Calculus

Problem 24401

Find and simplify the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for the function f(x)=x34x+1f(x)=x^{3}-4x+1.

See Solution

Problem 24402

Evaluate the integral from -1 to 0 of (6x1)(6x - 1). Verify with a graphing utility.

See Solution

Problem 24403

Find points on the curve y=x3+2x+2y=x^{3}+2x+2 where the tangent is parallel to 3xy=13x-y=1. Are there multiple points?

See Solution

Problem 24404

Find the derivative of w=z61zw=z^{-6}-\frac{1}{z}.

See Solution

Problem 24405

Find the interval where the function f(x)=300xx3f(x)=300 x-x^{3} is increasing. Choose from the given options.

See Solution

Problem 24406

Calculate the integral 108802xx2dx=\int_{-10}^{8} \sqrt{80-2 x-x^{2}} \, dx = \square (use π\pi if necessary).

See Solution

Problem 24407

Evaluate the integral using geometry: 108802xx2dx=\int_{-10}^{8} \sqrt{80-2 x-x^{2}} d x=\square (exact answer with π\pi).

See Solution

Problem 24408

Evaluate the integral from 1 to 2 of (x2+x+2)(2x3+3x2+12x)(x^{2}+x+2)(2 x^{3}+3 x^{2}+12 x).

See Solution

Problem 24409

Determine the curve's equation passing through (1,3)(-1,3) with slope 3x23-x^{2}.

See Solution

Problem 24410

Untersuchen Sie, wo die Funktion ff die Steigung mm hat: a) f(x)=2x2,m=0,5f(x)=\frac{2}{x^{2}}, m=0,5 b) f(x)=4x,m=19f(x)=\frac{4}{x}, m=-\frac{1}{9} c) f(x)=4x3,m=0,75f(x)=\frac{4}{x^{3}}, m=-0,75

See Solution

Problem 24411

Find the derivative yy^{\prime} of the function y=(4x5)(5x+1)y=(4 x-5)(5 x+1).

See Solution

Problem 24412

Compute the second partial derivative 2x2(x3+y4+ex2+y2)\frac{\partial^{2}}{\partial x^{2}}\left(x^{3}+y^{4}+e^{x^{2}+y^{2}}\right).

See Solution

Problem 24413

Evaluate the expression π303y2dyπ303ydy\frac{\frac{\pi}{3} \int_{0}^{3} y^{2} d y}{\frac{\pi}{3} \int_{0}^{3} y d y}.

See Solution

Problem 24414

Calculate the growth rate dLdt\frac{\mathrm{dL}}{\mathrm{dt}} at t=5,10,15t=5, 10, 15 weeks for L=37.57+3.73t6.35×104t3L=-37.57+3.73t-6.35 \times 10^{-4}t^{3}.

See Solution

Problem 24415

Compute the partial derivative xe2x2+9xy+y2\frac{\partial}{\partial x} e^{2 x^{2}+9 x y+y^{2}}.

See Solution

Problem 24416

Find the derivative xx2ln(xy+3x+y2)\frac{\partial}{\partial x} x^{2} \ln \left(x y+3 x+y^{2}\right).

See Solution

Problem 24417

Calculate fetal growth rate dHdt\frac{\mathrm{dH}}{\mathrm{dt}} using H=29.69+1.669t20.7218t2logtH=-29.69+1.669 t^{2}-0.7218 t^{2} \log t. Compare at t=8t=8 and t=36t=36 weeks.

See Solution

Problem 24418

Find the derivative of (x+4)y5exy(x+4) y^{5} e^{x y} with respect to yy.

See Solution

Problem 24419

Find the tangent line equation for y=f(x)=x2+1y=f(x)=x^{2}+1 at the point (4,17)(-4, 17).

See Solution

Problem 24420

Find bb in terms of cc and dd such that c(x+b)dx=0\int_{c}(x+b) dx=0 for 0<c<d0<c<d. b=b=\square

See Solution

Problem 24421

Find the curve equation through (1,2)(1,-2) with slope given by x(x2+1)2x\left(x^{2}+1\right)^{2}.

See Solution

Problem 24422

Find the derivative of y=5x4+8x3+1y=5 x^{4}+8 x^{3}+1. Which option is correct? A) 4x3+3x24 x^{3}+3 x^{2} B) 20x3+24x220 x^{3}+24 x^{2} C) 4x3+3x274 x^{3}+3 x^{2}-7 D) 20x3+24x2720 x^{3}+24 x^{2}-7

See Solution

Problem 24423

Find the slope of the tangent line for s=4t42t3s=4 t^{4}-2 t^{3} at t=1t=-1.

See Solution

Problem 24424

Evaluate the integral 17f(x)dx\int_{1}^{7} f(x) dx where f(x)=2xf(x)=2x for 1x51 \leq x \leq 5 and f(x)=122xf(x)=12-2x for 5<x75<x \leq 7.

See Solution

Problem 24425

Determine the definiteness of the Hessian for Q(K,L)=K1/2L1/2Q(K, L)=K^{1/2}L^{1/2} when K,L>0K, L > 0. Options: a. Positive semidefinite b. Negative semidefinite c. Negative definite d. None.

See Solution

Problem 24426

A person throws a ball upward, passing a window at 14ms14 \frac{\mathrm{m}}{\mathrm{s}} and 18 m18 \mathrm{~m} high. Find total air time.

See Solution

Problem 24427

Bestimme die Ableitungsfunktion ff^{\prime} für die Funktionen a) f(x)=12x2f(x)=\frac{1}{2} x^{2}, b) f(x)=2x1f(x)=2 x-1, c) f(x)=xx2f(x)=x-x^{2} mit f(x)=limh0f(x+h)f(x)hf^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}.

See Solution

Problem 24428

Find the partial derivative y(x3ln(2xy+3x+3y3))\frac{\partial}{\partial y} \left( x^{3} \ln(2xy + 3x + 3y^{3}) \right).

See Solution

Problem 24429

Find the nature of the stationary point of the function with Hessian matrix Hf(x,y)=[x2+2111]\mathbf{H} f(x, y)=\begin{bmatrix} x^{2}+2 & -1 \\ -1 & 1 \end{bmatrix}. Select one: a. global minimum b. local minimum c. saddle point d. global maximum.

See Solution

Problem 24430

Compute the derivative yx3ln(2xy+3x+3y3)\frac{\partial}{\partial y} x^{3} \ln (2 x y + 3 x + 3 y^{3}).

See Solution

Problem 24431

Compute the second partial derivative 2x2(x3+y4+ex2+y2)\frac{\partial^{2}}{\partial x^{2}}\left(x^{3}+y^{4}+e^{x^{2}+y^{2}}\right).

See Solution

Problem 24432

Which expression does not need the chain rule to find dydx\frac{d y}{d x}? (A) y=sin1(3x24)y=\sin^{-1}(3x^2-4) (B) 3x64y2=2xy5+73x^6-4y^2=2xy^5+7 (C) y=3x2x+2xy=3x^2-\sqrt{x}+\frac{2}{x} (D) cos(x+y)+2yx=0\cos(x+y)+2^y-x=0

See Solution

Problem 24433

Find the tangent and normal lines to the curve x225+y236=1\frac{x^{2}}{25}+\frac{y^{2}}{36}=1 at the point (1,1256)\left(1, \frac{12}{5} \sqrt{6}\right).

See Solution

Problem 24434

Calculate the area under the line y=6x1y=6x-1 from x=1x=1 to x=3x=3.

See Solution

Problem 24435

Gravel forms an inverted cone with height to radius ratio of 3:23:2. If delivered at 20 ft³/min, find height increase rate at radius 10 ft.

See Solution

Problem 24436

Solve the equation y=xyx2y^{\prime}=x y-x^{2} for: (a) when y=0y^{\prime}=0, (b) when y>0y^{\prime}>0, (c) when y<0y^{\prime}<0.

See Solution

Problem 24437

Find the velocity and acceleration at t=4t=4 s for s(t)=t23ts(t)=t^{2}-3t. Calculate v(4)=v(4)=\square.

See Solution

Problem 24438

Gravel forms an inverted cone with height to radius ratio of 3:23:2. If gravel is added at 20 ft³/min, find radius increase after 15 sec.

See Solution

Problem 24439

Find values of aa and bb for the piecewise function f(x)f(x) to be differentiable at x=1x=1.

See Solution

Problem 24440

Find the velocity and acceleration at t=2t=2 s for s(t)=t25ts(t)=t^{2}-5t. Calculate v(2)=v(2)=\square.

See Solution

Problem 24441

Calculate the area in the first quadrant under the curve y=8xx4y=8x-x^{4}.

See Solution

Problem 24442

Find the velocity and acceleration at t=2t=2 s for s(t)=t25ts(t)=t^{2}-5t and s(t)=t2+5s(t)=\sqrt{t^{2}+5}.

See Solution

Problem 24443

A scientist models the density D(x)=x+74x26x+5D(x) = \frac{x+7}{4x^2 - 6x + 5}.
(a) Find xx that maximizes density and the maximum density, rounding to the nearest hundredth.
(b) For large xx, density appears to be undefined.

See Solution

Problem 24444

Find the volume of the solid formed by revolving the region bounded by y=xy=x, y=4xy=4x, and y=8y=8 about the yy-axis. Set up the integral for the volume.

See Solution

Problem 24445

Find xx that maximizes D(x)=x+74x26x+5D(x)=\frac{x+7}{4 x^{2}-6 x+5} and the maximum density. Round to the nearest hundredth.

See Solution

Problem 24446

Find the growth rate of the fungus given by L(t)=3.3t+0.6cos(2πt24)L(t)=3.3 t+0.6 \cos \left(\frac{2 \pi t}{24}\right).
(a) Calculate dLdt\frac{\mathrm{dL}}{\mathrm{dt}}. (b) Determine the largest and smallest growth rates.

See Solution

Problem 24447

Find the area under the curve y=x9x23y=x \sqrt[3]{9-x^{2}} from x=0x=0 to x=3x=3 using direct integration.

See Solution

Problem 24448

Calculate the integral from -4 to -3 of x2x^{-2}: 43x2dx=\int_{-4}^{-3} x^{-2} d x=\square

See Solution

Problem 24449

Evaluate the integral 43x2dx=\int_{-4}^{-3} x^{-2} \, dx = \square using the Fundamental Theorem of Calculus.

See Solution

Problem 24450

Find the time tt when the maximum number of people infected, given P(t)=4et/20et/10P(t)=4 e^{t / 20}-e^{t / 10}.

See Solution

Problem 24451

Calculate the integral (3secxtanx+5sec2x)dx\int\left(-3 \sec x \tan x+5 \sec ^{2} x\right) d x.

See Solution

Problem 24452

Differentiate the function f(x)=ex+x35lnxf(x)=e^{x}+x^{3}-5 \ln x.

See Solution

Problem 24453

Evaluate the integral using the Fundamental Theorem of Calculus: π/2π/2(cosx4)dx=\int_{-\pi / 2}^{\pi / 2}(\cos x-4) d x=\square

See Solution

Problem 24454

Calculate the integral (8secxtanx3sec2x)dx=\int\left(-8 \sec x \tan x-3 \sec ^{2} x\right) d x = \square

See Solution

Problem 24455

Ein Hubschrauber steigt. Gegeben sind h(3)=120 mh(3) = 120 \mathrm{~m} und h(3)=20msh'(3) = 20 \frac{\mathrm{m}}{\mathrm{s}}.
a) Finde h(7)h(7) und h(3)h'(3). b) Schätze h(3,5)h(3,5) mit linearer Näherung.

See Solution

Problem 24456

Find the area, rounded to 2 decimal places, between the polar curves r=5cos(θ)r=5 \cos (\theta) and r=3cos(θ)r=3-\cos (\theta).

See Solution

Problem 24457

Integrate: a) (exx25)dx=\int(e^{x}-x^{2}-5) \, dx=

See Solution

Problem 24458

Calculate the area between the curve f(x)=ex10f(x)=e^{x}-10 and the xx-axis from 00 to ln10\ln 10.

See Solution

Problem 24459

Calculate the indefinite integral (5secxtanx+7sec2x)dx\int(5 \sec x \tan x + 7 \sec^2 x) \, dx.

See Solution

Problem 24460

Find the derivative of the integral ddxx5t3+2dt\frac{d}{d x} \int_{x}^{5} \sqrt{t^{3}+2} d t and solve for the result.

See Solution

Problem 24461

Finde die Punkte, wo die Tangente von ff den Steigungswinkel 21,821,8^{\circ} hat für die Funktionen: a) f(x)=5x2f(x)=5 x^{2} b) f(x)=40xf(x)=-\frac{40}{x} c) f(x)=56x3f(x)=\frac{5}{6} x^{3} d) f(x)=0,15x20,2xf(x)=0,15 x^{2}-0,2 x

See Solution

Problem 24462

Integrate: 11(t2t4)dt=\int_{-1}^{1}(t^{2}-t^{4}) dt=

See Solution

Problem 24463

Evaluate the integral using the Fundamental Theorem of Calculus: 159w2dw=\int_{1}^{5} \frac{9}{w^{2}} d w=\square

See Solution

Problem 24464

Calculate the integral: 11(t2t4)dt\int_{-1}^{1}\left(t^{2}-t^{4}\right) dt.

See Solution

Problem 24465

Find the tangent line equation for f(x)=2x+1f(x)=\sqrt{2x+1} at the point where x=0x=0.

See Solution

Problem 24466

Simplify the expression: ddxx5t3+2dt=\frac{d}{d x} \int_{x}^{5} \sqrt{t^{3}+2} d t = \square

See Solution

Problem 24467

Finde die Punkte, wo die Tangente der Funktion ff parallel zur Linie y=2x3y=2x-3 ist. a) f(x)=4x3xf(x)=4x^{3}-x b) f(x)=13x3+12x210xf(x)=\frac{1}{3}x^{3}+\frac{1}{2}x^{2}-10x

See Solution

Problem 24468

Calculate the area between the curves y=6x26y=6 x^{2}-6 and y=x2+1y=-x^{2}+1 from x=1x=-1 to x=1x=1.

See Solution

Problem 24469

Finde die Punkte des Graphen von ff, wo die Tangente einen Steigungswinkel von 21,821,8^{\circ} hat: a) f(x)=5x2f(x)=5 x^{2} b) f(x)=40xf(x)=-\frac{40}{x}

See Solution

Problem 24470

Find d2ydx2\frac{d^{2} y}{d x^{2}} at the point (1,3)(-1,3) given 3y=3+2xy-3 y=-3+2 x y.

See Solution

Problem 24471

Calculate the area under the curve y=x24x+5y=x^{2}-4x+5 between x=1x=-1 and x=3x=3.

See Solution

Problem 24472

Find d2ydx2\frac{d^{2} y}{d x^{2}} at the point (1,3)(-1,3) for the equation 3y=3+2xy-3 y=-3+2 x y.

See Solution

Problem 24473

Simplify the expression: ddxxx4+t8dt\frac{d}{d x} \int_{-x}^{x} \sqrt{4+t^{8}} d t. Hint: Use xx1+t2dt\int_{-x}^{x} \sqrt{1+t^{2}} d t.

See Solution

Problem 24474

Find critical points and points of inflection for the function g(x)=x3+x25x+3g(x)=x^{3}+x^{2}-5x+3.

See Solution

Problem 24475

Find the limit using L'Hopital's Rule: limx12x2x3x+1\lim _{x \rightarrow-1} \frac{2 x^{2}-x-3}{x+1}.

See Solution

Problem 24476

Find f(x)f(x) such that 0xf(t)dt=4cosx+3x4\int_{0}^{x} f(t) dt = 4 \cos x + 3x - 4. Verify by substitution.

See Solution

Problem 24477

Find the area of region RR under the curve f(x)=x2(x11)f(x)=x^{2}(x-11) from x=1x=-1 to x=12x=12. Round to the nearest hundredth.

See Solution

Problem 24478

Find the velocity of the object at time t0=4t_0=4 for the position x(t)=(t2t)(t2+t)x(t)=(t^2-t)(t^2+t). Choices: a) 240 b) 248 c) -248 d) 2 e) 2032

See Solution

Problem 24479

Find the first derivative of y=sinxcosxy=\sin x \cos x. Simplify your answer and show all work.

See Solution

Problem 24480

Consider the function g(x)=0x8sin2tdtg(x)=\int_{0}^{x} 8 \sin^{2} t \, dt.
a. Graph 8sin2t8 \sin^{2} t.
b. Find g(x)g^{\prime}(x).
c. Graph gg.

See Solution

Problem 24481

A manufacturer needs a square base box with 1 kL1 \mathrm{~kL} capacity.
a) Find height yy in terms of base xx. b) Show total steel cost is C(x)=24x2+96xC(x)=24 x^{2}+\frac{96}{x}. c) Find C(x)C^{\prime}(x). d) Determine dimensions that minimize cost and the minimum cost.

See Solution

Problem 24482

Calculate the work done by a constant force on a block displaced 5.0 meters. Options: A) 4.0 J, B) 0 J, C) 20 J, D) 0.80 J.

See Solution

Problem 24483

A 10-foot ladder leans against a wall. If the base moves away at 9 ft/s, how fast is the triangle's area changing when it's γ\gamma ft from the wall?

See Solution

Problem 24484

Find the rate of change of area A=12r2θA=\frac{1}{2} r^{2} \theta with respect to rr at r=3r=3 when θ\theta is constant.

See Solution

Problem 24485

Calculate the area under the curve y=xy=\sqrt{x} from x=4x=4 to x=5x=5.

See Solution

Problem 24486

Find the new limits for the integral 58f(x)dx\int_{5}^{8} f(x) d x after the change u=x21u=x^{2}-1. Lower limit is 24, upper limit is \square.

See Solution

Problem 24487

Find the new limits of integration for u=x21u=x^{2}-1 in 58f(x)dx\int_{5}^{8} f(x) d x. New lower limit is \square.

See Solution

Problem 24488

Given a population growth rate of 4%4\%, with N(5)=100N(5) = 100, estimate N(5.2)N(5.2) using linear approximation. Find N(5.2)=N(5.2) = \square.

See Solution

Problem 24489

A rectangle in a circle of radius 5 in. has a length decreasing at 2 in/sec. Find the area change rate when length is 5 in.

See Solution

Problem 24490

Find the area A=2055ydyA = 2 \int_{0}^{5} \sqrt{5-y} \, dy. Evaluate AA. Answer: A14.9 m2A \simeq 14.9 \mathrm{~m}^{2}.

See Solution

Problem 24491

Evaluate the integral using substitution u=x2+7u=x^{2}+7:
2x(x2+7)4dx=(u4)du\int 2 x\left(x^{2}+7\right)^{4} d x=\int\left(u^{4}\right) d u
Find the result. 2x(x2+7)4dx=\int 2 x\left(x^{2}+7\right)^{4} d x=\square

See Solution

Problem 24492

A snowball's radius decreases from 36 cm to 9 cm in 30 min. Find the volume change rate when the radius is 5 cm.

See Solution

Problem 24493

Evaluate the integral using the substitution u=x2+7u=x^{2}+7: 2x(x2+7)4dx=()du\int 2 x\left(x^{2}+7\right)^{4} d x=\int(\square) d u

See Solution

Problem 24494

A cube's volume decreases at 6 m³/min. Find the edge's change rate when volume is 8 m³. Options: a) 32\frac{3}{2} b) 12-\frac{1}{2} c) 66 d) 12-12 e) 020-2

See Solution

Problem 24495

Find the rate of change of the xx-coordinate when the particle at (1,4)(-1,4) has a yy-change of 3 units/sec on y2=4(x+5)y^{2}=4(x+5).

See Solution

Problem 24496

Find the limit using l'Hôpital's Rule: limx9x9x3=(\lim _{x \rightarrow 9} \frac{x-9}{\sqrt{x}-3}=\square( Simplify your answer.)

See Solution

Problem 24497

Find the time intervals where the object moves right, given x(t)=12t483t3+3t2x(t)=\frac{1}{2} t^{4}-\frac{8}{3} t^{3}+3 t^{2}. a) (0,1) ∪ (3, ∞) b) (1,3) c) (0, 2/3) ∪ (2, ∞) d) (0, 1/2) ∪ (3/2, ∞) e) (0,1) ∪ (9/2, ∞)

See Solution

Problem 24498

Find the limit as xx approaches 5 for the expression (x5)25x2\frac{(x-5)}{25-x^{2}}.

See Solution

Problem 24499

Evaluate the integral using u=4x2+5xu=4 x^{2}+5 x: (8x+5)4x2+5xdx\int(8 x+5) \sqrt{4 x^{2}+5 x} d x. What is the result?

See Solution

Problem 24500

Evaluate the integral using u=4x2+5xu=4 x^{2}+5 x: (8x+5)4x2+5xdx=()du\int(8 x+5) \sqrt{4 x^{2}+5 x} d x=\int(\square) d u

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord