Calculus

Problem 11901

Find the limit: limxxln(11x)\lim _{x \rightarrow-\infty} x \ln \left(1-\frac{1}{x}\right).

See Solution

Problem 11902

Find the derivative of y=x6+10x3+25y = x^{6}+10x^{3}+25 and u=x3+5u = x^{3}+5 using the chain rule.

See Solution

Problem 11903

Find f(4)f^{\prime}(4) if f(x)=g(x)x1/2f(x)=g(x) \cdot x^{1/2}, g(4)=8g(4)=8, and g(4)=2g^{\prime}(4)=2.

See Solution

Problem 11904

Find dydx\frac{dy}{dx} for y=x6+10x3+25y=x^{6}+10x^{3}+25 using u=x3+5u=x^{3}+5 and the chain rule.

See Solution

Problem 11905

Find the velocity function of the object given s(t)=cos(t2+8)s(t)=\cos(t^{2}+8) for t0t \geq 0.

See Solution

Problem 11906

Find the tangent line equation for f(x)=x2x+1f(x)=\frac{x^{2}}{x+1} at x=1x=1. Choices: y=0.5y=0.5, y=0.75xy=0.75 x, y=0.75x0.25y=0.75 x-0.25, y=2xy=2 x, y=0.75x1y=0.75 x-1.

See Solution

Problem 11907

Find the derivative of f(x)=x1+xf(x)=\frac{x}{1+x}. What is it?

See Solution

Problem 11908

Find the derivative of y=cos3xy=\cos^{3} x using the chain rule with u=cosxu=\cos x.

See Solution

Problem 11909

Find the derivative of f(t)=5ln(t)3e2tf(t)=5 \ln (t)-3 e^{-2 t}. What is f(t)?f^{\prime}(t) ?

See Solution

Problem 11910

Solve the initial value problem:
x˙=2x+3y,y˙=3x+2y \dot{x}= 2 x + 3 y, \quad \dot{y}= -3 x + 2 y
with x(0)=1x(0)=1 and y(0)=2y(0)=-2.

See Solution

Problem 11911

Find the equation of the tangent line to f(x)=(e3x+5x2)3f(x)=(e^{3 x}+5 x^{2})^{3} at x=0x=0. Choose from the options.

See Solution

Problem 11912

Find the tangent line equation to f(x)=x(x+2)3f(x)=x(x+2)^{3} at x=0x=0.

See Solution

Problem 11913

Solve the initial value problem: x˙=2x+y\dot{x} = -2x + y, y˙=2y\dot{y} = -2y, with x(0)=4x(0)=4, y(0)=1y(0)=-1.

See Solution

Problem 11914

How long for \$ 25,000 to grow to \$ 100,000 at 6.5\% continuous compounding?

See Solution

Problem 11915

Find the limit: limx52x+64153x\lim _{x \rightarrow 5} \frac{\sqrt{2 x+6}-4}{15-3 x}.

See Solution

Problem 11916

Find dydx\frac{d y}{d x} for the equation x3+e2y=9x^{3}+e^{2 y}=9.

See Solution

Problem 11917

Find dydx\frac{d y}{d x} for the equation x3+e2y=9x^{3}+e^{2 y}=9.

See Solution

Problem 11918

Check if the function f(x)={sin(πx) for x2π(x2) for x>2f(x)=\left\{\begin{array}{l}\sin (\pi x) \text { for } x \leq 2 \\ \pi(x-2) \text { for } x>2\end{array}\right. is continuous or differentiable at x=3x=3.

See Solution

Problem 11919

Find the limit of the sequence (1+1n)n\left(1+\frac{1}{n}\right)^{n} as nn \to \infty.

See Solution

Problem 11920

Find the area between the curve y=x(x3)y=x(x-3) and the lines x=0x=0 and x=5x=5.

See Solution

Problem 11921

Find points on the curve x3+e2y=9x^{3}+e^{2 y}=9 where the tangent line is horizontal.

See Solution

Problem 11922

Find points on the curve x3+e2y=9x^{3}+e^{2 y}=9 where the tangent line is horizontal.

See Solution

Problem 11923

Find points on the curve x3+e2y=9x^{3}+e^{2 y}=9 where the tangent line is vertical.

See Solution

Problem 11924

A stream with insecticide at 9 g/m39 \mathrm{~g} / \mathrm{m}^{3} flows into a pond of volume 2000 m32000 \mathrm{~m}^{3}. Solve for y(t)y(t), the insecticide amount, and find the time to reach 7 g/m37 \mathrm{~g} / \mathrm{m}^{3}.

See Solution

Problem 11925

Determine if the function f(x)={sin(πx) for x2π(x2) for x>2f(x)=\left\{\begin{array}{l}\sin (\pi x) \text { for } x \leq 2 \\ \pi(x-2) \text { for } x>2\end{array}\right. is continuous, differentiable, or both. Find points with vertical tangent lines.

See Solution

Problem 11926

A polluted stream flows into a pond. Find the insecticide concentration over time and when it reaches 7 g/m37 \mathrm{~g} / \mathrm{m}^{3}.

See Solution

Problem 11927

Find the second derivative d2ydx2\frac{d^{2} y}{d x^{2}} of x3+e2y=9x^{3}+e^{2 y}=9 at the point (2,0)(2,0).

See Solution

Problem 11928

A 15-ft ladder leans against a wall. If it slides down at 2 ft/sec, how fast is the angle θ\theta changing when θ=π4\theta = \frac{\pi}{4}?

See Solution

Problem 11929

Die Kostenfunktion K(x)=2x3147x2+3792x+3375K(x) = 2x^{3}-147x^{2}+3792x+3375 hat keine Extremstellen. Erklären Sie die Bedeutung für den Graphen.

See Solution

Problem 11930

Calculate the integral: 01e2x+12xdx\int_{0}^{1} e^{2 x}+\frac{1}{2-x} d x.

See Solution

Problem 11931

Calculate the integral 0π2sin2(x+π4)dx\int_{0}^{\frac{\pi}{2}} \sin 2\left(x+\frac{\pi}{4}\right) d x.

See Solution

Problem 11932

A stone falls from rest. Its velocity vv at time tt satisfies 5dvdt+v=505 \frac{d v}{d t}+v=50. Find acceleration at t=0t=0.

See Solution

Problem 11933

Find the limit as xx approaches 0 for the expression (2x0+h)(2 x_{0}+h).

See Solution

Problem 11934

Evaluate the limit: limnn2+5n+15n72n6\lim _{n \rightarrow \infty} \frac{\sqrt{n^{2}+5 n+1}-5 n-7}{2 n-6}.

See Solution

Problem 11935

Find the volume change rate VV of a ball with radius rr at r=1 mr=1 \mathrm{~m}, where V=43πr3V=\frac{4}{3} \pi r^{3}.

See Solution

Problem 11936

Find the marginal-cost function for C(x)=0.04x3+0.7x2+60x+130C(x)=0.04 x^{3}+0.7 x^{2}+60 x+130 and calculate it at x=800x=800.

See Solution

Problem 11937

Find the marginal-cost function for C(x)=0.04x3+0.7x2+50x+90C(x)=0.04 x^{3}+0.7 x^{2}+50 x+90 and calculate it at x=800x=800.

See Solution

Problem 11938

Find the derivative of the following functions:
1) f(x)=2x+13x+2f(x)=\frac{2x+1}{3x+2} 2) f(x)=3x21xcosxf(x)=3x^2-\frac{1}{x}-\cos x 3) f(x)=exf(x)=e^{\sqrt{x}} 4) f(x)=lnxxf(x)=\frac{\ln x}{x} 5) f(x)=4xf(x)=\frac{4}{\sqrt{x}} 6) f(x)=2x3+3x24x2f(x)=\frac{2x^3+3x^2-4}{x^2}

See Solution

Problem 11939

Find the marginal revenue function for r=245q+36q23q3r=245 q+36 q^{2}-3 q^{3} and calculate it at q=5q=5, q=10q=10, and q=15q=15.

See Solution

Problem 11940

Find the marginal-cost function for C(x)=0.05x3+0.2x2+40x+140C(x)=0.05 x^{3}+0.2 x^{2}+40 x+140 and calculate it at x=1000x=1000.

See Solution

Problem 11941

Find the limit: limx1+x6+2x5+x4x3+x+2x+1\lim _{x \rightarrow-1^{+}} \frac{-x^{6}+2 x^{5}+x^{4}-x^{3}+x+2}{x+1}.

See Solution

Problem 11942

Find the marginal cost function for c(q)=18q211q+3c(q)=18 q^{2}-11 q+3 and calculate it at q=4q=4, q=7q=7, and q=11q=11.

See Solution

Problem 11943

Find the limit as nn approaches infinity: limn(5n42+2n3+5n4+8n357n2+5n3)\lim _{n \rightarrow \infty}\left(\frac{5 n^{4}}{2+2 n^{3}+5 n^{4}}+\frac{8 n^{3}}{5-7 n^{2}+5 n^{3}}\right).

See Solution

Problem 11944

A 67 kg snowboarder starts at a 22 m hill with a speed of 15 m/s. Find: (a) total mechanical energy, (b) speed midway and bottom, (c) energy transformation.

See Solution

Problem 11945

Find the partial derivative of 3lnx1+3lnx23 \ln x_{1} + 3 \ln x_{2} with respect to x1x_{1}.

See Solution

Problem 11946

Find the derivative of y=6x3+15x2y=6 x^{3}+15 x^{2} and evaluate it at x=9.15x=9.15, rounding to two decimal places.

See Solution

Problem 11947

Differentiate y=4x(2x+4)3/2y=4 x(2 x+4)^{3 / 2} and find the value at x=2x=2. Round to two decimal places.

See Solution

Problem 11948

Find the marginal profit if q=25,000q=25,000 given R(q)=2q(1/25000)q2R(q)=2q-(1/25000)q^2 and C(q)=2100+0.25qC(q)=2100+0.25q.

See Solution

Problem 11949

Find the rate of change of AA with respect to rr for A=511(1+(r/1200))120A=511(1+(r / 1200))^{120} after 10 years. Round to two decimal places.

See Solution

Problem 11950

Find the point on the curve f(x)=5x2+2x6f(x)=5 x^{2}+2 x-6 where the tangent slope is -4. Provide xx and yy rounded to two decimal places.

See Solution

Problem 11951

A soccer player kicks a 0.43 kg0.43 \mathrm{~kg} ball down an 18 m18 \mathrm{~m} hill. Find its speed at the bottom. Then, if kicked up at 4.2 m/s4.2 \mathrm{~m/s}, find the speed when it returns down.

See Solution

Problem 11952

Find the marginal profit when q=25,000q=25,000 for the revenue function R(q)=2q125000q2R(q)=2q-\frac{1}{25000}q^2 and cost function C(q)=2100+0.25qC(q)=2100+0.25q. Round to two decimal places.

See Solution

Problem 11953

Determine if increasing advertising spending from \12,000(12,000 (x=12)raisesprofitbyfindingthevertexof) raises profit by finding the vertex of P(x)=1000+32x-2x^{2}$.

See Solution

Problem 11954

Calculate the heat needed to raise 1 mole of oxygen from 300 K300 \mathrm{~K} to 1300 K1300 \mathrm{~K} at constant pressure using: CP=6.095+3.253×103 T1.017×106 T2C_P=6.095+3.253 \times 10^{-3} \mathrm{~T}-1.017 \times 10^{-6} \mathrm{~T}^{2}.

See Solution

Problem 11955

Find the derivative f(x)f'(x) for the function f(x)=8x4(x32)f(x)=8x^{4}(x^{3}-2).

See Solution

Problem 11956

Find the derivative f(x)f^{\prime}(x) for the function f(x)=xx49f(x)=\frac{x}{x-49}.

See Solution

Problem 11957

Find the derivative of the function f(x)=xx49f(x)=\frac{x}{x-49}. What is f(x)=f^{\prime}(x)=\square?

See Solution

Problem 11958

Find the derivative f(x)f^{\prime}(x) for the function f(x)=(2x+3)(5x6)f(x)=(2x+3)(5x-6).

See Solution

Problem 11959

Find the derivative f(x)f^{\prime}(x) of the function f(x)=2x16x+5f(x)=\frac{2 x-1}{6 x+5}.

See Solution

Problem 11960

Find the derivative f(x)f^{\prime}(x) for the function f(x)=9xexf(x)=9 x e^{x}.

See Solution

Problem 11961

Differentiate the function y=x2exy=x^{2} e^{x}. Find dydx=\frac{d y}{d x}=\square.

See Solution

Problem 11962

Find the derivative f(x)f^{\prime}(x) for the function f(x)=4x4lnxf(x)=4 x^{4} \ln x.

See Solution

Problem 11963

Find the derivative f(x)f^{\prime}(x) of the function f(x)=ex8x2+3f(x)=\frac{e^{x}}{8 x^{2}+3}.

See Solution

Problem 11964

A skater descends a frictionless ramp from a height of 5.0 m5.0 \mathrm{~m}. What is his speed at the bottom? A. 25 m/s25 \mathrm{~m/s} B. 7.0 m/s7.0 \mathrm{~m/s} C. 9.9 m/s9.9 \mathrm{~m/s} D. cannot be determined

See Solution

Problem 11965

Find the derivative f(x)f^{\prime}(x) for the function f(x)=(x26)(x2+2)f(x)=(x^{2}-6)(x^{2}+2).

See Solution

Problem 11966

Find the derivative f(x)f'(x) of the function f(x)=x2+65x7f(x)=\frac{x^{2}+6}{5x-7}.

See Solution

Problem 11967

Find the derivative dydt\frac{d y}{d t} for y=(19+et)lnty=(19+e^{t}) \ln t. What is dydt=\frac{d y}{d t}=\square?

See Solution

Problem 11968

Find the derivative f(x)f^{\prime}(x) for f(x)=lnx23+xf(x)=\frac{\ln x}{23+x}. Answer: f(x)=f^{\prime}(x)=\square.

See Solution

Problem 11969

Find the limit: limxx2+2x2\lim _{x \rightarrow \infty} \frac{x^{2}+2}{x^{2}}

See Solution

Problem 11970

Find f(x)f^{\prime}(x) for f(x)=x5(x76)f(x)=x^{5}(x^{7}-6) using the product rule. Which option shows the correct result?

See Solution

Problem 11971

Find f(x)f^{\prime}(x) using the quotient rule for f(x)=x6+4x6f(x)=\frac{x^{6}+4}{x^{6}}. Which option shows the correct result?

See Solution

Problem 11972

Find the derivative dydt\frac{d y}{d t} for y=6tlntety=\frac{6 t \ln t}{e^{t}}. Simplify your answer.

See Solution

Problem 11973

Differentiate ex+ey+4x=0e^{x}+e^{y}+4 x=0 implicitly to prove e2yd2ydx2+(4+ex)2+ex+y=0e^{2 y} \frac{d^{2} y}{d x^{2}}+\left(4+e^{x}\right)^{2}+e^{x+y}=0.

See Solution

Problem 11974

Find the derivative S(t)S^{\prime}(t) of the sales function S(t)=70t2t2+100S(t)=\frac{70 t^{2}}{t^{2}+100}.

See Solution

Problem 11975

Reihe konvergiert für nn \rightarrow \infty: a) i=1ni\sum_{i=1}^{n}-i?

See Solution

Problem 11976

Find S(20)S(20) and S(20)S^{\prime}(20) using S(t)=70t2t2+100S(t)=\frac{70 t^{2}}{t^{2}+100}. What do they indicate?

See Solution

Problem 11977

Untersuche die Konvergenz der folgenden Reihen für nn \rightarrow \infty: a) i=1ni\sum_{i=1}^{n}-i, b) i=0n(12)i\sum_{i=0}^{n}\left(\frac{1}{2}\right)^{i}, c) i=0n322i51i\sum_{i=0}^{n} 3 \cdot 2^{2 i} \cdot 5^{1-i}, d) i=0n27i53i\sum_{i=0}^{n} 2 \cdot 7^{i} \cdot 5^{3-i}, e) i=1n32i112i\sum_{i=1}^{n} 3^{2 i} \cdot 11^{2-i}.

See Solution

Problem 11978

Sand leaks from a bag modeled by S(t)=K(1t2μ)3S(t)=K\left(1-\frac{t^{2}}{\mu}\right)^{3}.
1. (a) How much sand is in the bag at t=0t=0? (b) What is the leak rate at time tt? (c) For μ=6\mu=6, is the leak rate speeding up or slowing down at t=2t=2? Explain.
2. (a) When does the bag empty? (b) Verify limtTdSdt=0\lim _{t \rightarrow T^{-}} \frac{d S}{d t}=0. Does this make sense?
3. For K=80K=80 and μ=8\mu=8, find (S1)(10)\left(S^{-1}\right)^{\prime}(10).
4. Laila studies S1(μ)=K(11μ)3S_{1}(\mu)=K\left(1-\frac{1}{\mu}\right)^{3} at t=1t=1. (a) Find dS1dμ\frac{d S_{1}}{d \mu}. (b) Is Laila correct that more sand leaks out for larger μ\mu? Explain.

See Solution

Problem 11979

Find the derivative of y=x4+12xy=x^{4}+12x.

See Solution

Problem 11980

Find the second derivative of G(x)=xf(x2)G(x)=x f\left(x^{2}\right), i.e., calculate d2G(x)dx2\frac{d^{2} G(x)}{d x^{2}}.

See Solution

Problem 11981

Find the second derivative of G(x)=xf(x2)G(x) = x f(x^2).

See Solution

Problem 11982

Find F(2)F^{\prime \prime}(2) for F(x)=[f(x)]2F(x)=[f(x)]^{2} given f(2)=1,f(2)=2,f(2)=3f(2)=-1, f^{\prime}(2)=-2, f^{\prime \prime}(2)=3.

See Solution

Problem 11983

Find x3x \geq 3 to maximize profit from P(x)=x3+15x248x+450P(x)=-x^{3}+15 x^{2}-48 x+450. Verify using a number line or second derivative test.

See Solution

Problem 11984

What is the long-term behavior of the stray cat population given by p(t)=350t2t+7p(t)=\frac{350 t}{2 t+7} as tt \to \infty?

See Solution

Problem 11985

Find the absolute minimum and maximum of f(x)=x418x2+7f(x)=x^{4}-18 x^{2}+7 on the interval 2x7-2 \leq x \leq 7.

See Solution

Problem 11986

Find the rate of distance change between two planes: one at 36 km and the other at 16 km from the airport, flying at 163 km/hr163 \mathrm{~km/hr} and 257 km/hr257 \mathrm{~km/hr}.

See Solution

Problem 11987

Find the limit as xx approaches infinity for the expression 4x+8x\frac{4x + 8}{x}.

See Solution

Problem 11988

Determine if the following sequences converge: A. {(1)nn}n=1\left\{\frac{(-1)^{n}}{n}\right\}_{n=1}^{\infty} B. {n2+1n}n=1\left\{\frac{n^{2}+1}{n}\right\}_{n=1}^{\infty}.

See Solution

Problem 11989

Determine the limits of these sequences: A. (1)nn\frac{(-1)^{n}}{n}, B. n2+1n\frac{n^{2}+1}{n}.

See Solution

Problem 11990

Indicate T (true) or F (false) for each statement about functions on given intervals. You need all correct for credit.
1. Every differentiable function on [1,3][1,3] has a minimum.
2. Every function on [0,2][0,2] has max and min.
3. Every function on (3,1](-3,1] has max and min.
4. Every continuous function on (2,5](2,5] has a max.

See Solution

Problem 11991

Given the function f(x)=2x3+33x2144x+5f(x)=-2 x^{3}+33 x^{2}-144 x+5, find the critical points AA and BB. Determine if f(x)f(x) is INC or DEC on the intervals (,A],[A,B],[B,)(-\infty, A], [A, B], [B, \infty).

See Solution

Problem 11992

Given that f(x)f(x) is positive and concave up on II, answer these:
a.) f(x)>f^{\prime \prime}(x)>\square on II. b.) g(x)=2(A2+Bf(x))g^{\prime \prime}(x)=2(A^{2}+B f^{\prime \prime}(x)), where A=A=\square and B=B=\square. c.) g(x)>g^{\prime \prime}(x)>\square on II. d.) g(x)g(x) is \square on II.
Choose from: C U, C D, f(x)f(x), f(x)f^{\prime \prime}(x), 0, or 1.

See Solution

Problem 11993

Find the limit of the sequence {4nn+1}n=0\left\{\frac{4 n}{n+1}\right\}_{n=0}^{\infty}.

See Solution

Problem 11994

Berechnen Sie Nullstelle, Extrem- und Wendepunkt von f(x)=(1x)e2xf(x)=(1-x) \cdot e^{2 x} und untersuchen Sie ff für x±x \rightarrow \pm \infty. Zeigen Sie, dass F(x)=(12x+34)e2xF(x)=\left(-\frac{1}{2} x+\frac{3}{4}\right) \cdot e^{2 x} eine Stammfunktion ist.

See Solution

Problem 11995

Find the linearization L(x)L(x) of f(x)=x32x+3f(x)=x^{3}-2x+3 at x=2x=2.

See Solution

Problem 11996

Bestimmen Sie die Ableitung der Funktion f(x)=3x+1f(x)=3x+1 an der Stelle x0x_0 mit dem Differentialquotienten.

See Solution

Problem 11997

Find the linear approximation of f(x)=1+xf(x)=\sqrt{1+x} at x0=8x_{0}=8 to estimate 8.9\sqrt{8.9} and 9.1\sqrt{9.1}.

See Solution

Problem 11998

Bestimmen Sie die Ableitung von f(x)=3x+1f(x)=3 x+1 an der Stelle x0x_{0} mit dem Differentialquotienten.

See Solution

Problem 11999

Find the linear approximation of f(x)=1+xf(x)=\sqrt{1+x} at x0=8x_{0}=8 to estimate 9.1\sqrt{9.1}.

See Solution

Problem 12000

Estimate ln(1.02)\ln(1.02) using a linear approximation.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord