Calculus

Problem 601

Find the derivative of (e2xx+2)\left(\frac{e^{2-x}}{x+2}\right).

See Solution

Problem 602

Find the values of aa and bb in the function P(t)=abtP(t) = a b^t that models the number of bacteria in a lab experiment, given the function P(t)=47(1.112)5tP(t) = 47(1.112)^{5t}. Round the final values of aa and bb to 4 decimal places.

See Solution

Problem 603

Evaluate the indefinite integral x29x7dx\int x \sqrt{29 x-7} d x.

See Solution

Problem 604

Soit la fonction g(x)=ex(1x)1g(x) = e^{x}(1-x)-1 définie sur R\mathbb{R}. Étudier le sens de variation et le signe de gg. Soit la fonction f(x)=xex1+2f(x) = \frac{x}{e^{x}-1}+2 pour x0x \neq 0, et f(0)=3f(0)=3. Déterminer les limites de ff, étudier son sens de variation, et trouver l'équation de la tangente à (E)(\mathscr{E}) à l'origine. Soit h(x)=f(x)xh(x) = f(x)-x, montrer que h(x)<0h'(x)<0 et en déduire qu'il existe une solution unique α\alpha à l'équation f(x)=xf(x)=x dans l'intervalle ]2;52[] 2 ; \frac{5}{2}[.

See Solution

Problem 605

Find all values of tt where the parametric curve x=4t32t2+4t,y=2t3+4t22x=4t^3-2t^2+4t, y=2t^3+4t^2-2 has a horizontal tangent.

See Solution

Problem 606

Find the equation of the tangent line to f(x)=5x1f(x) = \sqrt{5x-1} at the point (1,2)(1,2) in slope-intercept form.

See Solution

Problem 607

Find dy/dtdy/dt when x2+y2=36x^2 + y^2 = 36 and dx/dt=3dx/dt = 3, for y>0y > 0 and (a) x=0x = 0, (b) x=2x = 2, (c) x=3x = 3.

See Solution

Problem 608

Find the Left and Right Riemann sums, then use them to find the Trapezoidal sum on the interval [3,7][-3,7] given the table of xx and f(x)f(x) values.

See Solution

Problem 609

Determine the horizontal asymptote of the function f(x)=16x37x+820x3+8x3f(x) = \frac{16 x^{3}-7 x+8}{20 x^{3}+8 x-3}. If none exists, state that fact.

See Solution

Problem 610

Identify the critical points of y=x2exy=x^{2}e^{x}. State the xx- and yy-coordinates. Determine if they are local max, min, or neither.

See Solution

Problem 611

Find the minimum yy-value of f(x)=x2+2xf(x)=x^{2}+\frac{2}{x} on 12x2\frac{1}{2} \leq x \leq 2.

See Solution

Problem 612

Find the solution, rounded to one decimal place, to the equation ex=x+8e^{x} = \sqrt{x+8} using a graphing calculator.

See Solution

Problem 613

1. Find the antiderivative of f(x)f(x): a) f(x)=4x3+3x4f(x)=4x^3+3x^4 b) f(x)=110x410x4f(x)=\frac{1}{10}x^4-\frac{10}{x^4} e) f(x)=2ex+1f(x)=2e^x+1 f) f(x)=13exx22f(x)=\frac{1}{3}e^x-\frac{x^2}{2}
2. Find the antiderivative of f(x)f(x): a) f(x)=(3x1)2f(x)=(3x-1)^2 b) f(x)=3(5x+1)4f(x)=\frac{3}{(-5x+1)^4} e) f(x)=e4x1f(x)=e^{4x-1} f) f(x)=25e25xf(x)=\frac{2}{5}e^{2-5x} i) f(x)=6xf(x)=\sqrt{6x} j) f(x)=913xf(x)=\sqrt{9-\frac{1}{3}x}

See Solution

Problem 614

Find the degree 4 Maclaurin polynomial for (1+x)1/3(1+x)^{1/3} and use it to approximate 1.13\sqrt[3]{1.1}.

See Solution

Problem 615

Find the inverse function f1(x)f^{-1}(x) of f(x)=7x+2f(x)=\sqrt{7x+2} where x27x \geq -\frac{2}{7}.

See Solution

Problem 616

Find the value of a piecewise function w(t)w(t) when t=7t=-7.

See Solution

Problem 617

Explain why the graph of y=2x3y=-2 \sqrt[3]{x} is continuous but not differentiable at x=0x=0.

See Solution

Problem 618

Find the derivative of the function h(x)=e2x29x+3/xh(x) = e^{2x^2} - 9x + 3/x.

See Solution

Problem 619

Find 4 paths to (1,-1) to show lim(x,y)(1,1)f(x,y)\lim_{(x,y)\to(1,-1)} f(x,y) doesn't exist for f(x,y)f(x,y). Provide curve equations and graphs.

See Solution

Problem 620

Differentiate y=(x+2)(x3+2x+1)y=(x+2)(x^{3}+2x+1) and choose the correct setup.

See Solution

Problem 621

Find the range of the quadratic function f(x)=6(x7)2+5f(x)=-6(x-7)^{2}+5.

See Solution

Problem 622

Find the indefinite integral of 5x35x^3.

See Solution

Problem 623

A snowball's radius decreases at 0.10.1 cm/min. Find the rate of volume decrease when radius is 1111 cm. (Round answer to 3 decimal places)
dVdt=4πr2drdt=4π(11)2(0.1)=12.116cm3min\frac{d V}{d t} = -4 \pi r^2 \frac{d r}{d t} = -4 \pi (11)^2 (0.1) = -\boxed{12.116} \frac{\mathrm{cm}^3}{\min}

See Solution

Problem 624

Evaluate the definite integral of 0.25e0.25x0.25e^{-0.25x}.

See Solution

Problem 625

Find the value of y=abxy=a b^{x} given a=1600,b=.25,x=12a=1600, b=.25, x=12, rounded to 7 decimal places.

See Solution

Problem 626

Evaluate x39\frac{\sqrt{x-3}}{9} when x=12x=12. Options: A) 13\frac{1}{3} B) 1 C) 3 D) 81.

See Solution

Problem 627

Prove that the function f(x)=x7+8x2f(x)=x^{7}+8 x-2 has at most one real root using Rolle's Theorem. Show it has exactly one using the Intermediate Value Theorem.

See Solution

Problem 628

Find the average velocity of an object moving along a vertical line with position L(t)=3t2+t+8L(t)=-3t^2+t+8 (m) at time tt (s) for the given intervals: [3s, 9s], [2s, 7s], [5s, 8s].

See Solution

Problem 629

Find the derivative of f(x)=5x10f(x)=\sqrt{5 x-10} using the limit definition.

See Solution

Problem 630

At most, how many turning points does the polynomial P(x)=25x11019x37+43x2032x17P(x)=25 x^{110}-19 x^{37}+43 x^{20}-32 x^{17} have?

See Solution

Problem 631

Solve for yy in the equation e8y=9e^{-8 y}=9. Round the answer to the nearest hundredth.

See Solution

Problem 632

Solve the differential equation dydx=ex8\frac{d y}{d x} = -\frac{e^{x}}{8}.

See Solution

Problem 633

Find the value of cc that satisfies the Mean Value Theorem for h(x)=3x3h(x) = \sqrt{3x-3} on the interval 4x134 \leq x \leq 13.

See Solution

Problem 634

Find the radius of convergence RR of the power series n=1(4)nn(x+8)n\sum_{n=1}^{\infty} \frac{(-4)^{n}}{\sqrt{n}}(x+8)^{n}. If RR is infinite, type "infinity" or "inf". Answer: R=14R=\frac{1}{4}. What is the interval of convergence? Answer (in interval notation): (12,4)(-12, -4).

See Solution

Problem 635

Determine the behavior of the function f(x)=(2x+1)exf(x) = (2x + 1) \cdot e^{-x} for very large and very small values of xx.

See Solution

Problem 636

Evaluate the limit limxπ/2(sec(x)tan(x))\lim_{x \to \pi/2} (\sec(x) - \tan(x)). Use symbolic notation and fractions.

See Solution

Problem 637

Evaluate the natural logarithm of 0.012 and give the answer to 4 decimal places. ln(0.012)\ln (0.012)

See Solution

Problem 638

Analyze the properties of the logarithmic functions y=log2(x+1)y=\log_2(x+1) and y=log(x)3y=\log(x)-3, including domain, range, asymptotes, x-intercepts, and transformations.

See Solution

Problem 639

Use Newton's method to find the solution to e2x=3x+9e^{-2x} = -3x + 9 starting with x0=5x_0 = -5. Provide the first two iterates x1x_1 and x2x_2, and the final solution accurate to 4 decimal places.

See Solution

Problem 640

Find the limit, continuity, and type of discontinuity of the piecewise function f(x) = \\begin{cases} 2x+1, & x>-1 \\\\ x^2+1, & x \\leq-1 \\end{cases} at x=ax=a.

See Solution

Problem 641

A. (fg)(12)=123122+12(\mathrm{f}-\mathrm{g})(12)=\sqrt{12-3}-12^{2}+12

See Solution

Problem 642

Evaluate the integral 2x2lnxdx2 \cdot \int x^{2} \ln x d x

See Solution

Problem 643

Find the slope of y=x3xy=x^3-x at x=ax=a. What is the slope at x=1x=1? Where does the slope equal 1111?

See Solution

Problem 644

Find the solution to the equation 5ex+2=75 e^{x+2} = 7.

See Solution

Problem 645

Evaluate the integral e3xe4x1xlnx+xdx\int_{e^{3 x}}^{e^{4 x}} \frac{1}{x \ln x+x} dx.

See Solution

Problem 646

Simplify the expression x32564\sqrt[4]{\frac{x^{3}}{256}} using the quotient rule, assuming all variables are positive real numbers.

See Solution

Problem 647

Find the integral that represents the length of the curve f(x)=cosx,0xπf(x) = \cos x, 0 \leq x \leq \pi.

See Solution

Problem 648

Find the values of mm for which the integral 08xmdx\int_{0}^{8} x^{m} d x converges.

See Solution

Problem 649

Approximate the sum of the series n=1(1)n23n4\sum_{n=1}^{\infty}(-1)^{n} \frac{2}{3 n^{4}} with error < 0.001.

See Solution

Problem 650

Determine the limit of the sequence {(n+n22n2)n}\left\{\left(\frac{n+n^{2}}{2 n^{2}}\right)^{n}\right\}.

See Solution

Problem 651

Estimate the total number of plastic widgets sold in the first 6 weeks given the sales function P(t)=7000te0.3tP(t)=7000 t e^{-0.3 t}.

See Solution

Problem 652

Describe the end behavior of g(x)=1x2g(x) = -\frac{1}{x^2}. As x±x \to \pm\infty, g(x)g(x) goes to 0 or ±\pm\infty.

See Solution

Problem 653

Find the secant line equation y=mx+by=mx+b passing through points (3,f(3))(-3, f(-3)) and (2,f(2))(2, f(2)) where f(x)=x35f(x)=x^{3}-5.

See Solution

Problem 654

Find the equation(s) of the vertical asymptote(s) of the rational function g(t)=t253t2+4t3g(t) = \frac{t^{2} - 5}{3t^{2} + 4t - 3}.

See Solution

Problem 655

Differentiate the function g(t)=25t7t+8g(t) = \frac{2 - 5t}{7t + 8} to find g(t)g'(t).

See Solution

Problem 656

Find the linear approximation of y=e5xln(x)y=e^{5x}\ln(x) at x=1x=1. L(x)=e5ln(1)+5e5ln(1)+e51(x1)L(x)=e^5\ln(1)+\frac{5e^5\ln(1)+e^5}{1}(x-1)

See Solution

Problem 657

The graph y=500(0.85)xy=500(0.85)^{x} represents the amount of drug (in mg) left in a patient's system xx hours after administration. Find the yy-intercept.

See Solution

Problem 658

Derive the function f(x)=ln3x2f(x) = \ln 3x^2.

See Solution

Problem 659

Find the domain, range, intercepts, and asymptotes of the exponential function f(x)=36xf(x) = 3 \cdot 6^{x}. Describe the end behavior.

See Solution

Problem 660

Find Δy\Delta y, dy=f(x)dxdy=f'(x)dx, and dydy for y=2x3y=2x^3, x=4x=4, and Δx=0.08\Delta x=0.08. a) Δy=1.6384\Delta y=\boxed{1.6384} b) dy=f(x)dx=96dxdy=f'(x)dx=\boxed{96}dx c) dy=7.68dy=\boxed{7.68}

See Solution

Problem 661

Find the value of xx in the equation ex=5e^{x}=5. The correct statements are: x=ln5x=\ln 5, x=log5ex=\log _{5} e, and to the nearest hundredth, x1.61x \approx 1.61.

See Solution

Problem 662

Find the differential dydy for y=ex/4y=e^{x/4} and evaluate dydy for x=0,dx=0.05x=0, dx=0.05.

See Solution

Problem 663

Identify the hole, vertical asymptote, horizontal asymptote, and domain of the rational function f(x)=x2+9x+20x2+3x4f(x) = \frac{x^2 + 9x + 20}{x^2 + 3x - 4}.

See Solution

Problem 664

Evaluate the integral 9x+2x2+x6dx \int \frac{9 x+2}{x^{2}+x-6} d x .

See Solution

Problem 665

Calculate the integral 233x2dt \int_{2}^{3} 3 x^{2} d t .

See Solution

Problem 666

Evaluate the integral 221+x21+2xdx \int_{-2}^{2} \frac{1+x^{2}}{1+2^{x}} d x .

See Solution

Problem 667

Calculate the integral tan3xsecxdx \int \tan^{3} x \sec x \, dx .

See Solution

Problem 668

Find the integral of 15sinudu-\frac{1}{5} \sin u \, du.

See Solution

Problem 669

Differentiate xex x^{e^{x}} with respect to x x .

See Solution

Problem 670

Find the derivative of x2 x^{2} with respect to x x .

See Solution

Problem 671

Find the ball's instantaneous velocity at t=10.0 t=10.0 s given x(t)=0.000015t50.004t3+0.4t x(t)=0.000015 t^{5}-0.004 t^{3}+0.4 t .

See Solution

Problem 672

Determine if the series converges or diverges: n=1[(67)n32n]\sum_{n=1}^{\infty}\left[\left(\frac{6}{7}\right)^{n}-\frac{3}{2^{n}}\right]. If it converges, find the sum.

See Solution

Problem 673

Find the sum of the series n=11n(n+2)\sum_{n=1}^{\infty} \frac{1}{n(n+2)}.

See Solution

Problem 674

Find the limit of the sequence an=n2+3nna_{n}=\sqrt{n^{2}+3 n}-n. Options: A) 3 B) 2 C) 1/2 1 / 2 D) 3/2 3 / 2 E) 0 F) 1 G) \infty H) does not exist.

See Solution

Problem 675

Determine if the series are convergent or divergent:
(I) n=1(n+32n5)n \sum_{n=1}^{\infty}\left(\frac{n+3}{2 n-5}\right)^{n}
(II) n=12n34 \sum_{n=1}^{\infty} \sqrt[4]{\frac{2}{n^{3}}}
(III) n=12nn!n+1 \sum_{n=1}^{\infty} \frac{2^{n}}{n ! \sqrt{n+1}}
Explain your reasoning.

See Solution

Problem 676

Determine if these series converge or diverge, explaining your reasoning: (I) n=1(n+32n5)n \sum_{n=1}^{\infty}\left(\frac{n+3}{2 n-5}\right)^{n} , (II) n=12n34 \sum_{n=1}^{\infty} \sqrt[4]{\frac{2}{n^{3}}} , (III) n=12nn!n+1 \sum_{n=1}^{\infty} \frac{2^{n}}{n ! \sqrt{n+1}} .

See Solution

Problem 677

Determine if these series are absolutely convergent, conditionally convergent, or divergent:
(I) n=1(π2)n \sum_{n=1}^{\infty}\left(\frac{\pi}{2}\right)^{n}
(II) n=1(1)n1en \sum_{n=1}^{\infty} \frac{(-1)^{n-1} e}{\sqrt{n}}
(III) n=11n(n+1)3 \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}(\sqrt{n}+1)^{3}}

See Solution

Problem 678

A ball's position is given by x(t)=0.000015t50.004t3+0.4tx(t)=0.000015 t^5 - 0.004 t^3 + 0.4 t. Find its velocity at t=10.0t=10.0 s.

See Solution

Problem 679

A ball's position is given by x(t)=0.000015t50.004t3+0.4tx(t)=0.000015 t^5 - 0.004 t^3 + 0.4 t. Find its velocity at t=10.0t=10.0 s.

See Solution

Problem 680

Find the integral of x2 x^{2} with respect to x x .

See Solution

Problem 681

Find the integral sin(3x)dx \int \sin (3 x) d x . Choose from: (a) 3cos(3x)+C 3 \cos (3 x)+C , (b) 13cos(3x)+C \frac{1}{3} \cos (3 x)+C , (c) 3cos(3x)+C -3 \cos (3 x)+C , (d) 13cos(3x)+C -\frac{1}{3} \cos (3 x)+C .

See Solution

Problem 682

Calculate the integral 15x1xdx\int_{1}^{5} \frac{x-1}{x} dx and choose the correct answer: (a) 5ln55-\ln 5, (b) 4ln54-\ln 5, (c) 2ln52-\ln 5, (d) 1ln51-\ln 5.

See Solution

Problem 683

Find the limit: limx12ln(x)ex1 \lim _{x \rightarrow 1} \frac{2 \cdot \ln (x)}{\mathrm{e}^{x}-1} . Options: (a) 2e \frac{2}{e} (b) 1 (c) 0 (d) nonexistent.

See Solution

Problem 684

Find f(1) f(1) given f(x)=3x2 f^{\prime}(x)=3 x^{2} and f(2)=3 f(2)=3 . Choices: (a) -7 (b) -4 (c) 7 (d) 10

See Solution

Problem 685

17) Find the area of the region between y=2x y=2x and y=x2 y=x^2 . 18) If a cube's side length S=2 S=2 in decreases at 5 in³/min, find the rate of change of S S in in/min.

See Solution

Problem 686

Find the derivative ddx(tan(ln(x))) \frac{d}{d x}(\tan (\ln (x))) . What is dydx \frac{d y}{d x} for x+y2=xy+2 \sqrt{x}+y^{2}=x y+2 at (4,0)?

See Solution

Problem 687

8) Find the limit: limh0cos((x+h)2)cos(x2)h \lim _{h \rightarrow 0} \frac{\cos \left((x+h)^{2}\right)-\cos \left(x^{2}\right)}{h} .
9) Determine x x for the maximum of y=43x38x2+15x y=\frac{4}{3} x^{3}-8 x^{2}+15 x on [0,4] [0,4] .

See Solution

Problem 688

A particle's velocity is v(t)=et13sin(t1) v(t)=e^{t-1}-3 \sin (t-1) . What is its motion at t=1 t=1 ? (a) speeding up, (b) slowing down, (c) neither, (d) at rest.

See Solution

Problem 689

At t=2 t=2 , what does R(2)=4 R^{\prime}(2)=4 mean? (a) Depth is 4 inches. (b) Rate is 4 in/hr. (c) Rate of change is 4 in/hr². (d) Depth increased by 4 inches.

See Solution

Problem 690

22) Given 46f(x)dx=5 \int_{4}^{6} f(x) dx=5 and 104f(x)dx=8 \int_{10}^{4} f(x) dx=8 , find 610(4f(x)+10)dx \int_{6}^{10}(4 f(x)+10) dx .
23) Find the tangent line equation to y=e2x y=e^{2x} at x=1 x=1 .

See Solution

Problem 691

Find the limit: limx4ln(x)+43x\lim _{x \rightarrow \infty} \frac{4 \cdot \ln (x)+4}{3 x}. Choose (a) 2, (b) -2, (c) 0, or (d) nonexistent.

See Solution

Problem 692

Find the x x -coordinate of the inflection point of f(x)=1x(3t6t2)dt f(x)=\int_{1}^{x}(3t-6t^{2})dt . Options: (a) 14-\frac{1}{4} (b) 14\frac{1}{4} (c) 0 (d) 12\frac{1}{2}. Evaluate sin(3x)dx \int \sin(3x)dx . Options: (a) 3cos(3x)+C3\cos(3x)+C (b) 13cos(3x)+C\frac{1}{3}\cos(3x)+C (c) 3cos(3x)+C-3\cos(3x)+C (d) 13cos(3x)+C-\frac{1}{3}\cos(3x)+C. Count removable discontinuities of y=x+2x4+16 y=\frac{x+2}{x^{4}+16} . Options: (a) one (b) two (c) three (d) four.

See Solution

Problem 693

Find f(x) f'(x) if f(x)=x2+13x f(x)=\frac{x^{2}+1}{3 x} and evaluate (2x+3)(x2+3x)4dx \int(2 x+3)(x^{2}+3 x)^{4} dx .

See Solution

Problem 694

26) Find the integral for the volume of a solid with base R R and height 5 times the base: (a) 25ab(g(x)f(x))2dx 25 \int_{a}^{b}(g(x)-f(x))^{2} dx (b) 5ab(g(x)f(x))dx 5 \int_{a}^{b}(g(x)-f(x)) dx (c) 5ab(f(x)g(x))dx 5 \int_{a}^{b}(f(x)-g(x)) dx (d) 5ab(f(x)g(x))2dx 5 \int_{a}^{b}(f(x)-g(x))^{2} dx
27) Solve dydx=xy \frac{dy}{dx}=\frac{x}{y} with y=4 y=4 at x=2 x=2 : (a) 12x2+14 \sqrt{\frac{1}{2} x^{2}+14} (b) 2x2+8 \sqrt{2 x^{2}+8} (c) x2+6 \sqrt{x^{2}+6} (d) x2+12 \sqrt{x^{2}+12}

See Solution

Problem 695

Find the integral of f(x)=sin2x f(x) = \sin 2x . Choose from: (1/2)cos2x+C (-1/2) \cos 2x + C or others.

See Solution

Problem 696

Evaluate the integral: 3axb2+c2x2dx \int \frac{3 a x}{b^{2}+c^{2} x^{2}} \, dx

See Solution

Problem 697

Find the ball's instantaneous velocity at t=10.0t=10.0 s given its position x(t)=0.000015t50.004t3+0.4tx(t)=0.000015 t^5 - 0.004 t^3 + 0.4 t.

See Solution

Problem 698

Find the limit: limxπcosx+sin(2x)+1x2π2\lim _{x \rightarrow \pi} \frac{\cos x+\sin (2 x)+1}{x^{2}-\pi^{2}}. What is it?

See Solution

Problem 699

Solve the differential equation: xydx(x+2)dy=0x y \, dx - (x+2) \, dy = 0.

See Solution

Problem 700

Find the derivative of the function 100+(t3)4(t5)2100+(t-3)^{4}(t-5)^{2} with respect to tt.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord