Calculus

Problem 14501

Find the limit: limx323x=\lim _{x \rightarrow 3^{-}} \frac{2}{|3-x|}=

See Solution

Problem 14502

Evaluate the integral aa(x+a)(xa)dx=40\int_{-a}^{a}(x+a)(x-a) dx = -40.

See Solution

Problem 14503

For which values of 3x02-3 \leq x_{0} \leq 2 does limxx0g(x)\lim _{x \rightarrow x_{0}} g(x) not exist?

See Solution

Problem 14504

Tomatenpflanze: Höhe h(t)h(t) eines Setzlings mit v(t)=0,1t3+t2v(t)=-0,1 t^{3}+t^{2}. Fragen: a) Wachstumsdauer? b) Maximale Höhe? c) Höhe beim schnellsten Wachstum?

See Solution

Problem 14505

Bestimmen Sie das Minimum und Maximum der Funktion fa(x)=13ax3x2f_{a}(x)=\frac{1}{3 a} x^{3}-x^{2} mit fa(x)=1ax22xf^{\prime} a(x)=1 a x^{2}-2 x.

See Solution

Problem 14506

Berechne die Fläche zwischen den Funktionen f(x)=14x2f(x)=\frac{1}{4} x^{2} und g(x)=(x1)2g(x)=(x-1)^{2}, indem du ihre Schnittpunkte findest.

See Solution

Problem 14507

Aufgabe:
Gegeben ist die Funktion f(x)=516x4+5x3f(x)=-\frac{5}{16} x^{4}+5 x^{3}, die die Änderungsrate des Glyzerin-Tankinhalts beschreibt.
a) Was bedeuten die Koordinaten des Punkts (4/240) im Kontext? b) Ist die Aussage korrekt: Nach 12 Stunden ist die maximale Glyzerinmenge im Tank? c) Wie viel Glyzerin ist nach 20 Stunden im Tank?

See Solution

Problem 14508

Ein Segelflugzeug startet bei 80 m Höhe. Bestimme die Höhenfunktion und beantworte Fragen zu max. Höhe, Änderungszeit und Landeanflug.

See Solution

Problem 14509

Find the values of xx where the curve y=x33x+2y=x^{3}-3x+2 is concave up.

See Solution

Problem 14510

Find the inflection point and extremum of f(x)=(x4)exf(x)=(x-4) \cdot e^{x} for xRx \in \mathbb{R}.

See Solution

Problem 14511

Find the limit: limx6xx236\lim _{x \rightarrow 6} \frac{x}{x^{2}-36}.

See Solution

Problem 14512

Find the limit as xx approaches -1 for the expression x2+7x+6x27x8\frac{x^{2}+7 x+6}{x^{2}-7 x-8}.

See Solution

Problem 14513

Bestimme die Wendepunkte der Funktion ft(x)=x33tx2f_{t}(x)=x^{3}-3 t x^{2} für t>0t>0.

See Solution

Problem 14514

Find the stationary point on the curve given by the equation y=x24x+3y=x^{2}-4 x+3.

See Solution

Problem 14515

Bestimmen Sie die Ableitung der Funktion f(x)=112x312x2f(x)=\frac{1}{12} x^{3}-\frac{1}{2} x^{2}.

See Solution

Problem 14516

Untersuchen Sie das Verhalten der Funktion f(x)=2x+1xf(x)=\frac{2x+1}{x} für x<0x<0, wenn xx \rightarrow -\infty. Skizzieren Sie den Graphen.

See Solution

Problem 14517

Untersuchen Sie das Verhalten der Funktionen für die Grenzprozesse. Skizzieren Sie die Graphen. a) f(x)=2x+1x,x<0f(x)=\frac{2 x+1}{x}, x<0, xx \rightarrow-\infty b) f(x)=x+1x2,x>0f(x)=\frac{x+1}{x^{2}}, x>0, xx \rightarrow \infty

See Solution

Problem 14518

Vulkanprofil: f(x)=25x2f(x)=\frac{25}{x^{2}} für 2x62 \leq x \leq 6. a) Höhe bei 400 m400 \mathrm{~m} Breite? b) Höhe bei 1 km1 \mathrm{~km} Durchmesser?

See Solution

Problem 14519

Untersuche die Funktion f(x)=(x4)exf(x)=(x-4) \cdot e^{x} auf y-Achsen-Schnittpunkt, x-Achsen-Schnittpunkte, Extrempunkte, Wendepunkte. Zeige, dass F(x)=(x5)exF(x)=(x-5)e^{-x} eine Stammfunktion von f(x)f(x) ist und bestimme die Fläche im Intervall [0,4][0, 4].

See Solution

Problem 14520

Bestimmen Sie die Ableitung und die Steigung von fa(x)f_{a}(x) an x=0x=0 für a) fa(x)=x2+axf_{a}(x)=-x^{2}+a x, b) fa(x)=ax33axf_{a}(x)=a x^{3}-3 a x, c) fa(x)=ax44x3+a2xf_{a}(x)=a x^{4}-4 x^{3}+a^{2} x. Wann ist die Steigung 1?

See Solution

Problem 14521

Evaluate the double integral 22112(12sinh(u+v))2+1dudv\int_{-2}^{2} \int_{-1}^{1} \sqrt{2\left(\frac{-1}{\sqrt{2}} \sinh (u+v)\right)^{2}+1} \, du \, dv.

See Solution

Problem 14522

Find the derivative dxdt\frac{d x}{d t} for the function x=t2+25tx=\frac{t^{2}+2}{5 t}.

See Solution

Problem 14523

Evaluate the double integral: 2211sinh2(u+v)+1dudv\int_{-2}^{2} \int_{-1}^{1} \sqrt{\sinh ^{2}(u+v)+1} \, du \, dv.

See Solution

Problem 14524

Berechnen Sie die Ableitung von ff an x0x_{0} für: a) f(x)=x2f(x)=x^{2}, x0=2x_{0}=2; b) f(x)=2x2f(x)=2x^{2}, x0=1x_{0}=1.

See Solution

Problem 14525

A car travels straight with velocity v(t)v(t) as a rhombus. Find 024v(t)dt\int_{0}^{24} v(t) dt and explain its meaning.

See Solution

Problem 14526

Approximate 06f(t)dt\int_{0}^{6} f(t) dt using right-hand Riemann sum with intervals [0,2],[2,3],[3,6][0,2],[2,3],[3,6] and values from the table. Choices: A. 204 B. 225 C. 246 D. 252 E. 281

See Solution

Problem 14527

Evaluate the integral 26f(x)dx\int_{-2}^{6} f(x) d x for the piecewise function: f(x)={2x6,x<48,x4f(x)=\begin{cases} 2x-6, & x<4 \\ 8, & x \geq 4 \end{cases}.

See Solution

Problem 14528

Calculate the derivative dydxx=1\left.\frac{\mathbb{d} y}{\mathbb{d} x}\right|_{x=1} for y=4+5x+9x2+11x3+10x4+5x5+4x6x3y=\frac{4+5 x+9 x^{2}+11 x^{3}+10 x^{4}+5 x^{5}+4 x^{6}}{x^{3}}.

See Solution

Problem 14529

Approximate 17x2+1xdx\int_{1}^{7} \frac{x^{2}+1}{x} dx using a Trapezoidal Sum with 3 subintervals. Is it an under or over estimation?

See Solution

Problem 14530

Calculate the integral: 352x2+x+4x1dx\int_{3}^{5} \frac{2 x^{2}+x+4}{x-1} \, dx

See Solution

Problem 14531

Determine the horizontal asymptotes of the function t(x)=(x+2)(x1)(x4)5(x+3)(x1)(x3)t(x)=\frac{(x+2)(x-1)(x-4)}{5(x+3)(x-1)(x-3)}.

See Solution

Problem 14532

Calculate the integral: 011x2+6x+10dx\int_{0}^{1} \frac{1}{x^{2}+6 x+10} d x.

See Solution

Problem 14533

Find the antiderivative for these integrals: a. cos(θ)1+sin(θ)dΘ\int \frac{\cos (\theta)}{\sqrt{1+\sin (\theta)}} d \Theta b. (x33x)dx\int (x^{3}-3 x) d x c. xx2+1dx\int \frac{x}{x^{2}+1} d x

See Solution

Problem 14534

Evaluate the integral: 11sin(x)e3x6dx\int_{1}^{1} \sin (x) e^{-3 x-6} d x

See Solution

Problem 14535

Find where the graph of f(x)=18x23f(x)=\frac{18}{\sqrt[3]{x-2}} is concave down. Choose A, B, C, or D.

See Solution

Problem 14536

Bestimme die Ableitung der Funktionen: a) f(x)=2xf(x)=\frac{2}{x}, b) f(x)=3xf(x)=\frac{3}{x}, c) f(x)=x2+1f(x)=x^{2}+1, d) f(x)=2x21f(x)=2 x^{2}-1.

See Solution

Problem 14537

Find intervals where the graph of f(x)=81x+53f(x)=-\frac{81}{\sqrt[3]{x+5}} is concave up. Choose one: (A) x>53x>\sqrt[3]{5} (B) x<53x<-\sqrt[3]{5} (C) x<5x<-5 (D) x>5x>-5

See Solution

Problem 14538

Berechnen Sie den Flächeninhalt zwischen den Graphen f(x)=e0.5xf(x)=e^{0.5 x} und g(x)=2ee0.5xg(x)=2 e-e^{0.5 x} im Bereich D=RD=\mathbb{R}.

See Solution

Problem 14539

Find the minimum slope of the curve given by the equation y=x510x2y=x^{5}-10 x^{2}.

See Solution

Problem 14540

Find the maximum slope of the curve y=4x324x2+32xy=4 x^{3}-24 x^{2}+32 x in the interval [0,5][0,5].

See Solution

Problem 14541

What is the shot put's acceleration while falling into the pit, considering gravity?

See Solution

Problem 14542

Find the limit: limh0cos(π2+h)cos(π2)h\lim _{h \rightarrow 0} \frac{\cos \left(\frac{\pi}{2}+h\right)-\cos \left(\frac{\pi}{2}\right)}{h}. Options: a. 1 b. 0 c. -1 d. does not exist

See Solution

Problem 14543

Find the values of xx where the function f(x)=12x46x327x2f(x)=-\frac{1}{2} x^{4}-6 x^{3}-27 x^{2} has points of inflection. Options: A) x=3x=3, B) x=3x=-3, C) x=32x=\frac{3}{2}, D) none.

See Solution

Problem 14544

Calculate the area between the curves y=16xy=16x, y=x5y=x^5, and the lines x=0x=0, x=2x=2. The area is \square.

See Solution

Problem 14545

Estimate r(5)r^{\prime}(5) using values from the table: r(0)=8r(0)=8, r(3)=10r(3)=10, r(4)=14r(4)=14, r(6)=22r(6)=22. Options: a. 8, b. 18, c. 4, d. 16.

See Solution

Problem 14546

What happens at the point (3,8)(3,8) for the function ff given f(3)=8f(3)=8, f(3)=0f^{\prime}(3)=0, and f(3)=0f^{\prime \prime}(3)=0? Choose: (A) minimum point (B) maximum point (C) not enough information

See Solution

Problem 14547

Find the limit: limh0cos(π2+h)cos(π2)h\lim _{h \rightarrow 0} \frac{\cos \left(\frac{\pi}{2}+h\right)-\cos \left(\frac{\pi}{2}\right)}{h}. Choices: (a) 1, (b) 0, (c) -1, (d) does not exist.

See Solution

Problem 14548

What happens at the point (2,3)(2,3) on the graph of the function ff given f(2)=3f(2)=3, f(2)=0f^{\prime}(2)=0, and f(2)=5f^{\prime \prime}(2)=5?
Choose 1 answer: (A) (2,3)(2,3) is a minimum point. (B) (2,3)(2,3) is a maximum point. (C) There's not enough information to tell.

See Solution

Problem 14549

What happens to the graph of the twice differentiable function ff at the point (7,6)(-7,6) given f(7)=6f(-7)=6, f(7)=0f'(-7)=0, and f(7)=5f''(-7)=-5?
Choose 1 answer: (A) (7,6)(-7,6) is a minimum point. (B) (7,6)(-7,6) is a maximum point. (C) There's not enough information to tell.

See Solution

Problem 14550

Find the area between y=4xy=4x, y=x3y=x^3, x=0x=0, and x=2x=2. The area is \square.

See Solution

Problem 14551

Find the integral of the function: (x34+1)dx\int\left(\sqrt[4]{x^{3}}+1\right) d x.

See Solution

Problem 14552

Calculate the area between the curves f(x)=x48x3+21x2f(x)=x^{4}-8 x^{3}+21 x^{2} and g(x)=20x+50g(x)=20 x+50 where they intersect.

See Solution

Problem 14553

6 圆 a) Finde die Ableitung von f(x)=(2x3)ex,g(x)=xe2x,h(x)=ex(x2+2x)f(x)=(2 x-3) \cdot e^{x}, g(x)=x \cdot e^{2 x}, h(x)=e^{x} \cdot (x^{2}+2 x). b) Wo haben ff und gg waagerechte Tangenten? c) Finde die Schnittpunkte von hh mit der x-Achse und die Steigung der Tangenten dort.

See Solution

Problem 14554

Find the time tt when the particle at position x(t)=2t321t2+72t53x(t)=2 t^{3}-21 t^{2}+72 t-53 is at rest.

See Solution

Problem 14555

Find the average velocity of a particle with position 5t2-5 t^{2} from t=0t=0 to t=3t=3. Choices: (A) -45 (B) -30 (C) -15 (D) -10 (E) -5

See Solution

Problem 14556

Estimate f(4.8)f(4.8) using local linear approximation at x=5x=5 given f(5)=3f(5)=3 and f(5)=4f'(5)=4. Options: (A) 2.2 (B) 2.8 (C) 3.4 (D) 3.8 (E) 4.6

See Solution

Problem 14557

Calculate left and right Riemann sums for f(x)=x+2f(x)=x+2 on [0,5][0,5] with n=5n=5. Left sum is \square.

See Solution

Problem 14558

Calculate the left and right Riemann sums for f(x)=x+2f(x)=x+2 on [0,5][0,5] with n=5n=5. Left sum: \square.

See Solution

Problem 14559

Approximate the displacement of an object with v=4t+3v=4t+3 (m/s) from t=0t=0 to t=8t=8 using n=2n=2 subintervals. Answer: \square m.

See Solution

Problem 14560

Find the time tt when the particle's velocity v(t)=t36t2+10t4v(t)=t^{3}-6 t^{2}+10 t-4 changes from right to left for t0t \geq 0.

See Solution

Problem 14561

Calculate left and right Riemann sums for f(x)=x+2f(x)=x+2 on [0,5][0,5] with n=5n=5. Left sum is 20; find right sum.

See Solution

Problem 14562

Approximate the displacement for v=14t+1v=\frac{1}{4t+1} from t=0t=0 to t=8t=8 using 4 subintervals. Displacement: m\square \mathrm{m}.

See Solution

Problem 14563

Calculate the left and right Riemann sums for f(x)=1x+1f(x)=\frac{1}{x}+1 on [1,5][1,5] with n=4n=4. Left sum: \square.

See Solution

Problem 14564

Determine the end behavior of the polynomial g(x)=3x4+2x2+x1g(x)=3 x^{4}+2 x^{2}+x-1 using limits.

See Solution

Problem 14565

Find the tangent line equation to the curve at t=0t=0 for x=2tat1+u3dux=\int_{2t}^{at} \sqrt{1+u^{3}} du and y=2+at2+(t+1)cos3(at)y=2+at^{2}+(t+1) \cos^{3}(at), where a>2a>2.

See Solution

Problem 14566

Ein Segelflugzeug hat die Flughöhe hh mit der Geschwindigkeit v1(t)=0,15t2+0,9t\mathrm{v}_{1}(\mathrm{t})=-0,15 \mathrm{t}^{2}+0,9 \mathrm{t}.
a) Finde die Höhenfunktion. b) Bestimme die maximale Flughöhe. c) Wann ist die Höhenänderung maximal? d) Wann erreicht es wieder 80 m? e) Finde aa und bb für eine sanfte Landung nach 18 min.

See Solution

Problem 14567

Find points on the curve where the tangent is horizontal or vertical for x=loga(sec(at))x=\log_{a}(\sec(at)), y=loga(sin(at))y=\log_{a}(\sin(at)), π2atπ2a-\frac{\pi}{2a} \leq t \leq \frac{\pi}{2a}, a>1a>1.

See Solution

Problem 14568

Find the instantaneous rate of change of profit at quantity q=10q=10 for the profit function P(q)=300q10q2200P(q)=300 q-10 q^{2}-200.

See Solution

Problem 14569

Find the derivative of y=6x3+15x2y=6 x^{3}+15 x^{2} and evaluate it at x=3x=3.

See Solution

Problem 14570

Calculate the integral from 3 to 4 of the function t52tt3\frac{t^{5}-2 t}{t^{3}}.

See Solution

Problem 14571

Evaluate the integral 112πx2 dx\int_{1}^{\frac{1}{2}} \sqrt{\frac{\pi}{x^{2}}} \mathrm{~d} x.

See Solution

Problem 14572

Determine where the function f(x)=x47x312x2f(x)=-x^{4}-7 x^{3}-12 x^{2} is increasing or decreasing.

See Solution

Problem 14573

Calculate the integral of f(x)=(e14x)2f(x)=\left(e^{-\frac{1}{4} x}\right)^{2}.

See Solution

Problem 14574

A 400 g isotope decays as A(t)=400e0.044tA(t)=400 e^{-0.044 t}. Find: (a) amount left after 20 years, (b) time to half decay.

See Solution

Problem 14575

Find the limit: limn(1+π2n+1)2n\lim _{n \rightarrow \infty}\left(1+\frac{\pi}{2^{n+1}}\right)^{2^{n}}.

See Solution

Problem 14576

Calculate the integral from 1 to 4 of the function x1\sqrt{x}-1.

See Solution

Problem 14577

Bestimme die Ableitung ff^{\prime} für folgende Funktionen: a) f(x)=ex+2x+5f(x)=e^{x}+2 x+5 b) f(x)=x2+ex+ex+ef(x)=x^{2}+e x+e^{x}+e c) f(x)=ex+2exf(x)=e^{x}+2 e^{x} d) f(x)=ex3+e3+exf(x)=e x^{3}+e^{3}+e^{x} e) f(x)=x2+2e+1f(x)=x^{2}+2 e+1 f) f(x)=2x+e2+ex+exf(x)=2 x+e^{2}+e^{x}+e^{x}

See Solution

Problem 14578

Analyze the function f(x)=x47x312x2f(x)=-x^{4}-7 x^{3}-12 x^{2} for end behavior and intervals of increase and decrease.

See Solution

Problem 14579

Find the relative max and min of the function f(x)=x47x312x2f(x)=-x^{4}-7x^{3}-12x^{2}.

See Solution

Problem 14580

Bestimmen Sie das Krümmungsverhalten und die Wendepunkte für die Funktionen a) f(x)=x3+3x2+2f(x)=x^{3}+3 x^{2}+2, b) f(x)=12x332xf(x)=\frac{1}{2} x^{3}-\frac{3}{2} x, c) f(x)=14x413x3f(x)=\frac{1}{4} x^{4}-\frac{1}{3} x^{3}, d) f(x)=1xf(x)=1-x.

See Solution

Problem 14581

Find the limit: limn((sin(π/2))n+(2sin(π/4))n+(1/10)n)1/n\lim _{n \rightarrow \infty}\left((\sin (\pi / 2))^{n}+(2 \sin (\pi / 4))^{n}+(1 / 10)^{n}\right)^{1 / n}

See Solution

Problem 14582

Find the average annual change in the amount A(t)=1000(1.03)tA(t)=1000(1.03)^{t} for the first five years.

See Solution

Problem 14583

Find dhdp\frac{d h}{d p} when p=200p=200 for the equation 20h5+6,000,000=p320 h^{5}+6,000,000=p^{3}. Interpret your answer.

See Solution

Problem 14584

How old is a wooden artifact with 22% carbon-14 left? Use the half-life of carbon-14, which is 5730 years.

See Solution

Problem 14585

Ein Segelflugzeug startet in 80 m Höhe. Bestimme die Höhenfunktion h(t)h(t), maximale Höhe, Zeit der höchsten Änderung und Landeparameter a,ba, b.

See Solution

Problem 14586

Find ff where f(x)=x2+3f'(x) = x^2 + 3 and f(0)=5f(0) = 5.

See Solution

Problem 14587

Find the second derivative d2ydx2\frac{d^{2} y}{d x^{2}} at x=3x=-3 for the function y=x+5x2y=\frac{x+5}{x-2}.

See Solution

Problem 14588

Find the limit: limn12n3+n12n35n\lim _{n \rightarrow \infty} \sqrt{12 n^{3}+n}-\sqrt{12 n^{3}-5 n}.

See Solution

Problem 14589

Berechne die Ableitung von f(x)=2x2f(x)=-2 x^{2} an der Stelle x0=3x_{0}=3.

See Solution

Problem 14590

Find the tangent line equation for the function f(x)=x2+2xf(x)=x^{2}+2x at the point where x=5x=5.

See Solution

Problem 14591

Find the total profit from selling the first 80 tickets, given the marginal-profit function P(x)=7x1143P^{\prime}(x)=7x-1143.

See Solution

Problem 14592

Calculate the integral 92+9xdx\int \frac{9}{2+9 x} d x, where x29x \neq -\frac{2}{9}.

See Solution

Problem 14593

Kostenfunktion: Gegeben ist f(x)=0,01x30,3x2+9,5x+100f(x)=0,01 x^{3}-0,3 x^{2}+9,5 x+100. Bestimme SyS_{y}, Monotonieverhalten und Wendepunkt.

See Solution

Problem 14594

Find the value of aa if limxax2+bx+cdax=2\lim _{x \rightarrow-\infty} \frac{\sqrt{a x^{2}+b x+c}}{d-a x}=2.

See Solution

Problem 14595

Find the series sum: k=11(5k2)(5k+3)\sum_{k=1}^{\infty} \frac{1}{(5 k-2)(5 k+3)} using n15n+9\frac{n}{15n+9}.

See Solution

Problem 14596

Evaluate the integral (9+x6)86x5dx\int\left(9+x^{6}\right)^{8} 6 x^{5} d x.

See Solution

Problem 14597

Evaluate the integral (2+x8)48x7dx\int\left(2+x^{8}\right)^{4} 8 x^{7} d x.

See Solution

Problem 14598

Bestimme die Gesamtstrecke eines Autos in einem Geschwindigkeits-Zeit-Diagramm für t[0;30]t \in[0 ; 30] Sekunden.

See Solution

Problem 14599

Find the maximum volume of a box with an open top and square base using 25 square feet of material.

See Solution

Problem 14600

Gegeben ist die Funktion fa(x)=ax3+4axf_{a}(x)=-a x^{3}+4 a x. Zeigen Sie die Symmetrie, Punkte und Extremstellen der Graphen und finden Sie die Wendetangente mit m=8m=8.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord