Calculus

Problem 10801

Find the tangent line equation for y=4sinx+cos2xy=4 \sin x+\cos 2 x at x=5π2x=\frac{5 \pi}{2}. The equation is y=y=

See Solution

Problem 10802

How long to double a $1400\$ 1400 deposit at 6%6 \% continuous compounding? Answer in years and days.

See Solution

Problem 10803

Find the following for the function f(x)=x4f(x)=x-4: a. f(x)f(a)xa\frac{f(x)-f(a)}{x-a}; b. f(x+h)f(x)h\frac{f(x+h)-f(x)}{h}.

See Solution

Problem 10804

Find the following for the function f(x)=x27f(x)=-x^{2}-7: a. f(x)f(a)xa\frac{f(x)-f(a)}{x-a}; b. f(x+h)f(x)h\frac{f(x+h)-f(x)}{h}.

See Solution

Problem 10805

Calculate the average rate of change for f(x)=92x+4f(x)=\frac{9}{2 x+4} on [3,4][3,4]. Average rate of change ==

See Solution

Problem 10806

Find the function ff with derivative f(x)=2x8x2f'(x) = -2x \sqrt{8 - x^2} that passes through the point (2,3)(2, 3).

See Solution

Problem 10807

Find the acceleration and position functions for a particle with velocity v(t)=5/tv(t)=5/\sqrt{t} and x(1)=12x(1)=12.

See Solution

Problem 10808

Given the cost function C(x)=67600+500x+x2C(x)=67600+500 x+x^{2}, find: a) Cost at x=1900x=1900 b) Average cost at x=1900x=1900 c) Marginal cost at x=1900x=1900 d) Production level minimizing average cost e) Minimal average cost

See Solution

Problem 10809

Find the average rate of change of f(x)=7x24f(x)=7 x^{2}-4 from x=5x=5 to x=ax=a. Express your answer in terms of aa.

See Solution

Problem 10810

Find the average rate of change of f(x)=x2+11xf(x)=x^{2}+11x on [4,4+h][4,4+h]. Provide your answer as an expression in terms of hh.

See Solution

Problem 10811

Consider the curve y+x2=6xyy + x^{2} = 6xy. Find dydx\frac{dy}{dx} and the equation of horizontal tangent lines.

See Solution

Problem 10812

Determine where the function f(x)=20xx2+25f(x)=\frac{20 x}{x^{2}+25} is increasing.

See Solution

Problem 10813

Find the second derivative of f(t)=ln(1et)f(t)=\ln(1-e^{t}).

See Solution

Problem 10814

Find the derivative of f(x)=18x2(36x+9)ln(x)f(x)=18 x^{2}-(36 x+9) \ln (x).

See Solution

Problem 10815

Find the derivative of f(x)=5x2x3+1f(x)=\frac{5 x^{2}}{x^{3}+1} and evaluate it at x=2x=2. Choices: 13-13, 5.25, 20/27-20 / 27, 15.

See Solution

Problem 10816

Find the cost, average cost, marginal cost, and optimal production level for C(x)=40000+400x+x2C(x)=40000+400x+x^{2} at x=1500x=1500.

See Solution

Problem 10817

Find the critical points of the function f(x)=x2/3(52x)f(x)=x^{2/3}\left(\frac{5}{2}-x\right).

See Solution

Problem 10818

Determine where the function f(x)=ln(2x2+3)f(x)=\ln(2x^{2}+3) is concave up.

See Solution

Problem 10819

Find the average rate of change of f(x)=4x27f(x)=4 x^{2}-7 from x=2x=2 to x=bx=b. Express your answer in terms of bb.

See Solution

Problem 10820

Determine where the function f(x)=ln(2x2+3)f(x)=\ln(2x^{2}+3) is concave down.

See Solution

Problem 10821

Determine the concavity of the function f(x)=ln(2x2+3)f(x)=\ln(2x^{2}+3).

See Solution

Problem 10822

Find the second derivative of f(x)=18x2(36x+9)ln(x)f(x)=18x^2 - (36x+9) \ln(x).

See Solution

Problem 10823

Determine the inflection points of the function f(x)=ln(2x2+3)f(x)=\ln(2x^{2}+3).

See Solution

Problem 10824

Calculate the limit: limx(x21x)\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-1}-x\right)

See Solution

Problem 10825

Find the amount of carbon-14 left after 7174 years using the model A=16e0.000121tA=16 e^{-0.000121 t}. Round to the nearest gram.

See Solution

Problem 10826

If ff is concave up on (,0)(-\infty, 0) and (0,)(0, \infty) with a local max at x=0x=0, what can you say about f(0)\mathrm{f}^{\prime}(0)?

See Solution

Problem 10827

Given the cost function C(x)=128x+x2216000C(x)=128 \sqrt{x}+\frac{x^{2}}{216000}, find: a) Cost at x=1550x=1550 b) Average cost at x=1550x=1550 c) Marginal cost at x=1550x=1550 d) Production level for minimal average cost e) Minimal average cost.

See Solution

Problem 10828

Given the cost function C(x)=250x+x2166375C(x)=250 \sqrt{x}+\frac{x^{2}}{166375}, find: 1) Cost at x=1450x=1450 2) Average cost at x=1450x=1450 3) Marginal cost at x=1450x=1450 4) Production level minimizing average cost 5) Minimal average cost.

See Solution

Problem 10829

Find the limit: limx+1ex1+2ex\lim _{x \rightarrow+\infty} \frac{1-e^{x}}{1+2 e^{x}}.

See Solution

Problem 10830

Determine the relative max and min of f(x)=x432x28f(x)=x^{4}-32 x^{2}-8.

See Solution

Problem 10831

Find the derivative of f(x)=(4x+2)exf(x) = (4x+2)e^{-x} using the product and chain rules.

See Solution

Problem 10832

Deposit \2000at62000 at 6% interest compounded continuously. Find the amount in 15 years using A=P e^{\tau t}$.

See Solution

Problem 10833

Find the limit: limx+(ex+2cos3x)\lim _{x \rightarrow+\infty}\left(e^{-x}+2 \cos 3 x\right).

See Solution

Problem 10834

Find the derivative of 2ex4xex2 e^{-x} - 4 x e^{-x}.

See Solution

Problem 10835

Calculate the average rate of change of g(x)=2x25g(x)=-2 x^{2}-5 from the points (1,7)(-1,-7) to (2,13)(2,-13).

See Solution

Problem 10836

Find the average rate of change of f(x)f(x) from x=3x=3 to x=5x=5, where f(3)=0f(3)=0 and f(5)=0f(5)=0.

See Solution

Problem 10837

Find the second derivative of f(x)=4x23x+7f(x)=4 x^{2}-3 x+7, then calculate f(0)f^{\prime \prime}(0) and f(7)f^{\prime \prime}(7).

See Solution

Problem 10838

Approximate 17\sqrt{17} using linear approximation of f(x)=xf(x)=\sqrt{x} at x=16x=16. Provide the answer to 3 decimal places.

See Solution

Problem 10839

Find the critical points of f(x)=(x+5)4f(x)=(x+5)^{4} and analyze them using the first derivative test. Use the second derivative test if applicable.

See Solution

Problem 10840

A scale in an elevator stretches by 0.04 m0.04 \mathrm{~m} with a 5 kg5 \mathrm{~kg} block. What is the max speed of the elevator?

See Solution

Problem 10841

Explore squirrel population growth in Calgary:
(a) Show y=certy=c e^{r t} satisfies dydt=bydy\frac{d y}{d t}=b y-d y for a specific rr. (b) Find limtf(t)\lim_{t \rightarrow \infty} f(t) for r<0r<0, r=0r=0, r>0r>0. (c) Discuss if r>0r>0 long-term behavior is realistic.

See Solution

Problem 10842

Find the first and second derivatives of f(x)=12x29x+9ln(x)f(x)=\frac{1}{2} x^{2}-9 x+9 \ln (x).

See Solution

Problem 10843

Consider the logistic model dydt=ry(1yn)\frac{d y}{d t}=r y\left(1-\frac{y}{n}\right) for squirrel population.
(a) Show y=f(t)=n1+kerty=f(t)=\frac{n}{1+k e^{-r t}} is a solution. Find kk in terms of initial population c=f(0)c=f(0).
(b) If r>0r>0, what is limtf(t)\lim _{t \rightarrow \infty} f(t)? Does this match your intuition?

See Solution

Problem 10844

Find the derivatives: (a) f(x)f^{\prime}(x) for f(x)=sin(cos(x))f(x)=\sin(\cos(x)), (b) (ff)(x)(f \circ f)^{\prime}(x), (c) (fff)(x)(f \circ f \circ f)^{\prime}(x).

See Solution

Problem 10845

Calculate the limit: lim(x,y)(0,0)x3+y3x2+y2\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y^{2}}

See Solution

Problem 10846

Find g(2)g'(2) for g(x)=3f(x)+x5f(x)g(x)=3 f(x)+x^{5} f(x) and h(2)h'(2) for h(x)=(9x+8)f(x)h(x)=(9 x+8) f(x) given f(2)=5f(2)=5 and f(2)=2f'(2)=-2.

See Solution

Problem 10847

Find the derivative of f(x)=x9+9xf(x) = x - 9 + \frac{9}{x}.

See Solution

Problem 10848

Find the derivatives: (a) f(x)f'(x) for f(x)=sin(cos(x))f(x)=\sin(\cos(x)), (b) (ff)(x)(f \circ f)'(x), (c) (fff)(x)(f \circ f \circ f)'(x).

See Solution

Problem 10849

How long to double an investment at a continuous compounding rate of 6.5%6.5\%?

See Solution

Problem 10850

Find constants cc and dd such that the derivative f(x)f'(x) is continuous for the piecewise function f(x)={cx2f(x)=\{c x^{2} if x3x \leq 3, 5dx5-d x if x>3}x>3\}.

See Solution

Problem 10851

Skizzieren Sie den Graphen von f(x)=x2+exf(x)=x-2+e^{-x} und untersuchen Sie lokale Extrema.

See Solution

Problem 10852

Untersuchen Sie die Geburten- und Sterbezahlen über 50 Jahre. Bestimmen Sie Maxima, Bevölkerungszahlen nach 5, 15, 30, 50 Jahren und Wachstumsraten.

See Solution

Problem 10853

Bestimme die Höhe des Felsplateaus, die Aufprallgeschwindigkeit des Steins und die Zeit bis zum Schallereignis bei 340 m/s340 \mathrm{~m/s}.

See Solution

Problem 10854

A falcon descends from 3,000 ft at 250ft/sec250 \mathrm{ft/sec}. Find the rate of change and initial value.

See Solution

Problem 10855

Find the derivative dydx\frac{d y}{d x} for the equation tan(xy)=x+y\tan (x y)=x+y.

See Solution

Problem 10856

Find the maximum size AA of the logistic growth model A=c1+aebtA=\frac{c}{1+a e^{-b t}} and the max values for parameters a, b, and c.

See Solution

Problem 10857

Find xx such that dydx=17\frac{d y}{d x}=17 for the relation x+y=3x\sqrt{x+y}=3 x when y=8y=8.

See Solution

Problem 10858

Find the derivative dydx\frac{d y}{d x} for the hyperbola defined by the equation x2y2=16x^{2}-y^{2}=16.

See Solution

Problem 10859

Trouvez la dérivée de f(x)=16x2+5f(x)=\frac{1}{6 x^{2}+5}.

See Solution

Problem 10860

Calcule la dérivée f(x)f^{\prime}(x) si f(x)=3x22π+1+x+3xx2/5f(x)=\frac{3}{x^{2}}-2^{\pi+1}+\sqrt{x}+3 x-x^{2 / 5}.

See Solution

Problem 10861

Encuentra dkdt\frac{d k}{d t} para k(t)=33t52t2+33k(t)=\frac{-3}{\sqrt[3]{3 t^{5}-2 t^{2}+3}}.

See Solution

Problem 10862

Find dydx\frac{d y}{d x} for the function y=(x2+1)5(3x2)3y=(x^{2}+1)^{5}(3 x-2)^{3}.

See Solution

Problem 10863

Calculez h(x)h^{\prime}(x) pour h(x)=3x2267x33h(x)=\sqrt[3]{\frac{3 x^{2}-2}{6-7 x^{3}}}.

See Solution

Problem 10864

Find the derivative of y=sin3x3+cos3x3y=\sin ^{3} \frac{x}{3}+\cos ^{3} \frac{x}{3}.

See Solution

Problem 10865

Find the average lifespan μ\mu of a neon tube given the function f(t)=0.0002e0.0002tf(t)=0.0002 e^{-0.0002 t} for t0t \geq 0.

See Solution

Problem 10866

Find the average lifespan μ\mu of a neon tube using f(t)=0.0002e0.0002tf(t)=0.0002 e^{-0.0002 t} for t0t \geq 0.

See Solution

Problem 10867

Étudiez la population de bonobos avec P(t)=6000+15t22+0,01t3P(t)=\frac{6000+15 t^{2}}{2+0,01 t^{3}}.
a) Taille initiale P(0)P(0) ? b) Taille à long terme P()P(\infty) ? c) Taux de variation moyen entre t=5t=5 et t=10t=10. Interprétation ?

See Solution

Problem 10868

For the function f(x)=x+6x+2f(x)=\frac{x+6}{x+2}, find (a) critical numbers, (b) intervals where ff is increasing, and (c) where ff is decreasing.

See Solution

Problem 10869

Find the absolute extrema of f(x)=3x224xf(x)=3 x^{2}-24 x on the interval [0,7][0,7]. Provide as (x,f(x))(x, f(x)).

See Solution

Problem 10870

Find the absolute extrema of f(x)=8x2+32x+1f(x)=8 x^{2}+32 x+1 on [3,2][-3,2]. Provide your answer as an ordered pair (x,f(x))(x, f(x)).

See Solution

Problem 10871

Find the intervals where the profit function, given by P(x)=R(x)C(x)P(x) = R(x) - C(x), is increasing. Use C(x)=0.19x20.0001x3C(x)=0.19 x^{2}-0.0001 x^{3} and R(x)=0.700x20.0002x3R(x)=0.700 x^{2}-0.0002 x^{3}.

See Solution

Problem 10872

Find the point on the graph of f(x)=x4f(x)=\sqrt{-x-4} where the tangent line passes through the origin.

See Solution

Problem 10873

Find the derivative using the product rule for y=(3x4x+1)(x5+6)y=(3 x^{4}-x+1)(-x^{5}+6). What is yy'?

See Solution

Problem 10874

Find the derivative using the product rule for y=(7x4x+6)(x5+3)y=(7 x^{4}-x+6)(-x^{5}+3). What is y=y^{\prime}=?

See Solution

Problem 10875

Évaluez f(π2)f^{\prime}\left(\frac{\pi}{2}\right) pour f(x)=x4+3cos(x)2sin(x)f(x)=\frac{x^{4}+3 \cos (x)}{2 \sin (x)}. Donnez la valeur exacte.

See Solution

Problem 10876

Trouvez l'équation de la tangente à y=6xsin(x)y=-6 x \sin (x) au point (π/2,3π)(\pi / 2,-3 \pi) sous la forme y=mx+by=m x+b.

See Solution

Problem 10877

Find the point on the graph of f(x)=ln(x)f(x)=\ln (-x) where the tangent line passes through the origin.

See Solution

Problem 10878

Trouver la dérivée de f(x)=1xex2+exf(x)=\frac{1-x e^{x}}{2+e^{x}}. Quelle est f(x)f^{\prime}(x) ?

See Solution

Problem 10879

Find the point on the graph of f(x)=ln(x)f(x)=\ln (-x) where the tangent line passes through the origin.

See Solution

Problem 10880

Find the derivative using the quotient rule for the function y=2x3x21y=\frac{2 x-3}{x^{2}-1}. What is dydx=?\frac{d y}{d x}=?

See Solution

Problem 10881

Soit f(x)=511+2xf(x)=\frac{5}{11+2 x}. Calculez f(x)f^{\prime}(x) avec f(x)=limh0f(x+h)f(x)hf^{\prime}(x)=\lim_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}.
a) Trouvez f(x+h)f(x)h\frac{f(x+h)-f(x)}{h}.
b) Simplifiez pour AA et BB dans f(x+h)f(x)h=AB\frac{f(x+h)-f(x)}{h}=\frac{A}{B}. Donnez [A,B][A, B].

See Solution

Problem 10882

Find the derivative of the function using the quotient rule: f(t)=2t23t7t+4f(t)=\frac{2 t^{2}-3 t}{7 t+4}. What is f(t)=?f^{\prime}(t)=?

See Solution

Problem 10883

Find xx that minimizes the average cost function given C(x)=417600+1.9x+29x2C(x)=417600+1.9x+29x^{2} for 1x1221 \leq x \leq 122.

See Solution

Problem 10884

Calculate the integral: sec35xtan35xdx\int \sec ^{3} 5 x \tan ^{3} 5 x \, dx

See Solution

Problem 10885

Calculate the integral: 2arcsinxdx\int 2 \arcsin x \, dx

See Solution

Problem 10886

Find the value of xx that minimizes the average cost function for C(x)=489888+1.7x+42x2C(x)=489888+1.7 x+42 x^{2}, 1x2851 \leq x \leq 285.

See Solution

Problem 10887

Calculate the indefinite integral: 2(sin3x)cosx4dx\int 2\left(\sin ^{3} x\right) \sqrt[4]{\cos x} \, dx

See Solution

Problem 10888

Find the indefinite integral: 2(sin3x)cosx4dx\int 2\left(\sin ^{3} x\right) \sqrt[4]{\cos x} \, dx

See Solution

Problem 10889

Calculate the indefinite integral: 4x225xdx\int \frac{\sqrt{4 x^{2}-25}}{x} \, dx

See Solution

Problem 10890

Find the average rate of change of f(x)=62xf(x)=6-2x from x=3x=3 to x=4x=4.

See Solution

Problem 10891

Calculate the integral: 4x2+2x+6(x1)(x2+2)dx\int \frac{4 x^{2}+2 x+6}{(x-1)(x^{2}+2)} dx

See Solution

Problem 10892

Calculate the integral: 2(sin3x)cosx4dx\int 2\left(\sin ^{3} x\right) \sqrt[4]{\cos x} \, dx

See Solution

Problem 10893

What height would a pitch at 100.9mi/hr100.9 \mathrm{mi}/\mathrm{hr} or 45.0m/s45.0 \mathrm{m/s} reach if thrown straight up?

See Solution

Problem 10894

Identify the function ff in the limit of Riemann sums: limΔ0k=1nxktan2xkΔxk;[2,3]\lim _{\Delta \rightarrow 0} \sum_{k=1}^{n} x_{k}^{*} \tan ^{2} x_{k}^{*} \Delta x_{k} ;[2,3] and express it as a definite integral.

See Solution

Problem 10895

Rewrite the integral using uu: 2379x2+24x+16dx=10()du\int_{2}^{3} \frac{7}{9 x^{2}+24 x+16} d x=\int_{10}^{\square}(\square) d u

See Solution

Problem 10896

Find the particle's velocity at t=4t=4 seconds given s(t)=9t2+36ts(t)=9 t^{2}+36 t.

See Solution

Problem 10897

Evaluate the integral 2379x2+24x+16dx\int_{2}^{3} \frac{7}{9 x^{2}+24 x+16} d x using a variable change. Choose uu from options A-D.

See Solution

Problem 10898

Evaluate the integral π0sinx6+cosxdx\int_{-\pi}^{0} \frac{\sin x}{6+\cos x} d x using a change of variables. Choose uu from options A-D and rewrite the integral.

See Solution

Problem 10899

Determine the indeterminate form and evaluate: limx03x21cos(2x)\lim _{x \rightarrow 0} \frac{3 x^{2}}{1-\cos (2 x)} using L'Hopital's Rule.

See Solution

Problem 10900

Find f(1)f^{\prime \prime}(1), f(5)f^{\prime \prime}(5), and f(7)f^{\prime \prime}(7) for the function f(x)=8x3+6x29xf(x) = -8 x^{3}+6 x^{2}-9 x.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord