Calculus

Problem 17201

Find an equation of a curve that intersects every curve of the family y=1x+ky=\frac{1}{x}+k at right angles. Options: (A) y=xy=-x (B) y=x2y=-x^{2} (C) y=13x3y=-\frac{1}{3} x^{3} (D) y=13x3y=\frac{1}{3} x^{3} (E) y=lnxy=\ln x

See Solution

Problem 17202

A 10 ft long trough has triangular ends (3 ft wide, 1 ft high). Water fills at 12ft3/min12 \mathrm{ft}^{3} / \mathrm{min}. Find the rise rate at 6 in deep.

See Solution

Problem 17203

Calculate the limit: limn(1+n2n+1)2n\lim _{n \rightarrow \infty}\left(1+\frac{\sqrt{n}}{2^{n+1}}\right)^{2 n}.

See Solution

Problem 17204

Calculate the limit: limn(1+π2n+1)2n\lim _{n \rightarrow \infty}\left(1+\frac{\pi}{2^{n+1}}\right)^{2 n}.

See Solution

Problem 17205

Evaluate the left and right Riemann sums for n=10n=10 over [0,5][0,5] using the values of f(x)f(x) provided.

See Solution

Problem 17206

Estimate the alternating harmonic series using the first 10 terms for S10S_{10}, then show how to rearrange 2n=1(1)n+1n2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}.

See Solution

Problem 17207

A balloon 150 ft away rises at 8 ft/s. How fast is the distance to the balloon increasing when it's 50 ft high?

See Solution

Problem 17208

Evaluate these limits: (a) limxx3+32x3+4x+1\lim _{x \rightarrow \infty} \frac{x^{3}+3}{2 x^{3}+4 x+1} (b) limx0sin1xx\lim _{x \rightarrow 0} \frac{\sin^{-1} x}{x} (c) limx0sin1xsinx\lim _{x \rightarrow 0} \frac{\sin^{-1} x}{\sin x} (d) limx11+cosnxtan2nx\lim _{x \rightarrow 1} \frac{1+\cos n x}{\tan^{2} n x} (e) limx0secxcosxsinx\lim _{x \rightarrow 0} \frac{\sec x-\cos x}{\sin x} (f) limx01cosxx2\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}} (g) limxx+1x+2\lim _{x \rightarrow \infty} \frac{x+1}{x+2} (h) limxx+1x\lim _{x \rightarrow \infty} |\sqrt{x+1}-\sqrt{x}| Find discontinuities of: (a) x3+4x+6x26x+8\frac{x^{3}+4 x+6}{x^{2}-6 x+8} (b) secx\sec x (c) sinxx\frac{\sin x}{\sqrt{x}}

See Solution

Problem 17209

Estimate the area under f(x)=16x2f(x)=\sqrt{16-x^{2}} from 4-4 to 44 using a Riemann sum with n=5n=5. Compute the error.

See Solution

Problem 17210

Use the left endpoints of 4 subintervals to find the displacement for v=12t+4v=\frac{1}{2t+4} over 0t80 \leq t \leq 8. Round to two decimal places.

See Solution

Problem 17211

Find points c(a,b)c \in (a, b) for the mean value theorem for the given functions and intervals.

See Solution

Problem 17212

Estimate the area under f(x)=9x2f(x)=\sqrt{9-x^{2}} from 3-3 to 33 using a Riemann sum with n=4n=4 midpoints. Error?

See Solution

Problem 17213

An object moves at 16 m/s16 \mathrm{~m/s} for 0t2 s0 \leq t \leq 2 \mathrm{~s} and 26 m/s26 \mathrm{~m/s} for 2<t5 s2<t \leq 5 \mathrm{~s}. Find displacement for 0t50 \leq t \leq 5.

See Solution

Problem 17214

1. Find max/min points of y=x39x2+24xy=x^{3}-9 x^{2}+24 x.
2. Evaluate sin3xsinxdx\int \sin 3 x \sin x \, dx.
3. Evaluate x4cos2xdx\int x^{4} \cos 2 x \, dx.
4. Evaluate 2x3x3x2x3dx\int \frac{2 x^{3}-x^{3}-x}{2 x-3} \, dx.
5. Show y=e2xy=e^{2 x} satisfies y2y=0y^{\prime \prime}-2 y^{\prime}=0.

See Solution

Problem 17215

Approximate the displacement of an object with velocity v=13t+1v = \frac{1}{3t+1} (m/s) from t=0t=0 to t=8t=8 using 4 subintervals. Displacement is \square m.

See Solution

Problem 17216

Approximate the displacement of an object with velocity v=12t+4v=\frac{1}{2t+4} from t=0t=0 to t=8t=8 using 4 subintervals.

See Solution

Problem 17217

Find the limit as xx approaches 25 for the expression x525x\frac{\sqrt{x}-5}{25-x}.

See Solution

Problem 17218

Find the limit as hh approaches 0 for (h2)24h\frac{(h-2)^{2}-4}{h}.

See Solution

Problem 17219

Given f(7)=3f(7)=3, f(7)=10f^{\prime}(7)=10, f(7)=5f^{\prime \prime}(7)=5, find h(7)h^{\prime}(7) for h(x)=1+f(x)2h(x)=\sqrt{1+f^{\prime}(x)^{2}}. Round to three decimal places.

See Solution

Problem 17220

Find dydx\frac{dy}{dx} at (5,2)(5,2) for f(x)2+y2=6y7f(x)f(x)^{2}+y^{2}=6y-7f(x), given f(5)=1f(5)=1, f(5)=2f'(5)=2. Round to three decimals.

See Solution

Problem 17221

Given f(6)=5f(6)=5, f(6)=6f^{\prime}(6)=6, and f(6)=5f^{\prime \prime}(6)=5, find h(6)h^{\prime}(6) for h(x)=1+f(x)2h(x)=\sqrt{1+f^{\prime}(x)^{2}}. Round to three decimal places.

See Solution

Problem 17222

Find KK in the formula dωdθ=Kcos(2θ)sin(2θ)sin(6ω)\frac{d \omega}{d \theta}=K \frac{\cos (2 \theta) \sin (2 \theta)}{\sin (6 \omega)} from the equation 9cos(6ω)=8+9[cos(2θ)]29 \cos (6 \omega)=8+9[\cos (2 \theta)]^{2}. Round KK to three decimal places.

See Solution

Problem 17223

Find marginal utilities for u=x0.2y0.8u=x^{0.2} y^{0.8} and maximize utility with 4x+2y=1804x + 2y = 180.

See Solution

Problem 17224

Evaluate the limit: limx04x123+x8\lim _{x \rightarrow 0} \frac{4^{x}-1}{2^{3+x}-8}.

See Solution

Problem 17225

Relation entre prix pp et quantité qq: 10p2+pq+q22=C10 p^{2}+p q+\frac{q^{2}}{2}=C. Trouver dpdq\frac{d p}{d q} pour C=1000C=1000.

See Solution

Problem 17226

Evaluate the integral 3+dxx1+x2\int_{3}^{+\infty} \frac{d x}{x \sqrt{1+x^{2}}}.

See Solution

Problem 17227

Find h(5)h^{\prime}(5) for h(x)=1+f(x)2h(x)=\sqrt{1+f^{\prime}(x)^{2}} given f(5)=3f(5)=3, f(5)=4f^{\prime}(5)=4, f(5)=8f^{\prime \prime}(5)=8.

See Solution

Problem 17228

Find the derivative θ(n)\theta^{\prime}(n) of θ(n)=tan1(0.42/n)\theta(n)=\tan^{-1}(0.42/n) and compute θ(0.42)\theta^{\prime}(0.42). Round to three decimal places.

See Solution

Problem 17229

Find dydx\frac{d y}{d x} at (4,2)(4,2) for f(x)2+y2=6y7f(x)f(x)^{2}+y^{2}=6 y-7 f(x), given f(4)=1f(4)=1, f(4)=2.4f^{\prime}(4)=2.4. Round to three decimals.

See Solution

Problem 17230

Find the slope of the tangent line at (1,1)(1,1) for the curve 9x2+4xy9y2=49 x^{2}+4 x y-9 y^{2}=4. Round to three decimal places.

See Solution

Problem 17231

Differentiate 3cos(2ω)=7+8[cos(4θ)]23 \cos (2 \omega)=7+8[\cos (4 \theta)]^{2} to find dωdθ\frac{d \omega}{d \theta} and determine KK as a decimal.

See Solution

Problem 17232

Find dydx\frac{d y}{d x} for y=9+log10(6/x)y=9+\log_{10}(6/x) and evaluate at x=0.4x=0.4. Round to three decimal places.

See Solution

Problem 17233

Find the derivative θ(n)\theta^{\prime}(n) of θ(n)=tan1(0.38/n)\theta(n)=\tan^{-1}(0.38/n) and compute θ(0.38)\theta^{\prime}(0.38). Round to three decimal places.

See Solution

Problem 17234

Find dydx\frac{d y}{d x} at (7,2)(7,2) for f(x)2+y2=6y7f(x)f(x)^{2}+y^{2}=6y-7f(x), given f(7)=1f(7)=1, f(7)=2.7f'(7)=2.7.

See Solution

Problem 17235

Find h(3)h^{\prime}(3) for h(x)=1+f(x)2h(x)=\sqrt{1+f^{\prime}(x)^{2}} given f(3)=3f(3)=3, f(3)=2f^{\prime}(3)=2, f(3)=6f^{\prime \prime}(3)=6.

See Solution

Problem 17236

Find dydx\frac{d y}{d x} for y=9+log10(4/x)y=9+\log_{10}(4/x) and evaluate at x=0.3x=0.3. Round to three decimal places.

See Solution

Problem 17237

Find the value of KK in the formula dωdθ=Kcos(2θ)sin(2θ)sin(6ω)\frac{d \omega}{d \theta}=K \frac{\cos (2 \theta) \sin (2 \theta)}{\sin (6 \omega)} from the equation 9cos(6ω)=8+9[cos(2θ)]29 \cos (6 \omega)=8+9[\cos (2 \theta)]^{2}. Round KK to three decimal places.

See Solution

Problem 17238

Find h(5)h^{\prime}(5) for h(x)=1+f(x)2h(x)=\sqrt{1+f^{\prime}(x)^{2}} given f(5)=8f(5)=8, f(5)=2f^{\prime}(5)=2, f(5)=8f^{\prime \prime}(5)=8. Round to three decimal places.

See Solution

Problem 17239

Find the derivative θ(n)\theta'(n) of θ(n)=tan1(0.42/n)\theta(n) = \tan^{-1}(0.42/n) and compute θ(0.42)\theta'(0.42).

See Solution

Problem 17240

Calculate the average rate of change of f(x)=xf(x)=\sqrt{x} between x=4x=4 and x=36x=36.

See Solution

Problem 17241

Find h(7)h^{\prime}(7) if h(x)=1+f(x)2h(x)=\sqrt{1+f^{\prime}(x)^{2}} with f(7)=9f(7)=9, f(7)=4f^{\prime}(7)=4, f(7)=6f^{\prime \prime}(7)=6.

See Solution

Problem 17242

Find dydx\frac{d y}{d x} for y=2+log10(2/x)y=2+\log_{10}(2/x) and evaluate at x=0.4x=0.4. Round to three decimal places.

See Solution

Problem 17243

Find dydx\frac{d y}{d x} at (10,2)(10,2) given f(10)=1f(10)=1, f(10)=1.7f^{\prime}(10)=1.7, and f(x)2+y2=6y7f(x)f(x)^{2}+y^{2}=6 y-7 f(x). Round to three decimals.

See Solution

Problem 17244

Find the initial velocity and velocity after 5 seconds for v(t)=52(1e0.19t)v(t)=52(1-e^{-0.19 t}) in m/s\mathrm{m/s}.

See Solution

Problem 17245

Find the derivative θ(n)\theta^{\prime}(n) of θ(n)=tan1(0.2/n)\theta(n)=\tan^{-1}(0.2/n) and compute θ(0.2)\theta^{\prime}(0.2). Round to three decimals.

See Solution

Problem 17246

Given ff with f(6)=5f(6)=5, f(6)=6f^{\prime}(6)=6, and f(6)=5f^{\prime \prime}(6)=5, find h(6)h^{\prime}(6) for h(x)=1+f(x)2h(x)=\sqrt{1+f^{\prime}(x)^{2}}. Round to three decimal places.

See Solution

Problem 17247

Find dydx\frac{d y}{d x} at (4,2)(4,2) given f(4)=1f(4)=1, f(4)=2.1f^{\prime}(4)=2.1, and f(x)2+y2=6y7f(x)f(x)^{2}+y^{2}=6 y-7 f(x). Round to three decimal places.

See Solution

Problem 17248

Find h(7)h'(7) for h(x)=1+f(x)2h(x)=\sqrt{1+f'(x)^{2}} given f(7)=9f(7)=9, f(7)=4f'(7)=4, f(7)=6f''(7)=6. Round to three decimal places.

See Solution

Problem 17249

Find the initial population and the population after 8 years for P(t)=7901+6e0.4tP(t)=\frac{790}{1+6 e^{-0.4 t}}. Round to whole numbers.

See Solution

Problem 17250

Find dydx\frac{d y}{d x} at (10,2)(10,2) for f(x)2+y2=6y7f(x)f(x)^{2}+y^{2}=6 y-7 f(x), given f(10)=1f(10)=1 and f(10)=1.7f^{\prime}(10)=1.7.

See Solution

Problem 17251

Find the constant KK in the formula dωdθ=Kcos(10θ)sin(10θ)/sin(4ω)\frac{d \omega}{d \theta}=K \cos (10 \theta) \sin (10 \theta) / \sin (4 \omega) from the equation 4cos(4ω)=6+7[cos(10θ)]24 \cos (4 \omega)=6+7[\cos (10 \theta)]^{2}.

See Solution

Problem 17252

A company models price pp and demand xx as p=11550.11x2p=1155-0.11 x^{2} and cost as C(x)=800+384xC(x)=800+384 x. Find profit P(x)P(x) and analyze its maxima, minima, and concavity.

See Solution

Problem 17253

Find dydx\frac{dy}{dx} at (10,2)(10,2) for f(x)2+y2=6y7f(x)f(x)^2 + y^2 = 6y - 7f(x), given f(10)=1f(10)=1 and f(10)=1.7f'(10)=1.7.

See Solution

Problem 17254

Invest \$16,563 at 6.1% interest, compounded continuously. Find the function, balances after 1, 2, 5, 10 years, and doubling time.

See Solution

Problem 17255

Find the constant KK in the formula dωdθ=Kcos(2θ)sin(2θ)/sin(6ω)\frac{d \omega}{d \theta}=K \cos (2 \theta) \sin (2 \theta) / \sin (6 \omega) from the equation 9cos(6ω)=8+9[cos(2θ)]29 \cos (6 \omega)=8+9[\cos (2 \theta)]^{2}. Round KK to three decimal places.

See Solution

Problem 17256

A red sports car's speed is f(t)=44000(t+20)2f(t)=\frac{44000}{(t+20)^{2}} for 0t60 \leq t \leq 6.
a. Explain why k=1n6nf(6kn)\sum_{k=1}^{n} \frac{6}{n} f\left(\frac{6 k}{n}\right) estimates the distance in 6 seconds.
b. Compare k=0n16nf(6kn)\sum_{k=0}^{n-1} \frac{6}{n} f\left(\frac{6 k}{n}\right) to the previous sum.
c. What does limnk=1n6nf(6kn)\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{6}{n} f\left(\frac{6 k}{n}\right) signify? What was its value from a previous exercise?

See Solution

Problem 17257

The demand for a fitness video game is given by p=11037.73xp=110-37.73\sqrt{x}, and cost is C=0.04x2+10x+150C=-0.04x^2+10x+150.
(a) Write profit P(x)P(x) as a function of xx.
(b) Find the production level for maximum profit and the maximum profit value.
(c) Determine the production level where profit decreases least rapidly.

See Solution

Problem 17258

Find the derivative θ(n)\theta^{\prime}(n) of θ(n)=tan1(0.07/n)\theta(n)=\tan^{-1}(0.07/n) and calculate θ(0.07)\theta^{\prime}(0.07). Round to three decimal places.

See Solution

Problem 17259

Define integrals for: a) distance with speed f(t)f(t) from t=0t=0 to t=6t=6; b) time from t=3t=3 to t=5t=5; c) limnk=1nsin(kπn)(πn)\lim_{n \to \infty} \sum_{k=1}^{n} \sin\left(\frac{k \pi}{n}\right)\left(\frac{\pi}{n}\right) and limnk=1n(2kn)2(2n)\lim_{n \to \infty} \sum_{k=1}^{n}\left(\frac{2k}{n}\right)^{2}\left(\frac{2}{n}\right).

See Solution

Problem 17260

Use the Fundamental Theorem of Calculus to find the area under y=9x2y=9-x^{2} from x=0x=0 to x=3x=3.

See Solution

Problem 17261

Evaluate the integral: ln(x9)dx\int \ln \left(x^{9}\right) d x.

See Solution

Problem 17262

Evaluate the integral: 3xe5xdx=\int 3 x e^{5 x} dx = 圆园 +C+ C

See Solution

Problem 17263

Evaluate the integral: 1xlnxdx\int \frac{1}{x \ln x} d x. What is the result?

See Solution

Problem 17264

Find the integral of x(x2+3)54dxx(x^{2}+3)^{\frac{5}{4}} \, dx and include the constant CC.

See Solution

Problem 17265

Find the limits of g(t)g(t) as tt approaches 0, 3, and 4 from both sides, where g(t)={t4,t<0t2,0t44t,t>4g(t) = \begin{cases} t-4, & t<0 \\ t^{2}, & 0 \leq t \leq 4 \\ 4t, & t>4 \end{cases}.

See Solution

Problem 17266

Find the integral for limnn=1nsin(kπn)(πn)\lim_{n \to \infty} \sum_{n=1}^{n} \sin\left(\frac{k \pi}{n}\right)\left(\frac{\pi}{n}\right) and limnn=1n(2kn)2(2n)\lim_{n \to \infty} \sum_{n=1}^{n}\left(\frac{2k}{n}\right)^{2}\left(\frac{2}{n}\right). Apply the Fundamental Theorem to y=9x2y=9-x^{2}.

See Solution

Problem 17267

Calculate the integral 12(8x3+12x2)dx\int_{1}^{2}\left(8 x^{3}+\frac{1}{2 x^{2}}\right) d x.

See Solution

Problem 17268

Find the integral equivalents for: i) limnn=1nsin(kπn)(πn)\lim_{n \to \infty} \sum_{n=1}^{n} \sin\left(\frac{k \pi}{n}\right)\left(\frac{\pi}{n}\right) ii) limnn=1n(2kn)2(2n)\lim_{n \to \infty} \sum_{n=1}^{n}\left(\frac{2k}{n}\right)^{2}\left(\frac{2}{n}\right). Also, use the Fundamental Theorem of Calculus for the area under y=9x2y=9-x^{2}.

See Solution

Problem 17269

Calculate the integral 02x2dx\int_{0}^{2} x^{2} dx using n=4n=4.

See Solution

Problem 17270

Calculate the integral from 1 to 4 of the function tlnt\sqrt{t} \ln t.

See Solution

Problem 17271

Calculate the integral 08x3dx\int_{0}^{8} \sqrt[3]{x} \, dx with n=8n=8.

See Solution

Problem 17272

Create a table for f(x)=x4x2f(x)=\frac{x-4}{\sqrt{x}-2} at x=4.1,4.01,4.001,3.9,3.99,3.999x=4.1,4.01,4.001,3.9,3.99,3.999 to estimate limx4f(x)\lim_{x \to 4} f(x) and factor to find the limit.

See Solution

Problem 17273

Calculate the integral 02x3dx\int_{0}^{2} x^{3} \, dx using n=4n=4.

See Solution

Problem 17274

Untersuche die Vergessenskurve s(t)=15t+95150t+95100s(t)=\frac{15 t+95}{150 t+95} \cdot 100 für t=0,1,24t=0, 1, 24 und finde den Zeitpunkt für 50\% Vergessen. Bestimme den langfristigen Prozentsatz und skizziere den Graphen.

See Solution

Problem 17275

Evaluate the integral: cos6xsinxdx\int \cos^{6} x \sin x \, dx

See Solution

Problem 17276

Approximate the integral of f(x)=3xx2f(x)=3x-x^2 from x=0x=0 to x=3x=3 using n=3n=3.

See Solution

Problem 17277

Untersuche die Vergessenskurve s(t)=15t+95150t+95100s(t)=\frac{15 t+95}{150 t+95} \cdot 100. Berechne s(0)s(0), s(1)s(1), s(24)s(24) und wann s(t)=50%s(t)=50\%. Finde den Grenzwert für tt \to \infty und skizziere den Graphen.

See Solution

Problem 17278

Johanna trinkt Kaffee. Bestimme die Temperatur T(0)T(0), T(5)T(5), Wartezeit für T=50CT=50^{\circ}C und Endtemperatur bei langer Zeit.

See Solution

Problem 17279

Bestimme die Steigung der Funktion f(x)=e0,5x2f(x)=e^{-0,5 x^{2}} bei x0=1x_{0}=1.

See Solution

Problem 17280

Bestimme die Tangentengleichung von f(x)=2x+2f(x)=\sqrt{2x+2} bei x0=1x_0=1.

See Solution

Problem 17281

Find the values of f(1)f(-1), f(1)f^{\prime}(-1), and f(1)f^{\prime \prime}(-1) given inflection points at x=3.8,1,0.3,3.2x=-3.8, -1, -0.3, 3.2.

See Solution

Problem 17282

Evaluate the integral: 9x2(x2+2x+2)(x2+1)2dx\int_{-\infty}^{\infty} \frac{9 x^{2}}{(x^{2}+2 x+2)(x^{2}+1)^{2}} dx

See Solution

Problem 17283

Bestimmen Sie die Ableitung von f(x)=(13x4)2f(x)=\left(1-3 x^{4}\right)^{2} mit der Kettenregel.

See Solution

Problem 17284

Berechne die mittlere Steigung von f(x)=x2f(x)=x^{2} auf [2,a][2, a] mit a>2a>2 und bestimme aa, wenn die Steigung 6 ist.

See Solution

Problem 17285

Gegeben ist f(x)=x3+3x24f(x)=x^{3}+3 x^{2}-4. Finde den Wendepunkt, die Wendetangente, die Länge PQ\overline{\mathrm{PQ}} und den Flächeninhalt des Dreiecks.

See Solution

Problem 17286

Calculate the integral A1=10x3dxA_{1}=\int_{-1}^{0} x^{3} dx.

See Solution

Problem 17287

Finde die Extrempunkte und deren Art für die Funktion m(x)=x44x2+3m(x)=x^{4}-4 x^{2}+3.

See Solution

Problem 17288

Finde die Extrempunkte und deren Art für die Funktion f(x)=x33xf(x)=x^{3}-3x. Berechne f(x)f'(x) und f(x)f''(x).

See Solution

Problem 17289

Find the limit: limnn2(n3+13n)\lim _{n \rightarrow \infty} n^{2}\left(\sqrt[3]{n^{3}+1}-n\right).

See Solution

Problem 17290

Bestimme die Ableitung für: a) f(x)=1f(x)=1, b) g(x)=2x10g(x)=2x-10, c) h(x)=4x2h(x)=4x^{2}, d) k(x)=3(x1)2k(x)=3(x-1)^{2}.

See Solution

Problem 17291

Calculate the integral from 0 to 1 of 11+x2\frac{1}{1+x^{2}} with respect to xx.

See Solution

Problem 17292

Bestimmen Sie für f(x)=sin(x)f(x)=\sin(x) im Intervall [π;π][-\pi; \pi]: a) Steigung bei π\pi, b) Stellen mit Steigung 1, c) Steigungswinkel bei 0, d) Stellen mit 2020^{\circ}, e) x-Werte für monoton steigendes Verhalten.

See Solution

Problem 17293

Finde die Extrempunkte und deren Art für die Funktion h(x)=x33x2+1h(x)=x^{3}-3 x^{2}+1.

See Solution

Problem 17294

Bestimme die erste Ableitung der Funktion f(x)=14x414x33516x2f(x)=\frac{1}{4} x^{4}-\frac{1}{4} x^{3}-\frac{35}{16} x^{2}.

See Solution

Problem 17295

Evaluate the integral 0111+x2dx\int_{0}^{1} \frac{1}{1+x^{2}} d x using Simpson's rule.

See Solution

Problem 17296

Gegeben ist die Funktion fa(x)=ax3+4axf_{a}(x)=-a x^{3}+4 a x.
a) Zeigen Sie die Punktsymmetrie zum Ursprung. b) Beweisen Sie, dass die Punkte P(2,0)P(-2,0) und Q(2,0)Q(2,0) auf den Graphen liegen. c) Nachweisen, dass es einen Hoch- und einen Tiefpunkt gibt. d) Bestimmen Sie die Wendetangente und den Wert von aa für die Steigung m=8m=8.

See Solution

Problem 17297

Approximate the integral 0111+x2dx\int_{0}^{1} \frac{1}{1+x^{2}} dx using Simpson's Rule with an even number of intervals (n).

See Solution

Problem 17298

Approximate 02116+x2dx\int_{0}^{2} \frac{1}{16+x^{2}} dx using the Trapezoidal rule with 6 subintervals.

See Solution

Problem 17299

Finde die Tangenten- und Normalengleichung an f(x)=x33x2f(x)=x^3-3x^2 bei x=0,5x=0,5.

See Solution

Problem 17300

Ein Objekt fällt aus 140 m140 \mathrm{~m} Höhe. Bestimme die Zeit, bis es 20 m20 \mathrm{~m} und 70 m70 \mathrm{~m} erreicht, und berechne die Durchschnittsgeschwindigkeit.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord