)=\sin \frac{\pi}{5} t over 5 seconds and the instantaneous rate at t=6t=6.

See Solution

Problem 4590

A conical tank (diameter 10 ft, height 15 ft) has water leaking at 12 ft³/hr. Volume is 27π27 \pi ft³. Find the height change rate.

See Solution

Problem 4591

What condition ensures the tangent line at x=5x=5 overestimates f(5.25)f(5.25)? A) ff decreasing, B) ff increasing, C) concave down, D) concave up.

See Solution

Problem 4592

Find the slope of the tangent line to y=x2+8xy=x^{2}+8x at (3,15)(-3,-15). Then, find the tangent line equation and graph both.

See Solution

Problem 4593

Water flows into a tub at F(t)=arctan(π2t10)F(t)=\arctan \left(\frac{\pi}{2}-\frac{t}{10}\right) and leaks at L(t)=0.03(20tt275)L(t)=0.03(20t-t^2-75). At t=3t=3, W(3)=2.5W(3)=2.5. Find the linear approximation of WW at t=3t=3 to estimate W(3.5)W(3.5).

See Solution

Problem 4594

Find the slope of the tangent line to y=x2+8xy=x^{2}+8x at (3,15)(-3,-15) using m=limx3f(x)f(3)x+3m=\lim _{x \rightarrow -3} \frac{f(x)-f(-3)}{x+3}.

See Solution

Problem 4595

Find the area between the curves y=12x2y=12-x^{2} and y=x26y=x^{2}-6.

See Solution

Problem 4596

Find the slope mm of the tangent line to the curve y=3x211x+1y=3x^{2}-11x+1 at the point (4,5)(4,5) and its equation.

See Solution

Problem 4597

Calculate the average rate of change of g(x)=7x4+4x3g(x)=7 x^{4}+\frac{4}{x^{3}} from x=2x=-2 to x=4x=4.

See Solution

Problem 4598

Evaluate and simplify the expression for the function f(x)=6x2+3xf(x)=6 x^{2}+3 x: f(x+h)f(x)h\frac{f(x+h)-f(x)}{h}

See Solution

Problem 4599

Evaluate and simplify f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=6x2+5xf(x)=6x^{2}+5x.

See Solution

Problem 4600

Calculate the average rate of change of g(x)=3x31g(x)=-3 x^{3}-1 between x=4x=-4 and x=1x=1.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord