Calculus
Problem 26002
(d) When should the store hire an extra employee: 6:00 a.m.-12:00 p.m. or 12:00 p.m.-6:00 p.m.? Discuss average rates of change. (e) Is the assistant manager right that no customers entered or left between 5:00 p.m. and 5:30 p.m. if the average rate of change is zero?
See SolutionProblem 26003
Gegeben ist . Bestimmen Sie und berechnen Sie die lokale Änderungsrate für .
See SolutionProblem 26005
Untersuche die Funktion auf -Achsenabschnitt, Extrema, Wendepunkte und finde für A .
See SolutionProblem 26007
A radioactive material decays as . Find the decay rate, graph, amount after 20 years, time for 400g, and half-life.
See SolutionProblem 26008
A radioactive material decays as . Find the decay rate, graph, amount after 30 years, time for 400g, and half-life.
See SolutionProblem 26009
A radioactive material decays as . Given 800g, find: (a) decay rate, (c) amount after 10 years, (d) time for 600g, (e) half-life.
See SolutionProblem 26011
A radioactive material decays as . Find decay rate, graph, amount after 30 years, time for 600g, and half-life.
See SolutionProblem 26012
A swimming pool's chlorine () decays from 2.8 ppm to 2.5 ppm in 24 hours. What is the level after 72 hours and when will it reach 1.0 ppm?
See SolutionProblem 26013
A stone is thrown with an initial velocity of 36 m/s from 42 m height. Find for max height and velocity when it hits the ground.
See SolutionProblem 26014
A mass on a spring is displaced by , released at . Its position is . Sketch the displacement and velocity over time, and find when velocity is most negative. Calculate at to 2 s.f.
See SolutionProblem 26016
A mass on a spring is displaced by and released. Its displacement is . Sketch and find when velocity is most negative.
See SolutionProblem 26017
Compound decays from to in 30 min. Find remaining amount after 2 hrs and time for .
See SolutionProblem 26018
Insect population : (a) Find , (b) growth rate, (c) , (d) when , (e) when doubles.
See SolutionProblem 26021
Find the rectangle dimensions for a track with a 2000 m perimeter to maximize the rectangle's area.
See SolutionProblem 26026
Cost function: . Find: a) Cost at , b) Average cost at , c) Marginal cost at , d) Production level minimizing average cost, e) Minimal average cost.
See SolutionProblem 26028
Find the average rate of change of from 8 to 9 and the secant line through and .
See SolutionProblem 26029
For the function , find if it's even/odd, a second max value, and area from to .
See SolutionProblem 26031
Find all numbers in the interval where equals the average rate of change of .
See SolutionProblem 26032
Find the total distance in meters traveled by a particle with velocity from to .
See SolutionProblem 26033
Find all numbers in the interval where equals the average rate of change of .
See SolutionProblem 26041
Given values of the function and its derivative, find , , and the tangent line to at .
See SolutionProblem 26042
Find the derivative of the function with respect to and simplify without negative exponents.
See SolutionProblem 26051
Find the tangent line equations for these curves at specified points: 1. at ; 2. at .
See SolutionProblem 26053
A firm produces goods A and B with demand functions and .
(a) Find the profit function.
(b) Maximize profit and find optimal and . Show it's a maximum.
(c) Plot profit function for and .
(d) Determine fixed costs to eliminate profits and where cost equals profit at optimal and .
(e) If production is limited to 9 units total, find max profit and optimal and .
(f) Explain the Lagrange multiplier's value.
(g) Verify results from (b) and (e).
(h) Use to see profit change with a one-unit production increase and compare to Lagrange multiplier from (f).
See SolutionProblem 26058
Find when for the equation . Choices: (A) -2 (B) -1 (C) 0 (D) 2 (E) nonexistent.
See SolutionProblem 26059
Find the acceleration of the object at s for the position function . Options: a) b) c) d) .
See SolutionProblem 26063
Find the derivative of the function and simplify without negative exponents.
See SolutionProblem 26083
How high is a bridge if an object takes 27.04 s to fall to the ground? Use with .
See SolutionProblem 26087
Find the inverse of , graph both, and calculate their derivatives and slopes at specific points.
See SolutionProblem 26088
The Sun's angle decreases at hour. Find the shadow length increase for a . building at .
See SolutionProblem 26092
Find the inverse of , graph both, and calculate their derivatives and slopes at given points.
See SolutionProblem 26096
Find the derivatives of the inverse function at points: a. , b. , c. , d. , e. . Given with values and derivatives at specific points.
See SolutionProblem 26097
Auf einem Volksfest wird die Besucherzahl durch beschrieben.
a) Finde für die Besucheranzahl.
b) Wie viele Besucher sind nach 3 Stunden da?
c) Bestimme die durchschnittliche Besucheranzahl zwischen 11 und 14 Uhr.
d) Berechne die maximale Besucheranzahl.
e) Wann steigt die Besucherzahl am schnellsten?
f) Nenne Grenzen des Modells bezüglich Zeit und Besucherzahlen.
See SolutionProblem 26100
Given the piecewise function , find the values of for: (a) , (b) , (c) , (d) .
See Solution123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337