Calculus

Problem 7701

Find the derivative of f(x)=6x2f(x)=\sqrt{6-x^{2}}. What is f(x)f^{\prime}(x)?

See Solution

Problem 7702

Die Funktion f(x)=12x2+4x6f(x)=-\frac{1}{2} x^{2}+4 x-6 beschreibt einen Hügel. Finde die Fußpunkte und die Steilheit am westlichen Punkt.

See Solution

Problem 7703

Berechnen Sie die Steigung der Funktion f(x)=mx+nf(x)=m x+n mit dem Differenzenquotienten.

See Solution

Problem 7704

Gegeben ist die Funktion fa(x)=ax2+8f_{a}(x)=\sqrt{a x^{2}+8} mit aR+a \in \mathbb{R}^{+}.
a) Finde fa(4)f_{a}^{\prime}(4). b) Bestimme aa so, dass fa(4)=0,5f_{a}^{\prime}(4)=0,5. c) Finde die Tangentengleichung für a=0,5a=0,5 in PaP_{a}.

See Solution

Problem 7705

Find the work to pump water from a 5m5 \, m cone with radius 14m\frac{1}{4} \, m to 2m2 \, m above it. Set up the integral.

See Solution

Problem 7706

Find the derivative of f(x)=sin5(x)f(x)=\sin^{5}(x).

See Solution

Problem 7707

Find the tangent line equation at (2,11)(2,11) for f(x)=2x34x2+11f(x)=2x^{3}-4x^{2}+11. Use y11=m(x2)y - 11 = m(x - 2).

See Solution

Problem 7708

A plane at 47 m/s47 \mathrm{~m/s} drops a package from 178 m178 \mathrm{~m}. With 9.8 m/s29.8 \mathrm{~m/s^2} gravity, how far does it land from the drop point? Answer in mm.

See Solution

Problem 7709

Bestimmen Sie die Funktion ff mit Basis e und die ersten beiden Ableitungen für die folgenden Funktionen: a) f(x)=3xf(x)=3^{x}, b) f(x)=0,5xf(x)=0,5^{x}, c) f(x)=(23)xf(x)=\left(\frac{2}{3}\right)^{x}, d) f(x)=54xf(x)=5 \cdot 4^{x}, e) f(x)=21,5x+exf(x)=2 \cdot 1,5^{x}+e^{x}, f) f(x)=2ex35xf(x)=2 e^{x}-3 \cdot 5^{x}, g) f(x)=x+1+5xf(x)=x+1+5^{x}, h) f(x)=20,1xexf(x)=2 \cdot 0,1^{x}-e \cdot x.

See Solution

Problem 7710

Find the derivative of f(x)=2(x1)2f(x) = 2(\sqrt{x}-1)^2 at x0=1x_0 = 1.

See Solution

Problem 7711

Compute the limit as xx approaches 0 for 11x2x2\frac{1-\sqrt{1-x^{2}}}{x^{2}}.

See Solution

Problem 7712

Determine the local maxima, minima, and saddle points of the function f(x,y)=306x23y236x71+118xf(x, y)=\sqrt{306 x^{2}-3 y^{2}-36 x-71}+1-18 x.

See Solution

Problem 7713

Calculate the integral: (4x+5)3dx\int(4 x+5)^{3} d x

See Solution

Problem 7714

Find the value of f(3π2)f^{\prime}\left(\frac{3 \pi}{2}\right) if f(x)=cosxf(x)=-\cos x.

See Solution

Problem 7715

Bestimmen Sie die Integralfunktion von f(x)=3x22xf(x) = 3x^{2} - 2x mit a=2a = 2 und berechnen Sie Nullstellen und Extremstellen.

See Solution

Problem 7716

Find the derivative of f(x)=x9(x6)7(x2+8)7f(x)=\frac{x^{9}(x-6)^{7}}{(x^{2}+8)^{7}} using logarithmic differentiation. What is f(6)f^{\prime}(6)?

See Solution

Problem 7717

Find the derivative of y=5tanx+5cscxy=5 \tan x + 5 \csc x. What is dydx\frac{d y}{d x}?

See Solution

Problem 7718

Untersuchen Sie das Krümmungsverhalten der folgenden Funktionen:
a) f(x)=x2+2x+4f(x)=-x^{2}+2x+4 b) f(x)=x3xf(x)=x^{3}-x c) f(x)=x33x29x5f(x)=x^{3}-3x^{2}-9x-5 d) f(x)=x4+x2f(x)=x^{4}+x^{2} e) f(x)=x46x2f(x)=x^{4}-6x^{2} f) f(x)=14x4+3x22f(x)=\frac{1}{4}x^{4}+3x^{2}-2 g) f(x)=13x620x2f(x)=\frac{1}{3}x^{6}-20x^{2} h) f(x)=120x5+12x4+32x3f(x)=\frac{1}{20}x^{5}+\frac{1}{2}x^{4}+\frac{3}{2}x^{3} i) f(x)=(x+2)2(x1)23f(x)=(x+2)^{2}(x-1)^{2}-3
Verwenden Sie GTR zur Kontrolle.

See Solution

Problem 7719

Bestimmen Sie die Integralfunktion von ff und berechnen Sie Nullstellen und Extremstellen für die folgenden Funktionen: a) f:x3x2;a=2f: x \mapsto 3 x^{2} ; a=-2 b) f:xx3;a=2f: x \mapsto x^{3} ; a=2 c) f:x8x+1;a=0,5f: x \mapsto-8 x+1 ; a=-0,5 d) f:x3x22x;a=2f: x \mapsto 3 x^{2}-2 x ; a=2 e) f:x3(x+1)(x1);a=1f: x \mapsto 3(x+1)(x-1) ; a=-1

See Solution

Problem 7720

Find the derivative of y=3cscxcotxy=3 \csc x \cot x with respect to xx: dydx\frac{d y}{d x}.

See Solution

Problem 7721

Given x4+y4=82x^{4}+y^{4}=82, find dydx\frac{d y}{d x} using implicit differentiation and the tangent line at (3,1)(-3,-1).

See Solution

Problem 7722

Given the function f(x)=xexf(x)=x e^{x}, find its local minimum and horizontal asymptote, justifying your answers.

See Solution

Problem 7723

Find the derivative of the function y=10cos12xy=10 \cos \frac{1}{2} x. What is dydx\frac{d y}{d x}?

See Solution

Problem 7724

Finde die Ableitung von f(x)=x3f(x)=-x^{3}.

See Solution

Problem 7725

A sprinter runs 200 m in 25 s. She accelerates to 9 m/s9 \mathrm{~m/s} in 4 s, maintains it for 16 s, then decelerates. Find:
(a) distance in first 20 s,
(b) final speed uu,
(c) deceleration in last 5 s.

See Solution

Problem 7726

Bestimme die Ableitung der Funktion F(x)=(x1)exF(x)=(x-1) \cdot e^{x}.

See Solution

Problem 7727

Find the derivative of the function f(x)=8xf(x)=8^{-x}. What is f(x)f^{\prime}(x)?

See Solution

Problem 7728

Bestimme die Ableitung von F(x)=(0,25x0,125)exF(x)=(0,25 x-0,125) \cdot e^{x}.

See Solution

Problem 7729

Finden Sie f(x)f(x) für die Ableitungen f(x)f^{\prime}(x): a) f(x)=sin(x)+(x+2)cos(x)f^{\prime}(x)=\sin (x)+(x+2) \cos (x), b) f(x)=2sin(0,5x)+xcos(0,5x)f^{\prime}(x)=2 \sin (0,5 x)+x \cdot \cos (0,5 x).

See Solution

Problem 7730

Berechnen Sie die Ableitung von: a) f(x)=(5x)(3+x)f(x)=(5-x) \cdot(3+x) b) g(x)=3x(0,5x+1)2g(x)=3 x \cdot(0,5 x+1)^{2} c) h(x)=1x(x2+5x)h(x)=\frac{1}{x} \cdot\left(x^{2}+5 x\right) Nutzen Sie Produkt-, Ketten-, Potenz- und Summenregel.

See Solution

Problem 7731

Bestimme die Grenzwerte der Funktionen für x+x \rightarrow+\infty und xx \rightarrow-\infty: a) f(x)=2x+6f(x)=-\frac{2}{x}+6, b) f(x)=1x+34f(x)=\frac{1}{x+3}-4, c) f(x)=53x2f(x)=5-\frac{3}{x-2}, c) f(x)=14(x2)3(x+2)3f(x)=-\frac{1}{4}(x-2)^{3}(x+2)^{3}, d) f(x)=13(x1)2(x+1)2(x+3)2f(x)=\frac{1}{3}(x-1)^{2}(x+1)^{2}(x+3)^{2}.

See Solution

Problem 7732

Find the value of tt that minimizes the function G(t)=9t4+6t2+2G(t) = 9t^{4} + 6t^{2} + 2.

See Solution

Problem 7733

Untersuchen Sie die Grenzwerte von f(x)f(x) für x+x \rightarrow+\infty und xx \rightarrow-\infty für folgende Funktionen: a) f(x)=cos(2x)f(x)=\cos(2x) b) f(x)=2x+3+4f(x)=\frac{2}{x+3}+4 c) f(x)=x7x+2f(x)=x^{7}-x+2 d) f(x)=21.2xf(x)=2-1.2^{x}

See Solution

Problem 7734

Bestimme die Ableitung von F(x)=(2x2)exF(x)=(2 x-2) \cdot e^{x}.

See Solution

Problem 7735

Finde eine Funktion ff, die folgende Eigenschaften hat: a) f1f \to 1 für xx \to -\infty, divergiert für x+x \to +\infty; b) ff \to -\infty für xx \to -\infty und x+x \to +\infty; c) ff \to -\infty für xx \to -\infty und f+f \to +\infty für x+x \to +\infty mit f(1)=2f(1) = -2.

See Solution

Problem 7736

Bestimme die ersten und zweiten Ableitungen von ff für die Funktionen a) f(x)=x2g(x)f(x)=x^{2} \cdot g(x), b) f(x)=xg(x)f(x)=x \cdot g^{\prime}(x), c) f(x)=x(g(x))2f(x)=x \cdot(g(x))^{2}, d) f(x)=g(x)g(x)f(x)=g(x) \cdot g^{\prime}(x), wobei g(x)g(x) eine Funktion ist.

See Solution

Problem 7737

Untersuchen Sie, ob die Funktionen g(x)=f(x)cos(x)g(x)=f(x) \cdot \cos (x) und h(x)=(x+1)f(x)h(x)=(x+1) \cdot f(x) auch eine waagerechte Tangente bei P(01)P(0 \mid 1) haben.

See Solution

Problem 7738

Find y(16)y^{\prime}(16) using implicit differentiation for x+y=12\sqrt{x}+\sqrt{y}=12 and y(16)=64y(16)=64.

See Solution

Problem 7739

Bestimmen Sie die Werte von a, für die der Graph GfaG_{f_{a}} rechtsgekrümmt ist für: a) fa(x)=a(2x3)4f_{a}(x)=a \cdot(2 x-3)^{4}, b) fa(x)=a2xf_{a}(x)=\sqrt{a^{2} x}, c) fa(x)=ax2f_{a}(x)=\frac{a}{x^{2}}.

See Solution

Problem 7740

Find the function f(x)f(x) and the value aa given the derivative at x=ax=a: limh08+h32h\lim _{h \rightarrow 0} \frac{\sqrt[3]{8+h}-2}{h}.

See Solution

Problem 7741

Bestimmen Sie die Stammfunktion für folgende Funktionen: a) f(x)=3x2f(x)=-3 x^{2}, b) f(x)=x2(x1)f(x)=x^{2}(x-1), c) f(x)=cosxf(x)=-\cos x, d) f(t)=3t2f(t)=\frac{3}{t^{2}}, e) f(x)=1xf(x)=\frac{1}{\sqrt{x}}, f) f(x)=x441x3f(x)=\frac{x^{4}}{4}-\frac{1}{x^{3}}, g) f(t)=et2f(t)=e^{t}-2, h) f(x)=2sinxf(x)=2 \sin x.

See Solution

Problem 7742

Find the tangent line equation to f(x)f(x) at x=1x=-1 given f(1)=1f(-1)=1 and f(1)=45f'(-1)=\frac{4}{5}.

See Solution

Problem 7743

Compute the limit limxx(x+1x)\lim _{x \rightarrow \infty} \sqrt{x}(\sqrt{x+1}-\sqrt{x}).

See Solution

Problem 7744

Find the derivative of the function f(θ)=6cos2(θ)f(\theta)=6 \cos^{2}(\theta). What is f(θ)=?f^{\prime}(\theta)=?

See Solution

Problem 7745

Find the tangent line equation to g(x)g(x) at x=6x=6, given g(x)=f(x)1+f(x)g(x)=\frac{f(x)}{1+f(x)}, f(6)=2f(6)=2, f(6)=3f'(6)=-3. y= y=

See Solution

Problem 7746

Find these limits: (i) limx2x2+2x8x(x2)\lim _{x \rightarrow 2} \frac{x^{2}+2 x-8}{x(x-2)}, (ii) limx1x31x1\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}, (iii) limx0x1xx+1x\lim _{x \rightarrow 0} \frac{x-\frac{1}{x}}{x+\frac{1}{x}}, (iv) limx1x271x1\lim _{x \rightarrow 1} \frac{x^{27}-1}{x-1}.

See Solution

Problem 7747

Find θ\theta in [π/2,π/2][-\pi / 2, \pi / 2] where the derivative f(θ)=12cos(θ)sin(θ)f'(\theta) = -12 \cos(\theta) \sin(\theta) is zero.

See Solution

Problem 7748

Find the derivative dydx\frac{dy}{dx} for the implicit function defined by x+y+6x2+5y3=6x + y + 6x^2 + 5y^3 = 6.

See Solution

Problem 7749

Find F(0)F^{\prime}(0) if F(x)=f(g(x))F(x)=f(g(x)), given f(1)=8,f(1)=2,g(0)=1,g(0)=7f(1)=8, f^{\prime}(1)=2, g(0)=1, g^{\prime}(0)=7.

See Solution

Problem 7750

Bestimmen Sie die Stammfunktion von f(t)=2t32t3f(t) = 2 t^{3} - \frac{2}{t^{3}} mit dem Punkt P(1,0)P(1, 0).

See Solution

Problem 7751

Find the function f(x)f(x) and the value of aa given the derivative at x=ax=a as limh01+h41h\lim_{h \to 0} \frac{\sqrt[4]{1+h}-1}{h}.

See Solution

Problem 7752

Find the function f(x)f(x) and the point aa where the derivative is limh01+h41h\lim_{h \to 0} \frac{\sqrt[4]{1+h}-1}{h}.

See Solution

Problem 7753

Find the tangent line equation for f(x)f(x) at x=2x=-2 given f(2)=5f(-2)=5 and f(2)=35f'(-2)=\frac{3}{5}.

See Solution

Problem 7754

Berechne die Integrale: 12(x31x2)dx\int_{1}^{2}\left(x^{3}-\frac{1}{x^{2}}\right) d x und 22(x+sinx)dx\int_{-2}^{2}(x+\sin x) d x.

See Solution

Problem 7755

Sketch graphs of f(x)f(x) for these limits: (i) limxf(x)=\lim_{x \to \infty} f(x)=-\infty, limxf(x)=\lim_{x \to -\infty} f(x)=\infty; (ii) limxf(x)=1\lim_{x \to \infty} f(x)=1, limxf(x)=\lim_{x \to -\infty} f(x)=\infty; (iii) limx3f(x)=5\lim_{x \to 3} f(x)=5, limx±f(x)=\lim_{x \to \pm \infty} f(x)=\infty.

See Solution

Problem 7756

Given the function f(x)=2218xf(x)=\sqrt{22-18 x}, find:
(a) f1(2)f^{-1}(2).
(b) (f1(x))\left(f^{-1}(x)\right)^{\prime} at x=2x=2 using (f1(x))=1f(f1(x))\left(f^{-1}(x)\right)^{\prime}=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}.
(c) A formula for f1(x)f^{-1}(x).
(d) (f1(x))\left(f^{-1}(x)\right)^{\prime} at x=2x=2 using the formula from (c).

See Solution

Problem 7757

Given the function f(x)=x3+x2+x+1f(x)=\sqrt{x^{3}+x^{2}+x+1} for x1x \geq-1, find xx where f(x)=2f(x)=2 and compute (f1(2))\left(f^{-1}(2)\right)^{\prime}.

See Solution

Problem 7758

Find the derivative of the function esin(x)e^{\sin(x)}.

See Solution

Problem 7759

Find xx in [0,2π][0, 2\pi] where the tangent line of f(x)=9sin(x)9cos(x)f(x) = 9\sin(x) - 9\cos(x) is horizontal.

See Solution

Problem 7760

Compute the limit as xx approaches infinity: limxx2/3((x+1)1/3(x1)1/3)\lim _{x \rightarrow \infty} x^{2 / 3}((x+1)^{1 / 3}-(x-1)^{1 / 3}).

See Solution

Problem 7761

Compute the limit: limxx2/3((x+1)1/3(x1)1/3)\lim _{x \rightarrow \infty} x^{2 / 3}\left((x+1)^{1 / 3}-(x-1)^{1 / 3}\right).

See Solution

Problem 7762

Leiten Sie die Funktion f(x)=(x+5)2f(x)=(x+5)^{2} ab, bestätigen Sie f(x)=2(x+5)f'(x)=2\cdot(x+5) und finden Sie einen direkten Ableitungsweg.

See Solution

Problem 7763

Find the derivative dydx\frac{dy}{dx} for the equation x+y+8x2+9y3=8x+y+8x^2+9y^3=8.

See Solution

Problem 7764

Leiten Sie die Funktion f(x)=(x+5)2f(x)=(x+5)^{2} ab und zeigen Sie, dass f(x)=2(x+5)f^{\prime}(x)=2 \cdot(x+5). Gibt es einen einfacheren Weg?

See Solution

Problem 7765

Given the function f(x)=106xf(x)=\sqrt{10-6 x}, find:
(a) f1(2)f^{-1}(2).
(b) (f1(x))\left(f^{-1}(x)\right)^{\prime} at x=2x=2 using (f1(x))=1f(f1(x))\left(f^{-1}(x)\right)^{\prime}=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}.
(c) The formula for f1(x)f^{-1}(x).
(d) (f1(x))\left(f^{-1}(x)\right)^{\prime} at x=2x=2 using the result from (c).

See Solution

Problem 7766

Consider the function f(x)=xf(x)=\sqrt{x} at point P(4,2)P(4,2). Graph secant lines through PP and Q(x,f(x))Q(x, f(x)) for x=1,3,5x=1,3,5. Find slopes and estimate tangent slope at PP.

See Solution

Problem 7767

Sketch the graph of a function ff with a local max at x=bx=b where f(b)f^{\prime}(b) is undefined.

See Solution

Problem 7768

Bestimmen Sie die Ableitungsfunktion für f(x)=(ax+b)nf(x)=(a x+b)^{n}.

See Solution

Problem 7769

What defines an absolute extreme value for a function at point cc in interval [a,b][a, b]? Choose the correct answer.

See Solution

Problem 7770

What must be true for a function to have an absolute max and min on an interval? A. Continuous on [a,b][a, b] B. Continuous on a subinterval C. Critical point on [a,b][a, b] D. Continuous on (a,b)(a, b)

See Solution

Problem 7771

Multipliziere f(x)=(2x+1)3f(x)=(2x+1)^{3} in zwei Schritten aus, leite ab und zeige, dass f(x)=6(2x+1)2f'(x)=6 \cdot(2x+1)^{2} gilt. Wie könnte man die Ableitung einfacher finden? Leite auch f(x)=(3x+5)3f(x)=(3x+5)^{3} mit der Produktregel ab.

See Solution

Problem 7772

How to find absolute max and min of a continuous function on [a,b][a, b]? Choose the correct method.

See Solution

Problem 7773

Multipliziere f(x)=(3x+5)2f(x)=(3 x+5)^{2} aus, leite ab und zeige, dass f(x)=6(3x+5)f^{\prime}(x)=6 \cdot(3 x+5) gilt. Nutze die Produktregel für die Ableitung.

See Solution

Problem 7774

A tour guide's profit function is P(n)=n(460.5n)92P(n)=n(46-0.5 n)-92.
a. Maximize profit with 92 people. b. Maximize profit with 42 people. Find the derivative P(n)=P^{\prime}(n)=.

See Solution

Problem 7775

Find the tangent line equation to y=7ln(x37)y=-7 \ln \left(x^{3}-7\right) at point (2,0)(2,0). y=y=

See Solution

Problem 7776

Find the minimum surface area for a box with volume 60ft360 \mathrm{ft}^{3}, given S(x)=x2+240xS(x)=x^{2}+\frac{240}{x}. What are the dimensions? Calculate S(x)S'(x).

See Solution

Problem 7777

Define the function f(x)f(x) piecewise. Find kk for continuity at x=3x=-3, the type of discontinuity at x=0x=0, and horizontal asymptotes.

See Solution

Problem 7778

Differentiate: y=2secxcscxy=2 \sec x-\csc x

See Solution

Problem 7779

Differentiate the function: f(x)=3x22cosxf(x)=3 x^{2}-2 \cos x

See Solution

Problem 7780

Find the maximum or minimum of the function g(z)=24(e4z+3e4z)8g(z)=-24\left(e^{4 z}+3 e^{-4 z}\right)^{8}.

See Solution

Problem 7781

Find the extremum of the function g(z)=28(e4z+2e4z)6g(z)=-28(e^{4z}+2e^{-4z})^6.

See Solution

Problem 7782

Find the derivative f(6)f^{\prime}(6) for the function f(x)=2x33x2f(x)=-\frac{2 \sqrt{x^{3}}}{3}-\frac{\sqrt{x}}{2}.

See Solution

Problem 7783

Differentiate: y=xsinxy=\sqrt{x} \sin x

See Solution

Problem 7784

Find the derivative f(4)f^{\prime}(4) for the function f(x)=x33+5xf(x)=\frac{\sqrt{x^{3}}}{3}+\frac{5}{x} as a simplified fraction.

See Solution

Problem 7785

Find the derivative f(3)f^{\prime}(3) for the function f(x)=5x2+x3f(x)=\frac{5 \sqrt{x}}{2}+\sqrt{x^{3}}.

See Solution

Problem 7786

Find the derivative f(x)f^{\prime}(x) of the function f(x)=x33+1xf(x)=-\frac{\sqrt{x^{3}}}{3}+\frac{1}{x} and calculate f(4)f^{\prime}(4).

See Solution

Problem 7787

Find the first and second derivatives of the function h(s)=6s2+1h(s)=\frac{6}{s^{2}+1}.

See Solution

Problem 7788

Find the first and second derivatives of h(s)=7s2+8h(s)=\frac{7}{s^{2}+8}. What is h(s)h'(s)?

See Solution

Problem 7789

Find the second derivative d2ydx2\frac{d^{2} y}{d x^{2}} for y=x2+4y=\sqrt{x^{2}+4}.

See Solution

Problem 7790

Find the second derivative yy^{\prime \prime} for the function y=2cscxy=2 \csc x.

See Solution

Problem 7791

Find the derivatives dy/dx for the following functions: tanx\tan x, cotx\cot x, secx\sec x, cscx\csc x, and others listed.

See Solution

Problem 7792

Find the second derivative yy^{\prime \prime} of y=136cot(6x1)y=\frac{1}{36} \cot(6x-1).

See Solution

Problem 7793

Find the derivative of f(x)=csc2(6x1)6f(x) = \frac{-\csc^2 (6 x-1)}{6}.

See Solution

Problem 7794

Find the derivative of f(x)=3x2+5x4f(x)=3 x^{2}+5 x-4 and identify its critical points.

See Solution

Problem 7795

Find the second derivative yy^{\prime \prime} of the function y=x(3x+2)4y=x(3x+2)^{4}.

See Solution

Problem 7796

Find the second derivative yy^{\prime \prime} of the function y=116tan(4x+3)y=\frac{1}{16} \tan (4 x+3).

See Solution

Problem 7797

Find the smaller critical point of F(t)=13t38t2+60t+24F(t)=\frac{1}{3} t^{3}-8 t^{2}+60 t+24 by setting its derivative to zero.

See Solution

Problem 7798

Find the initial rate of drug entry into the bloodstream given by f(t)=100(1e5t)f(t)=100(1-e^{-5t}).

See Solution

Problem 7799

Find the horizontal asymptote of the function f(t)=100(1e5t)f(t)=100(1-e^{-5t}) as tt approaches infinity.

See Solution

Problem 7800

Find the second derivative yy^{\prime \prime} of the function y=x(3x+4)5y=x(3 x+4)^{5}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord