Calculus

Problem 13501

Bestimme die Stammfunktionen für: a) f(x)=2x1f(x)=2 x-1, b) f(x)=5f(x)=5, c) f(x)=x6f(x)=x^{6}, d) f(x)=4x37x+6f(x)=4 x^{3}-7 x+6, e) f(x)=sinxf(x)=\sin x.

See Solution

Problem 13502

Graph f(x)=e2x2x1f(x)=\frac{e^{2 x}}{2 x-1}. Find inflection points using f(x)=4(4x28x+5)e2x(2x1)3f^{\prime \prime}(x)=\frac{4(4 x^{2}-8 x+5)e^{2 x}}{(2 x-1)^{3}}. A. No inflection points. B. Inflection point(s) at x=x=

See Solution

Problem 13503

Graph f(x)=e2x2x1f(x)=\frac{e^{2 x}}{2 x-1} using its derivatives: f(x)=4(x1)e2x(2x1)2f^{\prime}(x)=\frac{4(x-1)e^{2 x}}{(2 x-1)^{2}}, f(x)=4(4x28x+5)e2x(2x1)3f^{\prime \prime}(x)=\frac{4(4x^{2}-8x+5)e^{2 x}}{(2 x-1)^{3}}. Select the correct graph from options.

See Solution

Problem 13504

Evaluate the integral: xdx1+x2\int \frac{x d x}{\sqrt{1+x^{2}}}.

See Solution

Problem 13505

What is the graph of function for case D, focusing on its concavity given that ff is -, ff' is +, and ff'' is -?

See Solution

Problem 13506

Find the critical points of the function f(x)=2x2lnx+19x2f(x)=-2 x^{2} \ln x+19 x^{2}.

See Solution

Problem 13507

Calculate the integral: 2xdx=\int \frac{2}{\sqrt{x}} d x=

See Solution

Problem 13508

Calculate the integral: xdx1+x4\int \frac{x \, dx}{1+x^{4}}.

See Solution

Problem 13509

Zeige, dass F(x)=5x4+2F(x)=5 x^{4}+2 eine Stammfunktion von f(x)=20x3f(x)=20 x^{3} ist, und nenne drei weitere Stammfunktionen.

See Solution

Problem 13510

Ein ICE hat das Weg-Zeit-Gesetz s(t)=0,7t2s(t)=0,7 t^{2}. Berechne den Weg und die mittlere Geschwindigkeit in den ersten 20 s.

See Solution

Problem 13511

John deposits \$12,000 at 3% APR. Find the value after 3 years for yearly, semiannual, quarterly, monthly, daily, and continuous compounding. Graph continuous growth.

See Solution

Problem 13512

Find the constant for the surface area element dσd \sigma in the plane defined by G(s,t)=(3s+2t4st2s+t)G(s, t) = \begin{pmatrix} 3s + 2t \\ 4s - t \\ -2s + t \end{pmatrix}.

See Solution

Problem 13513

Find the integral: (t2+1)2dt\int\left(t^{2}+1\right)^{2} dt

See Solution

Problem 13514

How long for \$50,000 to grow to \$60,000 at a continuous 3.5% interest rate? Round to nearest 0.01 year.

See Solution

Problem 13515

Find the critical points of f(x)=2x2lnx+19x2f(x)=-2 x^{2} \ln x+19 x^{2}. Are there any local maxima?

See Solution

Problem 13516

Find where the function f(x)=ex2/32f(x)=-e^{-x^{2} / 32} is concave up or down and identify inflection points.

See Solution

Problem 13517

Find the integral: x3+3x2dx\int \frac{x^{3}+3}{x^{2}} d x

See Solution

Problem 13518

Find the concavity intervals and inflection points of f(x)=5x4+60x3+15f(x)=5 x^{4}+60 x^{3}+15.

See Solution

Problem 13519

Find the derivative f(4)f^{\prime}(4) for the function f(x)=1x+5xf(x)=-\frac{1}{x}+5 \sqrt{x}. Provide the answer as a simplified fraction.

See Solution

Problem 13520

Find future value, effective rate, and time to reach \$17,000 for \$5400 at 3.9% interest compounded continuously.

See Solution

Problem 13521

Find critical points of f(x)=x23(x5)f(x)=-x^{\frac{2}{3}}(x-5) on [5,5][-5,5] and use the First Derivative Test for max/min values.

See Solution

Problem 13522

Bestimmen Sie die Intervalle, in denen die Funktionen ff streng monoton wachsend oder fallend sind und untersuchen Sie die Krümmung.
a) f(x)=x2x6f(x)=x^{2}-x-6 b) f(x)=x3+xf(x)=x^{3}+x c) f(x)=19x3xf(x)=\frac{1}{9} x^{3}-x

See Solution

Problem 13523

Two cars start from the same point, one going east at 75 km/h75 \mathrm{~km/h} and the other north at 40 km/h40 \mathrm{~km/h}. Find the distance increase rate after 3 hours. Options: 72 km/h72 \mathrm{~km/h}, 85 km/h85 \mathrm{~km/h}, 60 km/h60 \mathrm{~km/h}, 146 km/h146 \mathrm{~km/h}.

See Solution

Problem 13524

Pancake batter is poured at 52 cm3/s52 \mathrm{~cm}^3/\mathrm{s}. Find the radius growth rate when the radius is 7 cm7 \mathrm{~cm}. Use V=πr2hV=\pi r^{2} h.

See Solution

Problem 13525

Check if the Mean Value Theorem applies to f(x)=5x19f(x)=5 x^{\frac{1}{9}} on [512,512][-512,512] and find the point(s) if it does.

See Solution

Problem 13526

An ant's position is (x,y)=(t27,154t)(x, y) = (t^2 - 7, 15 - 4t). Find the temperature change rate AA when t=3t=3 using Tx\frac{\partial T}{\partial x} and Ty\frac{\partial T}{\partial y}.

See Solution

Problem 13527

Given y=(x+1+x2)12y=\left(x+\sqrt{1+x^{2}}\right)^{\frac{1}{2}}, prove that (1+x2)(dydx)2=14y2(1+x^{2})\left(\frac{dy}{dx}\right)^{2}=\frac{1}{4} y^{2} and show (1+x2)(d2ydx2)+xdydx14y=0(1+x^{2})\left(\frac{d^{2}y}{dx^{2}}\right)+x \frac{dy}{dx}-\frac{1}{4} y=0.

See Solution

Problem 13528

Two cars start from the same point: one goes east at 72 km/h72 \mathrm{~km/h}, the other north at 30 km/h30 \mathrm{~km/h}. Find the distance increase rate after 1 hour.

See Solution

Problem 13529

A person 1.9 m1.9 \mathrm{~m} tall walks away from a 4.75 m4.75 \mathrm{~m} pole at 1 m/s1 \mathrm{~m/s}. Find shadow tip speed at 8 m8 \mathrm{~m}.

See Solution

Problem 13530

Evaluate limx2x27x9x2+7\lim _{x \rightarrow \infty} \frac{2 x^{2}-7 x}{9 x^{2}+7} using l'Hôpital's Rule and limit laws. Rewrite the limit: limx()\lim _{x \rightarrow \infty}(\square)

See Solution

Problem 13531

Schreiben Sie die Funktionstermine um und leiten Sie dann f(x)f(x) ab für: a) f(x)=x42f(x)=\frac{x^{4}}{2}, b) f(x)=7xf(x)=\frac{7}{x}, c) f(x)=3x2f(x)=-\frac{3}{x^{2}}, d) f(x)=53x3f(x)=\frac{5}{3 x^{3}}, e) f(x)=(3x)3f(x)=(3 x)^{3}, f) f(x)=9xf(x)=\sqrt{9 x}.

See Solution

Problem 13532

Given Boyle's Law PV=CP V=C, find the rate of volume decrease when V=325 cm3V=325 \mathrm{~cm}^{3}, P=130kPaP=130 \mathrm{kPa}, and dPdt=12kPamin\frac{dP}{dt}=12 \frac{\mathrm{kPa}}{\min}.

See Solution

Problem 13533

Skater-Parcours:
a) Bestimme den durchschnittlichen Anstieg zwischen A(-12, f(-12)) und B. b) Welchen Winkel hat der Skater im Ursprung? c) Zeige, dass ff und gg ohne Knick übergehen. d) Nachweis, dass gg in C(15,0) waagerecht ist. e) Finde die tiefste Stelle des Parcours. f) Wo ist die maximale Steigung von gg?

See Solution

Problem 13534

A ball is hit up at 25.6 m/s25.6 \mathrm{~m} / \mathrm{s}. Find its maximum height and total time in the air.

See Solution

Problem 13535

Pancake batter is poured at 61 cm3/s61 \mathrm{~cm}^{3}/\mathrm{s}. Find the radius growth rate (in cm/s\mathrm{cm}/\mathrm{s}) at r=9 cmr=9 \mathrm{~cm} with thickness 1 cm1 \mathrm{~cm}. Use V=πr2hV=\pi r^{2} h.

See Solution

Problem 13536

Two cars start from the same point, one going east at 60 km/h60 \mathrm{~km/h} and the other north at 45 km/h45 \mathrm{~km/h}. Find the distance increase rate after 3 hours. Options: 75 km/h75 \mathrm{~km/h}, 59 km/h59 \mathrm{~km/h}, 105 km/h105 \mathrm{~km/h}, 135 km/h135 \mathrm{~km/h}.

See Solution

Problem 13537

Find the derivative of y=x2+1x214y=\sqrt[4]{\frac{x^{2}+1}{x^{2}-1}}.

See Solution

Problem 13538

A 2 m tall person walks away from a 7 m pole at 1.25 m/s. Find the speed of their shadow's tip when they are 14 m from the pole.

See Solution

Problem 13539

Find the derivative of y=x2+1x214y=\sqrt[4]{\frac{x^{2}+1}{x^{2}-1}} using logarithmic differentiation.

See Solution

Problem 13540

Bestimme die Ableitung der Funktionen an den angegebenen Stellen: a) f(x)=4x2,x0=3f(x)=-4 x^{2}, x_{0}=-3 b) f(x)=3x,x0=9f(x)=3 \sqrt{x}, x_{0}=9 c) f(x)=3x,x0=6f(x)=\frac{3}{x^{\prime}}, x_{0}=6 d) f(x)=13x,x0=2f(x)=\frac{1}{3 x^{\prime}}, x_{0}=2 e) f(x)=8,x0=2f(x)=8, x_{0}=2 f) f(x)=5x,x0=9f(x)=5 x, x_{0}=-9.

See Solution

Problem 13541

Bestimmen Sie die Ableitungen der Funktionen: a) f(x)=ax2f(x)=a x^{2}, b) g(y)=2y3g(y)=-2 y^{3}, c) h(t)=vth(t)=v t, d) f(a)=5abf(a)=5 a b, e) f(x)=k2f(x)=k^{2}, f) s(t)=3ats(t)=\frac{3}{a \sqrt{t}}.

See Solution

Problem 13542

Find the osculating circle at the local minimum of f(x)=3x36x2+329x+6f(x)=3 x^{3}-6 x^{2}+\frac{32}{9} x+6. Use x=t,y=f(t)x=t, y=f(t). Equation: ((x(8/9))2)+((y(1586/243))2)=(1/(20))2\left((x-(8 / 9))^{\wedge} 2\right)+\left((y-(1586 / 243))^{\wedge} 2\right)=(1 /(20))^{\wedge} 2.

See Solution

Problem 13543

Find the total cost of producing 560 units if fixed cost is \11,000andmarginalcostsaregivenas11,000 and marginal costs are given as C^{\prime}(q)$.

See Solution

Problem 13544

Untersuchen Sie das Verhalten von ff für die Grenzprozesse: a) f(x)=2x+1x,x<0f(x)=\frac{2x+1}{x}, x<0, xx \rightarrow-\infty; b) f(x)=x+1x2,x>0f(x)=\frac{x+1}{x^{2}}, x>0, xx \rightarrow \infty. Skizzieren Sie die Graphen.

See Solution

Problem 13545

Führe die Kurvendiskussion für die Funktionen f(x)=x45x2f(x)=\frac{x^{4}}{5}-x^{2} und f(x)=x54x3f(x)=x^{5}-4 x^{3} durch. Zeichne auch Graphen und Ableitungen!

See Solution

Problem 13546

Berechnen Sie den Differenzenquotienten von g(x)=3x21g(x)=3 x^{2}-1 für die Intervalle I: a) I=[1;4]I=[1; 4], b) I=[3;1]I=[-3; -1].

See Solution

Problem 13547

A balloon's radius decreases at 15 cm/min15 \mathrm{~cm} / \mathrm{min}. Find the volume change rate when V=972πcm3V=972 \pi \mathrm{cm}^{3}.

See Solution

Problem 13548

Evaluate limx0sin9xx\lim _{x \rightarrow 0} \frac{\sin 9 x}{x} using l'Hôpital's Rule and known limits. Rewrite the limit as limx0(\lim _{x \rightarrow 0}(\square.

See Solution

Problem 13549

Find the value of CC for the joint density ρ(x,y)=C(x2y+y2)\rho(x, y)=C\left(x^{2} y+y^{2}\right) over D:1x1D: -1 \leq x \leq 1, 0y10 \leq y \leq 1. Then, compute P(X0,Y1/2)P(X \leq 0, Y \geq 1/2).

See Solution

Problem 13550

Evaluate the integral y3cosydy\int y^{3} \cos y \, dy.

See Solution

Problem 13551

Bestimmen Sie den Differenzenquotienten für die Funktionen in den angegebenen Intervallen: a) f(x)=(x2)2,I=[1;6]f(x)=(x-2)^{2}, \quad I=[1 ; 6] b) f(x)=9x23,I=[3;1]f(x)=\frac{9}{x^{2}}-3, \quad I=[-3 ;-1] c) f(x)=x+5+x,I=[4;1]f(x)=\sqrt{x+5}+x, \quad I=[-4 ;-1] d) f(x)=x3+x2,I=[2;4]f(x)=x^{3}+x^{2}, \quad I=[-2 ; 4]

See Solution

Problem 13552

Arjun walks south at 1.5 m/s and Maya east at 2 m/s. Find the rate of distance change after 2 minutes.

See Solution

Problem 13553

Find the second derivative yy^{\prime \prime} of the function y=f(x)y=f(x) given y=x(x9)2y^{\prime}=x(x-9)^{2} and sketch the graph. y= y^{\prime \prime}=\square

See Solution

Problem 13554

Bestimme das Volumen eines Körpers mit quadratischer Querschnittsfläche A(z)=362z2+136z4A(z)=36-2 z^{2}+\frac{1}{36} z^{4} für z[0;6]z \in[0 ; 6].

See Solution

Problem 13555

Bestimme das Volumen eines Körpers mit Querschnittsfläche A(z)=2z+4A(z)=-2 \sqrt{z}+4 und Höhe h=4h=4 als Integral und berechne es.

See Solution

Problem 13556

Calculate the integral: 13sin(23x)dx\int -\frac{1}{3} \sin(2 - 3x) \, dx.

See Solution

Problem 13557

Berechnen Sie die Ableitung f(3)f^{\prime}(3) für die Funktion f(x)=4x22f(x)=4 x^{2}-2.

See Solution

Problem 13558

Find f(3) f'(3) given f(x)f(3)x3=4(x+3) \frac{f(x)-f(3)}{x-3} = 4(x+3) and evaluate the limit as x3 x \to 3 .

See Solution

Problem 13559

Find the 4th term in the Taylor series for f(x)=4e3xf(x)=4 e^{3 x} around x=4x=4. 4th term=4 \text{th term} =

See Solution

Problem 13560

Find the 4th term in the Taylor series for f(x)=4e3xf(x)=4 e^{3 x} around x=4x=4. 4th term =

See Solution

Problem 13561

Trouver les points de discontinuité de ff et déterminer la continuité à droite, à gauche ou ni l'un ni l'autre. f(x)={1+x2 si x02x si 0<x2 f(x)=\left\{\begin{array}{lrr} 1+x^{2} & \text { si } & x \leq 0 \\ 2-x & \text { si } & 0<x \leq 2 \end{array}\right.

See Solution

Problem 13562

Trouvez les points de discontinuité de ff et indiquez si ff est continue à droite, à gauche ou nulle. f(x)={1+x2 si x02x si 0<x2(x2)2 si x>2f(x)=\left\{\begin{array}{lrr} 1+x^{2} & \text { si } & x \leq 0 \\ 2-x & \text { si } & 0<x \leq 2 \\ (x-2)^{2} & \text { si } & x>2 \end{array}\right.

See Solution

Problem 13563

Gegeben ist die Funktion f(x)=x33x2f(x)=x^{3}-3x^{2}.
a) Finde die Gleichung der Sekante durch A(1,f(1))A(-1, f(-1)) und B(4,f(4))B(4, f(4)) und den Schnittpunkt CC mit ff. b) Bestimme die Ableitungsfunktion ff' und zeichne ihren Graphen. c) Zeige, dass ff einen Hochpunkt HH, einen Tiefpunkt TT und einen Wendepunkt WW hat. Finde deren Koordinaten. d) Finde die Tangentengleichung durch WW und den Schnittpunkt mit der Sekante aus Teil a).

See Solution

Problem 13564

Trouver l'équation de la tangente à y=x3y=\sqrt[3]{x} en x=8x=8.

See Solution

Problem 13565

Bestimme die Stammfunktionen von f(x)f(x) für: a) f(x)=3x45x+4f(x)=3 \cdot x^{4}-5 x+4, b) f(x)=3ax4f(x)=3 a \cdot x^{4}.

See Solution

Problem 13566

Bestimme Hoch-, Tief- und Sattelpunkte für die Funktionen: f(t)=t42t2f(t)=t^{4}-2 t^{2}, f(a)=a3+2,5a2+3,5f(a)=-a^{3}+2,5 a^{2}+3,5, f(x)=x515x330f(x)=x^{5}-15 x^{3}-30, f(x)=3x4+4x3+8f(x)=-3 x^{4}+4 x^{3}+8, f(x)=15x542x3+2f(x)=\frac{1}{5} x^{5}-\frac{4}{2} x^{3}+2, f(x)=2x36x2+6x+4f(x)=2 x^{3}-6 x^{2}+6 x+4.

See Solution

Problem 13567

Find dy dx\frac{\mathrm{d} y}{\mathrm{~d} x} for the curve defined by x2y=lnyx 2^{y}=\ln y in terms of xx and yy.

See Solution

Problem 13568

A person 1.7 m tall walks away from a 5.95 m pole at 1.5 m/s. Find the shadow's tip speed when 10 m from the pole.

See Solution

Problem 13569

Find the rate of change of distance DD at P=13.5KPaP=13.5 \mathrm{KPa} and dP/dt=220KPa/sdP/dt=220 \mathrm{KPa/s} when D2=2P900+0.01D^2=\frac{2P}{900}+0.01.

See Solution

Problem 13570

Bestimme die Ableitungsfunktion ff^{\prime} für die folgenden Funktionen: a) f(x)=4x38x+17f(x)=4 x^{3}-8 x+17, b) f(x)=2x28x+15f(x)=-2 x^{2}-8 x+15, c) f(x)=3sin(x)f(x)=3 \sin (x), d) f(x)=2x4f(x)=2 x^{-4}, e) f(x)=5x13f(x)=5 x^{\frac{1}{3}}, f) f(x)=3cos(x)14x2f(x)=3 \cos (x)-\frac{1}{4} x^{-2}.

See Solution

Problem 13571

Compare the functions f(x)=4xf(x)=4^{x} and g(x)=5x+6g(x)=5x+6. Which statement is true about their rates of change?

See Solution

Problem 13572

Bestimme die Ableitungsfunktion ff^{\prime} für die Funktionen: a) f(x)=(x3)(x+5)f(x)=(x-3)(x+5), b) f(x)=2(x4)2+5f(x)=2(x-4)^{2}+5, c) f(x)=(5x)2f(x)=(5 x)^{2}, d) f(x)=2x1xf(x)=2 x-\frac{1}{x}, e) f(x)=xf(x)=\sqrt{x}, f) f(x)=x13f(x)=x^{\frac{1}{3}}, g) f(u)=2u+u13f(u)=2 u+u^{\frac{1}{3}}, h) f(x)=ax5+ax3f(x)=a \cdot x^{5}+\frac{a}{x^{-3}}, i) f(a)=ax5+ax3f(a)=a \cdot x^{5}+\frac{a}{x^{-3}}.

See Solution

Problem 13573

Differentiate 3x2y=43 \sqrt{x}-2 \sqrt{y}=4 to find dydx\frac{d y}{d x} and the slope at (4,1).

See Solution

Problem 13574

Differentiate x5+y5=244x^{5}+y^{5}=244 to find dydx\frac{d y}{d x}, then find the slope at the point (1,3).

See Solution

Problem 13575

Find the point (x0,y0)(x_{0}, y_{0}) on y=x3+6x2+3x4y=x^{3}+6x^{2}+3x-4 where the tangent slope is minimized. Answer as (,)(*, *).

See Solution

Problem 13576

Find the derivative of the function f(x)=7x27x5f(x) = -7x^2 - 7x - 5 using the limit definition: f(x+h)f(x)h\frac{f(x+h)-f(x)}{h}.

See Solution

Problem 13577

A person 1.9 m1.9 \mathrm{~m} tall walks away from a 2.85 m2.85 \mathrm{~m} pole at 2 m/s2 \mathrm{~m/s}. Find shadow speed at 12 m12 \mathrm{~m}.

See Solution

Problem 13578

Calculate the indefinite integral: (x1/2+4x7ex)dx\int\left(x^{1 / 2}+\frac{4}{x}-7 e^{x}\right) d x

See Solution

Problem 13579

Calculate the indefinite integral: (x7)2x2dx\int \frac{(\sqrt{x}-7)^{2}}{x^{2}} d x

See Solution

Problem 13580

Differentiate sin(y)=3x33\sin(y) = 3x^3 - 3 to find dydx\frac{dy}{dx} and the slope at (1, π\pi).

See Solution

Problem 13581

Solve for f(x)f(x) where x>0x>0: f(x)=3+2x+4xf'(x)=3+2x+\frac{4}{x} and f(1)=2f(1)=2. Find f(x)=f(x)=.

See Solution

Problem 13582

Find the time tt when the drug concentration C(t)=533.3(e0.5te0.6t)C(t)=533.3\left(e^{-0.5 t}-e^{-0.6 t}\right) is maximized. Round to the tenths.

See Solution

Problem 13583

Gravel is dumped at 18 m3/h18 \mathrm{~m}^{3} / \mathrm{h} forming a cone. Find the height increase rate when height is 5 m5 \mathrm{~m}. Use V=13πr2hV=\frac{1}{3} \pi r^{2} h.

See Solution

Problem 13584

Maximize the volume of a cylinder with total surface area 110 cm2110 \mathrm{~cm}^{2}. Find radius rr and height hh.

See Solution

Problem 13585

Evaluate the limit as xx approaches 2 for 3x27x2e2x+x2\frac{3 x^{2}-7 x}{2 e^{2-x}+x^{2}}. Simplify your answer.

See Solution

Problem 13586

Étudier les limites suivantes : a) limx0+(1x(1x)1x2)\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x(1-x)}-\frac{1}{x^{2}}\right) b) limx+(xx2+2x)\lim _{x \rightarrow+\infty}\left(x-\sqrt{x^{2}+2 x}\right)

See Solution

Problem 13587

Find limx04x7x2tan(2x)+x\lim _{x \rightarrow 0} \frac{4 x-7 x^{2}}{\tan (-2 x)+x} and simplify your answer.

See Solution

Problem 13588

Find limx1e22x15x25\lim _{x \rightarrow-1} \frac{e^{-2-2 x}-1}{5 x^{2}-5} and simplify your answer.

See Solution

Problem 13589

Express the limit of Ln=3ni=1n(2+3i1n)L_{n}=\frac{3}{n} \sum_{i=1}^{n}\left(2+3 \frac{i-1}{n}\right) as a definite integral.

See Solution

Problem 13590

Find the derivative of the function f(x)=sin1(3x)f(x)=\sin^{-1}(3x) in its simplest form.

See Solution

Problem 13591

Find the derivative of the function f(x)=arctan(2x)f(x)=\arctan(2x), expressed in simplest form.

See Solution

Problem 13592

Find the derivative of f(x)=sin1(4x)f(x)=\sin^{-1}(4x), expressed in simplest form.

See Solution

Problem 13593

Find the derivative of the function f(x)=tan1(4x)f(x)=\tan^{-1}(4x) in its simplest form.

See Solution

Problem 13594

Bestimme die Ableitungen f(1)f^{\prime}(1) und f(2)f^{\prime}(-2) sowie f(1),f(2),f(0)f^{\prime}(-1), f^{\prime}(2), f^{\prime}(0) aus einer Grafik. Berechne f(1)f^{\prime}(1) für f(x)=2x2f(x)=2 x^{2}.

See Solution

Problem 13595

Déterminez la continuité de la fonction f(x)f(x) au point x0=4x_{0}=4 avec f(x)f(x) défini par : f(x)={x2162x8si x<44si x=4x4x2si x>4 f(x)=\left\{\begin{array}{lc} \frac{x^{2}-16}{2 x-8} & \text{si } x<4 \\ 4 & \text{si } x=4 \\ \frac{x-4}{\sqrt{x}-2} & \text{si } x>4 \end{array}\right.

See Solution

Problem 13596

Express the limit of Rn=1ni=1n(4+1in)R_{n}=\frac{1}{n} \sum_{i=1}^{n}\left(4+1 \frac{i}{n}\right) as a definite integral.
01(4+x)dx\int_{0}^{1} (4+x) \, dx

See Solution

Problem 13597

Which limit represents the integral 10510xdx\int_{-10}^{-5} 10 x d x using a right-endpoint Riemann sum?

See Solution

Problem 13598

Differentiate x2+4y2=4x^{2}+4 y^{2}=4 two times with respect to yy.

See Solution

Problem 13599

Which expression shows the limit definition of the integral 626x3dx\int_{-6}^{2} 6 x^{3} d x using a right-endpoint Riemann sum?

See Solution

Problem 13600

Find the net signed area between f(x)=x13f(x)=|x-1|-3 and the xx-axis from x=5x=-5 to x=6x=6. Answer as an exact value.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord