Calculus

Problem 8401

True or False: For f(x)=(3x1)(5x+3)f(x)=(3 x-1)(5 x+3), does f(x)f^{\prime}(x) yield the same result using product or power rule?

See Solution

Problem 8402

Find the max and min of f(x,y)=6xyf(x, y) = 6xy subject to x216+y236=1\frac{x^{2}}{16}+\frac{y^{2}}{36}=1 using Lagrange multipliers.

See Solution

Problem 8403

Find the absolute max and min of f(x)=6x372x2270xf(x)=-6 x^{3}-72 x^{2}-270 x on [7,7][-7,7] as an ordered pair.

See Solution

Problem 8404

Analyze the curve y+cosy=x+1y+\cos y=x+1 for 0y2π0 \leq y \leq 2 \pi: (a) Find dydx\frac{d y}{d x} in terms of yy. (b) Determine vertical tangent equations. (c) Find d2ydx2\frac{d^{2} y}{d x^{2}} in terms of yy.

See Solution

Problem 8405

Find the derivative of g(t)=2te3tg(t)=2 t e^{3 t}. Options: g(t)=(3t+6)e3tg^{\prime}(t)=(3 t+6) e^{3 t}, g(t)=(6t+2)e3tg^{\prime}(t)=(6 t+2) e^{3 t}, g(t)=2e3tg^{\prime}(t)=2 e^{3 t}, g(t)=6te3tg^{\prime}(t)=6 t e^{3 t}, g(t)=(2t+6)e3tg^{\prime}(t)=(2 t+6) e^{3 t}.

See Solution

Problem 8406

Find the limit: limxarctan(x)\lim _{x \rightarrow \infty} \arctan (x).

See Solution

Problem 8407

Find the derivative f(2)f^{\prime}(2) of the drug quantity function Q=f(t)=312t(0.5488)tQ=f(t)=312 t(0.5488)^{t}. Round to 2 decimal places.

See Solution

Problem 8408

Find the derivative of f(x)=x2xf(x)=\sqrt{x} \cdot 2^{-x}.

See Solution

Problem 8409

What is the speed of water hitting the bottom of Victoria Falls, given a height of 108 m108 \mathrm{~m} and horizontal flow of 3.60 m/s3.60 \mathrm{~m/s}?

See Solution

Problem 8410

Bestimme den Flächeninhalt unter f(x)=x2f(x)=x^{2} von 0 bis xx mit nn Streifen (Obersummenfläche).

See Solution

Problem 8411

Berechnen Sie die Ableitung von f(x)=13x3+12x22xf(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-2 x.

See Solution

Problem 8412

Calculate the limit of f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=x25x1f(x)=x^{2}-5x-1.

See Solution

Problem 8413

Berechne die Durchschnittsgeschwindigkeit des Schlittens mit s(t)=12t2s(t)=\frac{1}{2} t^{2} in den ersten 5 Sekunden. Bestimme die Momentangeschwindigkeit bei x0=5x_{0}=5 und erkläre den Unterschied zwischen mittlerer und lokaler Änderungsrate.

See Solution

Problem 8414

Find f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=3x2x+5f(x)=3 x^{2}-x+5, where h0h \neq 0, and simplify.

See Solution

Problem 8415

Find the horizontal asymptote of f(x)=5(x+2)(8x1)(6x)(8x+2)f(x)=5 \frac{(x+2)(8 x-1)}{(6-x)(8 x+2)}. What is yy?

See Solution

Problem 8416

Given the curve xy2x3y=6x y^{2}-x^{3} y=6, find: (a) dydx\frac{d y}{d x}, (b) points with x=1x=1 and tangent line equations, (c) xx-coordinates of vertical tangents.

See Solution

Problem 8417

Find the rate of decrease of the surface area of a sphere when the radius is 6 m6 \mathrm{~m} and decreases at 5 m/s5 \mathrm{~m/s}.

See Solution

Problem 8418

Find the radius rr of a cylinder with volume 500 cm³ that minimizes cost CC given material prices. r=r=\square cm.

See Solution

Problem 8419

Find dzdt\frac{d z}{d t} at (2,1)(2,1) for z2=x2+y2z^{2}=x^{2}+y^{2} with dxdt=2\frac{d x}{d t}=2 and dydt=2\frac{d y}{d t}=2.

See Solution

Problem 8420

Find the limit as hh approaches 0 for the expression 12+h12h\frac{\frac{1}{2+h}-\frac{1}{2}}{h}.

See Solution

Problem 8421

A triangle has sides of 4ft4 \mathrm{ft} and 5ft5 \mathrm{ft} with the angle between them increasing at 0.2rad/s0.2 \mathrm{rad/s}. Find the area change rate when the angle is π3\frac{\pi}{3}. Answer in ft2/s\mathrm{ft}^{2}/\mathrm{s}.

See Solution

Problem 8422

Find the rate of water depth decrease in a cone (height 17 ft, radius 3 ft) when water is 12 ft high, leaking at 11 ft³/min. Round to 3 decimal places.

See Solution

Problem 8423

Find the rate of change of the area AA of a circle when r=4r=4 and drdt=5\frac{d r}{d t}=5.

See Solution

Problem 8424

Find the height increase rate when water is 10 m10 \mathrm{~m} deep in a pyramid tank with base 4 m4 \mathrm{~m} and height 15 m15 \mathrm{~m}, pumped at 23 m3/s\frac{2}{3} \mathrm{~m}^{3}/\mathrm{s}. Round to 3 decimal places. Use V=s2h3V=\frac{s^{2} h}{3}.

See Solution

Problem 8425

A company sells widgets with sales xx given by x=300005p+1x=\frac{30000}{\sqrt{5 p+1}}. Find revenue change rate at p=$160p=\$ 160.

See Solution

Problem 8426

Gravel is dumped at 40 cubic ft/min forming a cone with equal base diameter and height. Find height increase rate at 12 ft.

See Solution

Problem 8427

Bestimme die Tangentengleichung für die Funktionen und Punkte: a) f(x)=1,5xf(x)=1,5^{x} bei A(11,5)A(1 \mid 1,5) b) f(x)=(14)xf(x)=\left(\frac{1}{4}\right)^{x} bei A(14)A(-1 \mid 4) c) f(x)=(43)xf(x)=\left(\frac{4}{3}\right)^{x} bei A(2f(2))A(2 \mid f(2))

See Solution

Problem 8428

Bestimmen Sie die Tangentengleichung an ff im Punkt AA: a) f(x)=1,5xf(x)=1,5^{x}, A(11,5)A(1 \mid 1,5); b) f(x)=(14)xf(x)=\left(\frac{1}{4}\right)^{x}, A(14)A(-1 \mid 4); c) f(x)=(43)xf(x)=\left(\frac{4}{3}\right)^{x}, A(2f(2))A(2 \mid f(2)); d) f(x)=x215xf(x)=x^{2}-15^{x}, A(2f(2))A(2 \mid f(2)).

See Solution

Problem 8429

Bestimme die Stammfunktion FF für die gegebenen ff mit den Bedingungen: a) f:x1x+4x3f: x \mapsto \frac{1}{x}+4 x^{3}, F(1)=4F(1)=-4 b) f:x1+sinxf: x \mapsto 1+\sin x, F(0)=3F(0)=3 c) f:xlnxf: x \mapsto \ln x, F(e)=eF(e)=e

See Solution

Problem 8430

Evaluate the limit: limx2x3x24x2\lim _{x \rightarrow 2} \frac{x^{3}-x^{2}-4}{x-2}.

See Solution

Problem 8431

Differentiate y=sec(θ)tan(θ)y=\sec(\theta)\tan(\theta).

See Solution

Problem 8432

Evaluate these limits: (a) limx2x3x24x2\lim _{x \rightarrow 2} \frac{x^{3}-x^{2}-4}{x-2}, (b) limx13+x2x21\lim _{x \rightarrow 1} \frac{\sqrt{3+x}-2}{x^{2}-1}.

See Solution

Problem 8433

Find the slope of the tangent line for these curves at specified points: (a) x3+y3=2x^{3}+y^{3}=2 at (1,1)(1,1) (b) 2x2+3y=4x+y2 x^{2}+3 \sqrt{y}=-4 x+y at (2,9)(-2,9) (c) x2xy+y2=3x^{2}-x y+y^{2}=3 at x=1x=1

See Solution

Problem 8434

Find the slope of the tangent line to x3+y3=2x^{3}+y^{3}=2 at the point (1,1)(1,1).

See Solution

Problem 8435

Given f(x)=x4x2+1x+1+3f(x)=x^{4}-\frac{x^{2}+1}{\sqrt{x+1}}+3 for x>1x>-1, find: (a) f(0)f(0), (b) f(x)f^{\prime}(x), (c) tangent line at x=0x=0, (d) normal line at x=0x=0.

See Solution

Problem 8436

Find the derivative of F(t)=e2tsin(2t)F(t)=e^{2 t \sin (2 t)}.

See Solution

Problem 8437

Emma invested \$19,000 at a continuous interest rate of 4.2%. How long to reach \$40,000? Round to the nearest year.

See Solution

Problem 8438

Jayden invested \$ 22,000 at 2.5\% interest, compounded continuously. How long to reach \$ 30,400? Round to 0.1 years.

See Solution

Problem 8439

Find the slope of the tangent line for f(x)=9x23x+1f(x)=9 x^{2}-3 x+1 at x=10x=10.

See Solution

Problem 8440

Find the slope of the tangent line for f(x)=x25f(x)=x^{2}-5 at x=12x=-12.

See Solution

Problem 8441

Find the first and second derivatives of y=xln(x)y=\sqrt{x} \ln(x). What are yy^{\prime} and yy^{\prime \prime}?

See Solution

Problem 8442

Find the slope of the tangent line for f(x)=x2+10f(x)=x^{2}+10 at x=10x=10.

See Solution

Problem 8443

Differentiate the following functions without simplifying:
(a) f(x)=(x5x2+1)(2x3+2x+1)f(x)=\left(x^{5}-\sqrt{x^{2}+1}\right)\left(2 x^{3}+\sqrt{2 x+1}\right)
(b) f(x)=x3+3x2+x+1f(x)=\frac{x^{3}+3}{x^{2}+x+1}
(c) f(x)=3x1/3+1f(x)=\sqrt{3 x^{1/3}+1}; find df dx\frac{\mathrm{d} f}{\mathrm{~d} x} and d2f dx2\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}.

See Solution

Problem 8444

Find the tangent line equation for the function f(x)=4x2+5x11f(x)=-4 x^{2}+5 x-11 at the point where x=4x=4.

See Solution

Problem 8445

A man walks north at 4ft/s4 \mathrm{ft/s}; a woman walks south at 5ft/s5 \mathrm{ft/s}. Find their separation rate after 1515 min.

See Solution

Problem 8446

Find the tangent line equation for f(x)=10x2+2x+7f(x)=10 x^{2}+2 x+7 at x=6x=6.

See Solution

Problem 8447

Find the tangent line equation for the function f(x)=10x2+6x+6f(x)=-10 x^{2}+6 x+6 at the point where x=10x=-10.

See Solution

Problem 8448

Find the derivative of f(x)=ln(x3)f(x)=\ln (x-3) using the limit definition as hh approaches 00. No need to simplify.

See Solution

Problem 8449

Verify that (1,1)(1,1) satisfies the equation 3y3x1/32x2y+xy=23 y^{3} x^{1/3} - 2 x^{2} \sqrt{y} + x y = 2 and find dydx\frac{dy}{dx} at (1,1)(1,1).

See Solution

Problem 8450

Find the derivative of f(x)=2secxf(x)=2 \sec x using the limit definition as hh approaches 00. No need to simplify.

See Solution

Problem 8451

Find the derivative of the function f(x)=5x4+3x5f(x)=5 x^{4}+3 x^{5} using the limit definition. No need to simplify.

See Solution

Problem 8452

Find the derivative of the function f(x)=x4f(x)=\sqrt{x-4} using the limit definition. Simplification is not required.

See Solution

Problem 8453

Find the derivative of f(x)=3x2x3f(x)=3 x^{2}-x^{3} at x=5x=5 using the limit definition. No need to simplify.

See Solution

Problem 8454

Find the slope of the tangent line for f(x)=x4+x3f(x)=x^{4}+x^{3} at x=8x=-8 using the limit method. No simplification needed.

See Solution

Problem 8455

Find dhdt\frac{d h}{d t} for the equation 3h32ht+4t32t=03 h^{3}-2 h t+4 t^{3}-2 t=0.

See Solution

Problem 8456

Find the tangent line equation for f(x)=x3cos(3x)f(x)=x^{3}-\cos(3x) at x=0.5x=-0.5. Round decimals to 3 places.

See Solution

Problem 8457

Find the derivative of the function y=2e7xy=2 e^{-7 x}. What is dydx=\frac{d y}{d x}=?

See Solution

Problem 8458

Find the rate of decrease of surface area when the radius is 6 m6 \mathrm{~m} and decreasing at 5 m/s5 \mathrm{~m/s}.

See Solution

Problem 8459

Find the height increase rate when water is 10 m10 \mathrm{~m} deep in a pyramid tank being filled at 23 m3/s\frac{2}{3} \mathrm{~m}^{3}/\mathrm{s}.

See Solution

Problem 8460

Find the rate at which the water depth decreases when the water is 12ft12 \mathrm{ft} high in a cone leaking at 11ft3/min11 \mathrm{ft}^{3}/\mathrm{min}.

See Solution

Problem 8461

Differentiate f(x)=ex3x5f(x)=\mathrm{e}^{x^{3}} \sqrt{x^{5}}. Find f(x)f^{\prime}(x).

See Solution

Problem 8462

A 6-ft person walks at 3ft/s3 \mathrm{ft/s} toward a wall. How fast does their shadow's height change when 10ft10 \mathrm{ft} away? Answer in ft/s\mathrm{ft/s}.

See Solution

Problem 8463

Differentiate y=7x3+5y=7^{x^{3}+5}. Find dydx\frac{d y}{d x}.

See Solution

Problem 8464

Find the derivative of the function: 7xln(x)5x7 x \ln (x) - 5 x.

See Solution

Problem 8465

Find the critical numbers of the function f(x)=2x3+x2+2xf(x)=2 x^{3}+x^{2}+2 x. Enter as a comma-separated list or DNE if none.

See Solution

Problem 8466

Calculate the half-life of an element that decays at a rate of 3.421%3.421\% per day.

See Solution

Problem 8467

Find f(x)f^{\prime}(x) for the function f(x)=log7(3x25x+1)f(x)=\log _{7}(3 x^{2}-5 x+1).

See Solution

Problem 8468

Check if f(x)=616x+4x2f(x)=6-16 x+4 x^{2} meets Rolle's Theorem on [1,3][1,3] and find cc values. c=c=

See Solution

Problem 8469

Find yy^{\prime} if y=ln(e5x+5xe5x)y=\ln(\mathrm{e}^{-5 x}+5 x \mathrm{e}^{-5 x}). Options: x1+5x-\frac{x}{1+5 x}, 25x1+5x\frac{25 x}{1+5 x}, 1(1+5x)2-\frac{1}{(1+5 x)^{2}}, 25x1+5x-\frac{25 x}{1+5 x}.

See Solution

Problem 8470

Sketch the graph of f(x)=5xf(x)=\frac{5}{x} for x5x \geq 5 and find its max/min values. List answers as: absolute max, absolute min, local max, local min.

See Solution

Problem 8471

Differentiate the function y=7x+5y=7^{x+5}. What is dydx\frac{d y}{d x}?

See Solution

Problem 8472

Determine vertical and horizontal asymptotes for the function f(x)=7x3+1x+5f(x)=\frac{7 x^{3}+1}{x+5}.

See Solution

Problem 8473

Determine the vertical and horizontal asymptotes of the function f(x)=6x54x2+56x2+5x4f(x)=\frac{6 x^{5}-4 x^{2}+5}{6 x^{2}+5 x-4}.

See Solution

Problem 8474

Bestimmen Sie die Steigung von f(x)=2x3f(x)=2 x^{3} bei x0=1x_{0}=-1.

See Solution

Problem 8475

Find f(x)f^{\prime}(x) for the function f(x)=log7(3x25x+1)f(x)=\log_{7}(3x^{2}-5x+1).

See Solution

Problem 8476

Find dydx\frac{d y}{d x} using implicit differentiation for the equation xyy2=3x y - y^{2} = 3.

See Solution

Problem 8477

Find the derivative dydx\frac{d y}{d x} for y=ln(x2/3)[0.5pt]y=\ln \left(x^{2 / 3}\right)[0.5 p t].

See Solution

Problem 8478

Evaluate the integral 2615x2dx\int_{2}^{6} \frac{1}{5} x^{2} dx using a Riemann sum approach.

See Solution

Problem 8479

Find f(x)f^{\prime}(x) for f(x)=(1+x2)5(1+x3)8(5x+3)2/3f(x)=\frac{(1+x^{2})^{5}(1+x^{3})^{8}}{(5x+3)^{2/3}} using logarithmic differentiation.

See Solution

Problem 8480

Find the derivative, integral, roots, and behavior of f(x)=7+x28+xf(x)=\frac{\sqrt{7+x^{2}}}{8+x}. Check for continuity and horizontal asymptote at y=0y=0.

See Solution

Problem 8481

Find the limits: 53. limx0sin3x5x84x\lim _{x \rightarrow 0} \frac{\sin 3 x}{5 x^{8}-4 x} and 55. limθ0sinθθ+tanθ\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta+\tan \theta}.

See Solution

Problem 8482

Find the limits: 55. limθ0sinθθ+tanθ\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta+\tan \theta}, 57. limθ0cosθ12θ2\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{2 \theta^{2}}.

See Solution

Problem 8483

Find the speed of an object dropped from a 650 m cliff after 2 seconds, given its height function: 6504.9t2650 - 4.9 t^{2}.

See Solution

Problem 8484

Find the critical points of f(x)=(x2)2/3(2)+(2x+1)[23(x2)1/3]f^{\prime}(x)=(x-2)^{2/3}(2)+(2x+1)\left[\frac{2}{3}(x-2)^{-1/3}\right].

See Solution

Problem 8485

Simplify: 27n3n(n+1)(2n+1)6+36n2n(n+1)26nn\frac{27}{n^{3}} \sum \frac{n(n+1)(2 n+1)}{6} + \frac{36}{n^{2}} \sum \frac{n(n+1)}{2} - \frac{6}{n} n and apply limits.

See Solution

Problem 8486

Find the limit as xx approaches 2+2^+ of f(2)f(21x)2(21x)\frac{f(2)-f(2-\frac{1}{x})}{2-(2-\frac{1}{x})}, where f(x)=1xf(x) = \frac{1}{x}.

See Solution

Problem 8487

Find the critical points of the function f(x)=x3(x2)2f(x) = x^{3}(x-2)^{2}.

See Solution

Problem 8488

A 1.0 kg mass on a spring (90 N/m) is released from 0.40 m. What is the maximum distance it will fall?

See Solution

Problem 8489

Find critical points of f(x)=xln(2x)f(x)=x-\ln(2x).

See Solution

Problem 8490

Find the derivative of y=(sin(x))4x38x+17y=(\sin(x))^{4x^{3}-8x+17}. Provide the answer in exact form: y=y'=

See Solution

Problem 8491

Differentiate the function y=lnxx4y=\frac{\ln x}{x^{4}}.

See Solution

Problem 8492

Differentiate the function: f(x)=ln(ln(3x))f(x)=\ln (\ln (3 x)). Find f(x)f^{\prime}(x).

See Solution

Problem 8493

Find the derivative of y=x(x+8)3(4x1)2y=\frac{x(x+8)^{3}}{(4 x-1)^{2}} using logarithmic differentiation. What is y=y^{\prime}=?

See Solution

Problem 8494

Find the derivative of y=x(x+8)3(4x1)2y=\frac{x(x+8)^{3}}{(4x-1)^{2}} using logarithmic differentiation.

See Solution

Problem 8495

Find the derivative f(x)f^{\prime}(x) for the function f(x)=2x4ln2xf(x)=2 x^{4} \ln ^{2} x.

See Solution

Problem 8496

Find the zz-coordinate(s) for x=1,y=2x=1, y=2 in f(x,y,z)=3yz+xz2x3z=4f(x, y, z)=3yz+xz^2-x^3z=-4. Then, find a normal vector and the tangent plane equation.

See Solution

Problem 8497

Find the derivative f(x)f^{\prime}(x) of the function f(x)=xx+2f(x)=\frac{x}{x+2} using the limit definition: limh0f(x+h)f(x)h\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}.

See Solution

Problem 8498

Find the day tt (1 ≤ tt ≤ 46) when the maximum growth rate of car sales N(t)=3000+36t2t3N(t) = 3000 + 36t^2 - t^3 occurs.

See Solution

Problem 8499

Differentiate f(x)=(sinh(x))7f(x)=(\sinh (x))^{7} and provide the exact form of f(x)=f^{\prime}(x)=.

See Solution

Problem 8500

Find the limit as xx approaches -1 of f(x)f(1)x+1\frac{f(x)-f(-1)}{x+1} for f(x)=xx+2f(x)=\frac{x}{x+2}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord