Calculus

Problem 29001

Find suitable δ\delta values for limx24x+2=10\lim _{x \rightarrow 2} 4 x+2=10 with ε=0.2\varepsilon=0.2. Options: δ=0.05\delta=0.05, δ=0.0161\delta=0.0161, δ=0.1\delta=0.1, δ=0.0025\delta=0.0025.

See Solution

Problem 29002

Finde die x-Werte, an denen die Ableitung von f(x)=12xf(x)=-\frac{12}{x} gleich 3 ist.

See Solution

Problem 29003

Find the area between y=1x2y=\frac{1}{x^{2}}, y=x2y=-x^{2}, x=1x=1, and x=2x=2. Choices: A. 146\frac{14}{6} B. 176\frac{17}{6} C. 3 D. 196\frac{19}{6}

See Solution

Problem 29004

Find the definite integral for the area between y=xy=x and y=5xx3y=5x-x^{3}.

See Solution

Problem 29005

Find the area between the curves y=1x2y=\frac{1}{x^{2}}, y=x2y=-x^{2}, from x=1x=1 to x=2x=2.

See Solution

Problem 29006

Find the definite integral for the area between y=xy=x and y=5xx3y=5x-x^{3}.

See Solution

Problem 29007

Find δ\delta for f(x)=3x1f(x)=3x-1 as x3x \to 3 with ε=0.05\varepsilon=0.05 so that f(x)L<ε|f(x)-L|<\varepsilon.

See Solution

Problem 29008

Finde die Stellen, an denen die Ableitung der Funktionen f(x)=12xf(x)=-\frac{12}{x} und f(x)=13x3+3,5x2+9x11f(x)=\frac{1}{3} x^{3}+3,5 x^{2}+9 x-11 gleich 3 ist.

See Solution

Problem 29009

Find the definite integral for the area between the curves y=xy=x and y=5xx3y=5x-x^{3}.

See Solution

Problem 29010

Differentiate the function (1+2x2ex)(1+2 x^{2} e^{-x}).

See Solution

Problem 29011

Determine if the series converges: n=1arctan(n)n2\sum_{n=1}^{\infty} \frac{\arctan (n)}{n^{2}}

See Solution

Problem 29012

Überprüfen Sie die Produktregel für drei Faktoren an der Funktion f(x)=x2x3x4f(x)=x^{2} \cdot x^{3} \cdot x^{4}.

See Solution

Problem 29013

Differentiate the expression (2x+4)(2 x+4).

See Solution

Problem 29014

Calculate the limit: limxexsin(x2)\lim _{x \rightarrow-\infty} e^{x} \sin \left(x^{2}\right).

See Solution

Problem 29015

Find the derivative of the function (2x+4)ex(2x + 4)e^{x}.

See Solution

Problem 29016

Eine Firma modelliert Verkaufszahlen eines neuen Smartphones mit fk(t)=k(t15)e0,01t+15kf_{k}(t)=k \cdot(t-15) \cdot e^{-0,01 t}+15 k.
a) Bestimmen Sie kk, sodass täglich mindestens 750 Smartphones verkauft werden. b) Zeigen Sie, dass der Zeitpunkt der maximalen Verkaufszahl unabhängig von kk ist. c) Beweisen Sie, dass Verkaufszahlen nach dem Maximum sinken. d) Berechnen Sie, wann die Verkaufszahlen am stärksten sinken. e) Bestimmen Sie die maximale und langfristige Verkaufszahl für Modelle mit k=100k=100 und k=200k=200.

See Solution

Problem 29017

Untersuchen Sie, ob x0x_{0} eine Wendestelle für die Funktionen a) f(x)=16x3+x21f(x)=\frac{1}{6} x^{3}+x^{2}-1 (bei x0=0x_{0}=0), b) f(x)=2x36x2f(x)=2 x^{3}-6 x^{2} (bei x0=1x_{0}=1), c) f(x)=x5+x3f(x)=x^{5}+x^{3} (bei x0=0x_{0}=0) ist.

See Solution

Problem 29018

Estimate the limit: limx2x24x2\lim _{x \rightarrow 2^{-}} \frac{\left|x^{2}-4\right|}{x-2}.

See Solution

Problem 29019

Finde die Wendepunkte der Funktionen durch die dritte Ableitung: a) f(x)=2x33x21f(x)=2 x^{3}-3 x^{2}-1 b) f(x)=13x3+3x2xf(x)=\frac{1}{3} x^{3}+3 x^{2}-x c) f(x)=x36x2+12x7f(x)=x^{3}-6 x^{2}+12 x-7 d) f(x)=14x432x2f(x)=\frac{1}{4} x^{4}-\frac{3}{2} x^{2} e) f(x)=12x44x3f(x)=\frac{1}{2} x^{4}-4 x^{3} f) f(x)=14x5+52x2f(x)=\frac{1}{4} x^{5}+\frac{5}{2} x^{2}

See Solution

Problem 29020

Find the average rate of change of f(x)=50(1.021)xf(x)=50(1.021)^{x} from x=7x=7 to x=10x=10.

See Solution

Problem 29021

Find when the particle at x(t)=t348t2x(t)=t^{3}-48t^{2} moves left for t0t \geq 0.

See Solution

Problem 29022

Find y(7)y^{(7)} for y=sinxy=-\sin x. Which option matches: (A) yy, (B) dydx\frac{d y}{d x}, (C) d2ydx2\frac{d^{2} y}{d x^{2}}, (D) d3ydy3\frac{d^{3} y}{d y^{3}}, (E) None?

See Solution

Problem 29023

Find the derivative of f(x)=x2+xf(x)=-x^{2}+x. Which option represents it correctly? A, B, C, D, or E?

See Solution

Problem 29024

Find the acceleration of the particle at t=2t=2 for s(t)=t3+1s(t)=\sqrt{t^{3}+1}. Options: (A) 3feet/sec23 \mathrm{feet} / \mathrm{sec}^{2}, (B) 2/3foot/sec22 / 3 \mathrm{foot} / \mathrm{sec}^{2}, (C) 1/108foot/sec2-1 / 108 \mathrm{foot} / \mathrm{sec}^{2}, (D) 1/9foot/sec2-1 / 9 \mathrm{foot} / \mathrm{sec}^{2}, (E) None.

See Solution

Problem 29025

Calculate the integral from 0 to 2 of x2x^{2} with respect to xx.

See Solution

Problem 29026

Find the average velocity of the position function s(t)=4t25t+9s(t)=-4 t^{2}-5 t+9 between t=5t=5 and t=5+ht=5+h as a simplified expression in hh.

See Solution

Problem 29027

Find the average rate of change of f(x)=50(1.021)xf(x)=50(1.021)^{x} from x=7x=7 to x=10x=10.

See Solution

Problem 29028

Estimate the rate of change of f(x)=xx2f(x)=\frac{x}{x-2} at x=2x=2. Choose: a) 20000 b) 2 c) 0 d) Not continuous.

See Solution

Problem 29029

Find the average rate of change of f(x)=3(2)2xf(x) = 3(2)^{2x} on the interval 0x20 \leq x \leq 2.

See Solution

Problem 29030

Find the average rate of change of f(x)=3(2)2xf(x) = 3(2)^{2x} over the interval 0x20 \leq x \leq 2.

See Solution

Problem 29031

Find the instantaneous rate of change of f(x)=130000(1.06)xf(x)=130000(1.06)^{x} at x=5x=5. Options: a) \$10000/year b) \$8000/year c) \$12000/year d) \$14000/year

See Solution

Problem 29032

Evaluate limx0+tan3(2x)x4\lim _{x \rightarrow 0^{+}} \frac{\tan ^{3}(2 x)}{x^{4}} and justify your answer without using indeterminate forms.

See Solution

Problem 29033

Calculate the integral 121xdx\int_{1}^{2} \frac{1}{x} \, dx.

See Solution

Problem 29034

Find the average rate of change of height h(t)=4.9t2+150h(t)=-4.9 t^{2}+150 from t=4t=4 to t=5t=5. Choices: a) 44.1-44.1 m/s b) 19.6-19.6 m/s c) 24.5-24.5 m/s d) 24.524.5 m/s.

See Solution

Problem 29035

Calculate the integral from 1 to 2 of the function 1x\frac{1}{x}.

See Solution

Problem 29036

Find the instantaneous rate of change of height for h(t)=5t2+30h(t)=-5 t^{2}+30 at t=1t=1 second. Options: a) 5 m/s-5 \mathrm{~m/s} b) 20 m/s-20 \mathrm{~m/s} c) 5 m/s5 \mathrm{~m/s} d) 10 m/s-10 \mathrm{~m/s}.

See Solution

Problem 29037

Evaluate the integral from 0 to π: 0πsinxdx\int_{0}^{\pi} \sin x \, dx

See Solution

Problem 29038

Find the function where the instantaneous rate of change is closest to 5 at x=2x=2: a) f(x)=x2f(x)=x^{2}, b) h(x)=x2+0.5x+1h(x)=x^{2}+0.5 x+1, c) j(x)=1.1xj(x)=1.1^{x}, d) g(x)=x2+1g(x)=x^{2}+1.

See Solution

Problem 29039

Find the limits: a. limx3(2f(x)+g(x))\lim _{x \rightarrow 3}(2 f(x)+g(-x)) and b. limx3(g(x)f(x))\lim _{x \rightarrow-3}\left(\frac{g(x)}{f(-x)}\right) given limits of ff and gg.

See Solution

Problem 29040

Find the instantaneous rate of change of height h(t)=16cos(2πt32)+18h(t)=-16 \cos \left(\frac{2 \pi t}{32}\right)+18 at t=19t=19 s using Δt=0.001\Delta t=0.001. Round to one decimal. Options: a) 2.5-2.5 m/s b) 0.130.13 m/s c) 1.7-1.7 m/s d) 0.670.67 m/s.

See Solution

Problem 29041

Find the slope of the tangent to the function f(x)=3x2+11x6f(x)=-3 x^{2}+11 x-6 at the point P(4,98)P(-4,-98). a) 35 b) 42 c) -29 d) 17

See Solution

Problem 29042

Find the rate of change of coffee temperature at t=9t=9 hours using T(t)=60(0.5)(t/8)+23T(t)=60(0.5)^{(t/8)}+23. Round to two decimals.

See Solution

Problem 29043

Find the instantaneous rate of change of the home value f(x)=130000(1.06)xf(x)=130000(1.06)^{x} after 5 years. Options: a) \$8000/year b) \$10,000/year c) \$12,000/year d) \$14,000/year

See Solution

Problem 29044

Find the average rate of change of f(x)=3(2)2xf(x)=3(2)^{2 x} from x=0x=0 to x=2x=2. What is ΔfΔx\frac{\Delta f}{\Delta x}?

See Solution

Problem 29045

Find the instantaneous rate of change of height h(t)=16cos(2πt32)+18h(t)=-16 \cos \left(\frac{2 \pi t}{32}\right)+18 at t=19t=19 s. Use Δt=0.001\Delta t=0.001 s. Options: a) -2.5 m/s b) 0.13 m/s c) -1.7 m/s d) 0.67 m/s

See Solution

Problem 29046

Find the general antiderivative of f(r)=71+r2r45f(r)=\frac{7}{1+r^{2}}-\sqrt[5]{r^{4}} and verify your result.

See Solution

Problem 29047

Find the instantaneous rate of change of height at t=1t=1 for h(t)=5t2+30h(t)=-5t^2+30. Options: a) 5-5 m/s b) 20-20 m/s c) 55 m/s d) 10-10 m/s.

See Solution

Problem 29048

Find the function f(x)f(x) given its derivative f(x)=(x+1)xf^{\prime}(x)=\frac{(x+1)}{\sqrt{x}} and f(1)=9f(1)=9.

See Solution

Problem 29049

Find the function f(x)f(x) given that f(x)=12x3+1xf'(x)=12 x^{3}+\frac{1}{x} for x>0x>0 and f(1)=1.f(1)=1.

See Solution

Problem 29050

Find the coffee cooling rate at 9 hours using T(t)=60(0.5)(t/8)+23T(t)=60(0.5)^{(t/8)}+23. Round to two decimals.

See Solution

Problem 29051

Find the average rate of change of f(x)=3(2)2xf(x)=3(2)^{2x} on the interval 0x20 \leq x \leq 2.

See Solution

Problem 29052

Find the instantaneous rate of change of height h(t)=5t2+30h(t)=-5 t^{2}+30 at t=1t=1 s. Options: a) 5-5 m/s b) 20-20 m/s c) 55 m/s d) 10-10 m/s.

See Solution

Problem 29053

Estimate the instantaneous rate of change in book sales at 6 weeks given sales data for weeks 1 to 10. Choices: a) -3 b) -13 c) -19.001 d) -8

See Solution

Problem 29054

Find limx2f(x)\lim _{x \rightarrow 2} f(x) where f(x)=lnxf(x)=\ln x for 0<x20<x \leq 2 and f(x)=x2ln2f(x)=x^{2} \ln 2 for 2<x42<x \leq 4.

See Solution

Problem 29055

If ff is continuous with f(3)=7f(3)=7, which statement is true? (A) limx3f(3x)=9\lim _{x \rightarrow 3} f(3 x)=9 (B) limx3f(2x)=14\lim _{x \rightarrow 3} f(2 x)=14 (C) limx3f(x)f(3)x3=7\lim _{x \rightarrow 3} \frac{f(x)-f(3)}{x-3}=7 (D) limx3f(x2)=49\lim _{x \rightarrow 3} f\left(x^{2}\right)=49 (E) limx3(f(x))2=49\lim _{x \rightarrow 3}(f(x))^{2}=49

See Solution

Problem 29056

Find limx3f(x)\lim _{x \rightarrow 3} f(x) for f(x)={ln3x,0<x3xln3,3<x4f(x)=\left\{\begin{array}{ll}\ln 3 x, & 0<x \leq 3 \\ x \ln 3, & 3<x \leq 4\end{array}\right.. Choices: (A) ln9\ln 9, (B) ln27\ln 27, (C) 3ln33 \ln 3, (D) 3+ln33+\ln 3, (E) nonexistent.

See Solution

Problem 29057

Find the average rate of change of height h(t)=4.9t2+150h(t) = -4.9t^2 + 150 from t=4t=4 s to t=5t=5 s. Choices: a) 24.5 m/s b) -44.1 m/s c) -24.5 m/s d) -19.6 m/s

See Solution

Problem 29058

Find the instantaneous rate of change of the home's value f(x)=130000(1.06)xf(x)=130000(1.06)^{x} after 5 years. Options: a) \$10000/year b) \$12000/year c) \$8000/year d) \$14000/year.

See Solution

Problem 29059

Approximate 012f(x)dx\int_{0}^{12} f(x) d x using the methods: a) Left Riemann (3 rects), b) Right Riemann (6 rects), c) Trapezoid (3), d) Midpoint (Δx=4.52\Delta x=4.52).

See Solution

Problem 29060

Find the function where the instantaneous rate of change is nearest to 5 at x=2x=2: a) f(x)=x2f(x)=x^{2} b) h(x)=x2+0.5x+1h(x)=x^{2}+0.5 x+1 c) j(x)=1.1xj(x)=1.1^{x} d) g(x)=x2+1g(x)=x^{2}+1

See Solution

Problem 29061

Find the instantaneous rate of change of g(x)=x22x+5g(x)=x^{2}-2x+5 at x=3x=3. Options: a) 6 b) 8 c) 4 d) 2

See Solution

Problem 29062

Given SN=23N2S_{N}=2-\frac{3}{N^{2}}, find: (a) n=110an\sum_{n=1}^{10} a_{n}, n=416an\sum_{n=4}^{16} a_{n}; (b) a3a_{3}; (c) ana_{n}; (d) n=1an\sum_{n=1}^{\infty} a_{n}.

See Solution

Problem 29063

Find the value of xx where the derivative of h(x)=0.5x2+x2h(x)=0.5 x^{2}+x-2 is closest to 0. a) x=1x=-1 b) x=0x=0 c) x=1x=1 d) x=2x=2

See Solution

Problem 29064

Calculate the midpoint Riemann sum for 14f(x)dx\int_{1}^{4} f(x) d x using 3 subintervals from given f(x)f(x) values.

See Solution

Problem 29065

Estimate the value change rate of a car after 5 years using V(t)=24000(0.95)tV(t)=24000(0.95)^{t}. Choose from: a) $150/-\$ 150 / year b) $1250/-\$ 1250 / year c) $950/-\$ 950 / year d) $150/\$ 150 / year

See Solution

Problem 29066

Find the value of 76f(x)dx\int_{-7}^{6} f(x) \, dx given areas: A=10A=10, B=13B=13, C=4C=4, D=16D=16.

See Solution

Problem 29067

Approximate 117f(x)dx\int_{1}^{17} f(x) dx using the trapezoidal sum with 5 intervals from f(x)f(x) values: f(1)=25f(1)=25, f(5)=12f(5)=12, f(8)=8f(8)=8, f(11)=7f(11)=7, f(15)=5f(15)=5, f(17)=13f(17)=13.

See Solution

Problem 29068

Find the value of 85f(x)dx\int_{-8}^{5} f(x) \, dx given areas: A=4, B=17, C=18.

See Solution

Problem 29069

Find the equation of the tangent line to y=arctan(x2)y=\arctan \left(\frac{x}{2}\right) at the point (0,0)(0,0).

See Solution

Problem 29070

Find the derivative dydx\frac{d y}{d x} for the equation x3e2y=4x^{3} e^{2 y}=4.

See Solution

Problem 29071

Find the equation of the tangent line to y=arctan(x2)y=\arctan \left(\frac{x}{2}\right) at the point (0,0)(0,0).

See Solution

Problem 29072

Find the value of 47f(x)dx\int_{-4}^{7} f(x) \, dx given areas: A=10, B=19, C=6, D=5 (A, C below x-axis; B, D above).

See Solution

Problem 29073

Find the value of 38f(x)dx \int_{-3}^{8} f(x) \, dx given areas: A=10 A = 10 , B=6 B = -6 , C=23 C = 23 , D=4 D = -4 .

See Solution

Problem 29074

Calculate S3,S4,S5S_{3}, S_{4}, S_{5} for the series S=n=6(1n+11n+2)S=\sum_{n=6}^{\infty}\left(\frac{1}{n+1}-\frac{1}{n+2}\right).

See Solution

Problem 29075

Find the horizontal and vertical asymptotes of f(x)=2x21x2+3f(x)=\frac{2 x^{2}-1}{x^{2}+3} using limits.

See Solution

Problem 29076

Find the horizontal and vertical asymptotes of f(x)=2x+1x2xf(x)=\frac{2x+1}{x^{2}-x} using limits.

See Solution

Problem 29077

Calculate the integral: 19x2dx\int \frac{1}{\sqrt{9-x^{2}}} d x

See Solution

Problem 29078

Evaluate the limits and sums for sequences:
1. an=2n2+2na_n = \frac{2}{n^2 + 2n}: find limnan\lim_{n \to \infty} a_n and n=1an\sum_{n=1}^{\infty} a_n.
2. bn=ln(n+1n)b_n = \ln\left(\frac{n+1}{n}\right): find limnbn\lim_{n \to \infty} b_n and n=1bn\sum_{n=1}^{\infty} b_n.

See Solution

Problem 29079

Find the sum of the series: n=1arctan(9n)\sum_{n=1}^{\infty} \arctan (9 n).

See Solution

Problem 29080

Find f(t)f(t) given that f(t)=2et+3sin(t)f''(t) = 2 e^{t} + 3 \sin(t), with conditions f(0)=6f(0) = -6 and f(π)=6f(\pi) = -6.

See Solution

Problem 29081

Find the smallest NN such that SN=k=1N1k>4S_{N}=\sum_{k=1}^{N} \frac{1}{k} > 4. What is NN?

See Solution

Problem 29082

Find the average rate of change of the population given by f(t)=0.008t2+2.1t+175f(t)=0.008 t^{2}+2.1 t+175 from 1990 to 2010. Round to 1 decimal place.

See Solution

Problem 29083

Find f(5)f(5) for the function where f(x)=9x+4sin(x)f^{\prime \prime}(x)=9x+4\sin(x), given f(0)=2f(0)=2 and f(0)=2f^{\prime}(0)=2.

See Solution

Problem 29084

Explain the difference between f(a)=Lf(a)=L and limxaf(x)=L\lim _{x \rightarrow a} f(x)=L. What is this equality called?

See Solution

Problem 29085

What term describes a quantity decreasing at a rate proportional to its current value? A. Negative slope B. Positive slope C. Exponential decay D. Exponential growth

See Solution

Problem 29086

Find the limit: limx0(221/x)\lim _{x \rightarrow 0}\left(2-2^{1 / x}\right).

See Solution

Problem 29087

Find consecutive integers for f(x)=x3+11x236x33 f(x) = -x^3 + 11x^2 - 36x - 33 to locate relative extrema: max between x= x = \square and x= x = \square ; min between x= x = \square and x= x = \square .

See Solution

Problem 29088

A balloon inflates at 100πft3/min100 \pi \mathrm{ft}^{3} / \mathrm{min}. Find the radius increase rate at 5ft5 \mathrm{ft} and surface area rate.

See Solution

Problem 29089

Evaluate the sequence bn=ln(n+1n)b_{n}=\ln \left(\frac{n+1}{n}\right): a. Show limnbn=0\lim _{n \rightarrow \infty} b_{n}=0. b. Find n=1bn\sum_{n=1}^{\infty} b_{n}.

See Solution

Problem 29090

Find the relative extrema of f(x)=x3+2x23x1f(x) = x^3 + 2x^2 - 3x - 1. Fill in: max between x=x=\square and x=x=\square, min between x=x=\square and x=x=\square.

See Solution

Problem 29091

Model water temperature with f(x)=2x33x20.8xf(x) = 2x^3 - 3x^2 - 0.8x. Graph it, find key features, and identify intercepts and extrema.

See Solution

Problem 29092

Find the max and min of f(x)=ln(x2+x+1)f(x)=\ln(x^{2}+x+1) on [1,1][-1,1]. Provide exact values, no rounding.

See Solution

Problem 29093

Find the derivative of these functions with respect to xx: 1. y=x8y=x^{8}, 2. y=5x9y=5 x^{9}, 3. y=8x+9y=8 x+9, 4. y=x27x+2y=x^{2}-7 x+2, 5. y=x33x2+3x1y=x^{3}-3 x^{2}+3 x-1, 6. y=x4+3x1y=x^{-4}+3 x^{-1}, 7. y=x12x2+2y=x-\frac{1}{2 x^{2}}+\sqrt{2}, 8. y=2x12+x1x3y=2 x^{\frac{1}{2}}+x-\frac{1}{x^{3}}, 9. y=x+4x28y=-\sqrt{x}+\frac{4}{x^{2}}-8, 10. y=x2(x+1)y=x^{2}(x+1), 11. y=3x13(x2x+1)y=3 x^{\frac{1}{3}}\left(x^{2}-x+1\right), 12. y=2x3x+5x2y=\frac{2 x^{3}-x+5}{x^{2}}, 13. y=x22x+1xy=\frac{x^{2}-2 x+1}{\sqrt{x}}, 14. y=6xx+8x23y=6 x \sqrt{x}+\sqrt[3]{8 x^{2}}.

See Solution

Problem 29094

Find the antiderivative F(t)F(t) of f(t)=6sec2(t)2t3f(t)=6 \sec ^{2}(t)-2 t^{3} with F(0)=0F(0)=0. Calculate F(1.3)F(1.3).

See Solution

Problem 29095

Find the limit as xx approaches 2 for the expression x22-\frac{x^{2}}{2}.

See Solution

Problem 29096

Maximize the volume of a box with a square base using 60 m260 \mathrm{~m}^{2} of material. Find height hh and base length bb.

See Solution

Problem 29097

Find the antiderivative F(x)F(x) of f(x)=10cosx4sinxf(x)=10 \cos x-4 \sin x with F(0)=4F(0)=4. What is F(x)F(x)?

See Solution

Problem 29098

Find the function f(t)f(t) given that f(t)=2et+3sin(t)f''(t)=2 e^{t}+3 \sin(t), with conditions f(0)=4f(0)=4 and f(π)=1f(\pi)=-1.

See Solution

Problem 29099

Find f(4)f(4) given that f(x)=5x+10sin(x)f^{\prime \prime}(x)=5 x+10 \sin (x), f(0)=4f(0)=4, and f(0)=4f^{\prime}(0)=4.

See Solution

Problem 29100

Given that ff is decreasing on [0,10][0, 10] and gg is decreasing on [0,5)[0, 5) and increasing on (5,10](5, 10], what is true about h(x)=f(x)+g(x)h(x)=f(x)+g(x) on [0,10][0, 10]?

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord