Calculus

Problem 22401

Estimate f(0.4)f(0.4) and f(0.5)f(0.5) using f(x)=sin(x)xf(x)=\sin(x) \approx x with n=2n=2. Find the maximum error for given MM values.

See Solution

Problem 22402

Find the object's velocity at t=3t=3 for s(t)=3t+t2s(t)=-3t+t^{2}. Options: a) 3 m/s3 \mathrm{~m/s} b) None c) 0 m/s0 \mathrm{~m/s} d) 6 m/s6 \mathrm{~m/s} e) 3 m/s-3 \mathrm{~m/s}.

See Solution

Problem 22403

Find the 3rd-order Taylor polynomial for f(x)=2sin(5x)f(x)=2 \sin(5x) at a=0a=0. Answer: \square.

See Solution

Problem 22404

Find the linear and quadratic approximations of f(x)=16x3/2f(x)=16 x^{3/2} at a=1a=1 and use them to estimate 16(1.23/2)16(1.2^{3/2}).

See Solution

Problem 22405

Find the point on the graph of f(x)=3x2+xf(x)=3x^{2}+x where the tangent is parallel to y=4x+1y=4x+1.

See Solution

Problem 22406

Find the linear and quadratic approximations of f(x)=16x3/2f(x)=16x^{3/2} at a=1a=1 and estimate 16(1.23/2)16(1.2^{3/2}).

See Solution

Problem 22407

Find the slope of the tangent to y=4xy=\frac{4}{x} at the point (1,4)(1,4). Options: a) None b) -4 c) 4 d) 14\frac{1}{4} e) 14-\frac{1}{4}

See Solution

Problem 22408

Find g(0)g^{\prime}(0) for g(x)=(x2+7x1)4g(x)=(x^{2}+7x-1)^{4}. Options: a) 7 b) -4 c) -28 d) 0 e) None

See Solution

Problem 22409

Find f(1)f^{\prime}(-1) for f(x)=1xx2f(x)=\frac{1-x}{x^{2}}. Options: a) 0 b) -1 c) None d) 3 e) 1

See Solution

Problem 22410

Invest \$4000 at 8.25\% interest, compounded continuously. Find the value after 3, 6, and 9 years (round to nearest cent).

See Solution

Problem 22411

Find the slope of the tangent to the curve y=(x+1)2(x1)y=(x+1)^{2}(x-1) at the point (2,9)(2,9).

See Solution

Problem 22412

Find the linear and quadratic approximating polynomials for f(x)=32x3/2f(x)=32 x^{3/2} at a=9a=9 and use them to estimate 32(9.13/2)32(9.1^{3/2}).

See Solution

Problem 22413

Calculate the midpoint Riemann sum for f(x)=x+3f(x) = x + 3 on [3,7][3,7] using n=4n = 4.

See Solution

Problem 22414

Which of these does not cause a derivative to fail: a) discontinuity, b) horizontal tangent, c) cusp, d) None, e) vertical tangent?

See Solution

Problem 22415

Berechnen Sie die lokale Änderungsrate von ff an aa mit der h-Methode für die Funktionen a) bis f) und vergleichen Sie die Grenzwerte.

See Solution

Problem 22416

Evaluate the limits: limx4(16x2x225)\lim_{x \rightarrow 4} (16x - 2x^2 - 25) and limx4(x28x+23)\lim_{x \rightarrow 4} (x^2 - 8x + 23) to find limx4g(x)\lim_{x \rightarrow 4} g(x) using the Squeeze Theorem.

See Solution

Problem 22417

Find the linear and quadratic approximations for f(x)=1xf(x)=-\frac{1}{x} at a=1a=1 and use them to estimate 11.03-\frac{1}{1.03}.

See Solution

Problem 22418

Given the piecewise function f(x)={8x+4 if x<28x if x>2f(x)=\left\{\begin{array}{lll}\frac{8}{x+4} & \text { if } & x<-2 \\ -\frac{8}{x} & \text { if } & x>-2\end{array}\right., find the limits and value at x=2x=-2.
Compute: limx2f(x),limx2+f(x),f(2) \lim _{x \rightarrow-2^{-}} f(x), \quad \lim _{x \rightarrow-2^{+}} f(x), \quad f(-2)
Determine where ff is discontinuous.

See Solution

Problem 22419

Ein Stein wird senkrecht hochgeschleudert. Höhe h(t)=5t2+10th(t)=-5 t^{2}+10 t.
a) Bestätigen Sie v(t)=h(t)=10t+10v(t)=h'(t)=-10 t+10 in ms\frac{m}{s}. b) Bestimmen Sie die höchste Höhe und den Zeitpunkt. c) Finden Sie, wann v=5msv=5 \frac{m}{s} ist. d) Bestimmen Sie den Zeitpunkt und die Geschwindigkeit beim Aufprall.

See Solution

Problem 22420

Evaluate the integral dxx22x+82\int \frac{dx}{x^{2}-2x+82}. Rewrite the denominator by completing the square: 1x22x+82=\frac{1}{x^{2}-2x+82}=\square.

See Solution

Problem 22421

Bestimmen Sie die Ableitung f(x)f^{\prime}(x) für f(x)=4x12f(x)=4 x^{\frac{1}{2}}.

See Solution

Problem 22422

Find f(x)f^{\prime}(x) and f(4)f^{\prime}(4) for f(x)=4x211+t2dtf(x)=\int_{4}^{x^{2}} \frac{1}{1+t^{2}} d t.

See Solution

Problem 22423

Bestimme die Ableitungen f(x)f^{\prime}(x) für die Funktionen a) 3x23 x^{2}, b) 5x35 x^{3}, c) 12x4\frac{1}{2} x^{4}, d) 2x7-2 x^{7}, e) 12x2\frac{1}{2} x^{-2}, f) 5x3-5 x^{-3}, g) 0,2x5-0,2 x^{5}, h) 4x124 x^{\frac{1}{2}}.

See Solution

Problem 22424

Find a δ\delta for ε=0.01\varepsilon=0.01 such that limx51x6=11\lim_{x \rightarrow 5} -1x - 6 = -11.

See Solution

Problem 22425

Evaluate the integral x3e2xdx\int x^{3} e^{2 x} d x using the reduction formula for n=3n=3.

See Solution

Problem 22426

Find the average slope of f(x)=6x+8f(x)=6 \sqrt{x}+8 on [3,6][3,6] and the unique cc in (3,6)(3,6) where f(c)f^{\prime}(c) equals this slope.

See Solution

Problem 22427

Find the horizontal asymptotes by calculating these limits:
1. limx9x11+2x=\lim_{x \rightarrow \infty} \frac{-9 x}{11+2 x}=\square
2. limx4x9x3+8x4=\lim_{x \rightarrow -\infty} \frac{4 x-9}{x^{3}+8 x-4}=\square
3. limxx213x15155x2=\lim_{x \rightarrow \infty} \frac{x^{2}-13 x-15}{15-5 x^{2}}=\square
4. limxx2+9x911x=\lim_{x \rightarrow \infty} \frac{\sqrt{x^{2}+9 x}}{9-11 x}=\square
5. limxx2+9x911x=\lim_{x \rightarrow -\infty} \frac{\sqrt{x^{2}+9 x}}{9-11 x}=\square

See Solution

Problem 22428

Approximate 29(x2+5)dx\int_{2}^{9}(x^{2}+5) dx using 4 rectangles for left and right Riemann sums.

See Solution

Problem 22429

Prove that if ff has continuous derivatives on [a,b][a, b] with f(a)=f(b)=0f^{\prime}(a)=f^{\prime}(b)=0, then:
abxf(x)dx=f(a)f(b)\int_{a}^{b} x f^{\prime \prime}(x) d x=f(a)-f(b)
Use integration by parts with u(x)=xu(x)=x and find u(x)u^{\prime}(x) and v(x)v(x).

See Solution

Problem 22430

Find the limit: limxln(8x+7)x\lim _{x \rightarrow \infty} \frac{\ln (8 x+7)}{x}.

See Solution

Problem 22431

Find the coordinates of the maximum point AA for f(x)=(x2)2e3xf(x)=(x-2)^{2} e^{3x} and the range of kk for two distinct roots.

See Solution

Problem 22432

Show that if ff has continuous derivatives on [a,b][a, b] with f(a)=f(b)=0f'(a)=f'(b)=0, then abxf(x)dx=f(a)f(b)\int_{a}^{b} x f''(x) dx = f(a) - f(b). Use integration by parts with u(x)=xu(x)=x and v(x)=f(x)v'(x)=f''(x). Find u(x)u'(x) and v(x)v(x). u(x)=u'(x)=\nabla and v(x)=v(x)=\square.

See Solution

Problem 22433

Given the function f(x)=3xx225f(x)=\frac{3 x}{x^{2}-25}, find critical numbers, decreasing intervals, local maxima/minima, inflection points, concavity, and asymptotes.

See Solution

Problem 22434

Find the limit: limxln(8x+7)x\lim _{x \rightarrow \infty} \frac{\ln (8 x+7)}{x}.

See Solution

Problem 22435

Find the absolute maximum and minimum of f(x)=3x22x+6f(x)=3 x^{2}-2 x+6 for 0x80 \leq x \leq 8.

See Solution

Problem 22436

Invest \8,900at7%interestcompoundedcontinuously.Findthefunctionforaccountvalueafter8,900 at 7\% interest compounded continuously. Find the function for account value after t$ years and APY.

See Solution

Problem 22437

Calculate the average rate of change of h(x)=3x2+4h(x)=3 x^{2}+4 between x=5x=5 and x=7x=7. Simplify your answer.

See Solution

Problem 22438

Find the limit: limx(8x+7)1x\lim _{x \rightarrow \infty}(8 x+7)^{\frac{1}{x}}. Identify the indeterminate form.

See Solution

Problem 22439

Given the function f(x)=3xx225f(x)=\frac{3 x}{x^{2}-25}, find critical numbers, decreasing intervals, local maxima/minima, inflection points, and concavity.

See Solution

Problem 22440

Find the interval of convergence for G(x)=n=1(1)n+1n5nxnG(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n 5^{n}} x^{n}, G(100)(0)G^{(100)}(0), and G(2)G(2).

See Solution

Problem 22441

Given the function f(x)=5(x22)(4x+9)12f(x)=5(x^{2}-2)(4x+9)^{\frac{1}{2}}, show f(x)=k(5x2+9x2)(4x+9)12f'(x)=\frac{k(5x^{2}+9x-2)}{(4x+9)^{\frac{1}{2}}}, find kk, f(x)=0f'(x)=0 values, local max PP, and range of g(x)=2f(x)+4g(x)=2f(x)+4.

See Solution

Problem 22442

Find the tangent line equation for y=arctan(x2)y=\arctan \left(\frac{x}{2}\right) at the point (2,π4)\left(2, \frac{\pi}{4}\right).

See Solution

Problem 22443

1. Trouvez l'élasticité-prix de la demande avec p=3p=3 dans q=100e3p2+pq=100 e^{-3 p^{2}+p}. Options: A) 48 B) 50 C) 51 D) 55 E) 63 F) aucune.
2. Trouvez dydx\frac{d y}{d x} au point (1,1)(1,1) pour 4xy2+3x2y=74 x y^{2}+3 x^{2} y=7. Options: A) 1011-\frac{10}{11} B) 47-\frac{4}{7} C) 113\frac{1}{13} D) 411-\frac{4}{11} E) 1013\frac{10}{13} F) aucune.
3. Trouvez le coût marginal de C(x)=400000+160x+0,001x2C(x)=400000+160 x+0,001 x^{2} à x=10000x=10000. Options: A) 160 B) 180 C) 200 D) 220 E) 240 F) aucune.
4. Trouvez f(8)f(8) si f(x)=x23f^{\prime}(x)=x^{\frac{2}{3}} et f(1)=1f(1)=1. Options: A) 645\frac{64}{5} B) 825\frac{82}{5} C) 745\frac{74}{5} D) 985\frac{98}{5} E) 65\frac{6}{5} F) aucune.
5. Calculez 01xe2xdx\int_{0}^{1} x e^{2 x} d x. Options: A) e2\mathrm{e}^{2} B) e22\frac{\mathrm{e}^{2}}{2} C) e12\frac{e-1}{2} D) e2+14\frac{e^{2}+1}{4} E) e+32\frac{e+3}{2} F) aucune.

See Solution

Problem 22444

Given the function f(x)=3x2ln(x)f(x)=3 x^{2} \ln (x) for x>0x>0, find critical values, intervals of increase/decrease, local maxima/minima, concavity, and inflection points.

See Solution

Problem 22445

Find critical numbers of f(x)=12x4ln(x)f(x)=12x-4\ln(x) for x>0x>0. Indicate intervals where ff is increasing and decreasing. List local maxima and minima.

See Solution

Problem 22446

Determine the inflection points of f(x)=4sin2x1f(x)=4 \sin ^{2} x-1 for 0xπ0 \leq x \leq \pi.

See Solution

Problem 22447

Find the average rate of change of g(x)=4x37g(x)=4 x^{3}-7 on the interval [3,3][-3,3].

See Solution

Problem 22448

Determine the intervals where g(x)=x5+x4g(x)=x^{5}+x^{4} is decreasing. Choose from: a) x<0x<0, b) 45<x<0-\frac{4}{5}<x<0, c) x<45x<-\frac{4}{5}, d) x<45x<-\frac{4}{5} and x>0x>0.

See Solution

Problem 22449

Trouvez la tangente à (x3+y3)3=6xy+2\left(x^{3}+y^{3}\right)^{3}=6 x y+2 au point (1,1)(1,1), puis résolvez 3 autres problèmes.

See Solution

Problem 22450

Find the number cc for the Mean Value Theorem with f(x)=e7xf(x)=e^{-7x} on the interval [0,7][0,7].

See Solution

Problem 22451

Given the function f(x)=3x2ln(x)f(x)=3 x^{2} \ln (x) for x>0x>0, find critical values, intervals of increase/decrease, local maxima/minima, and concavity.
(A) Critical values:
(B) Increasing: (e12,INF)(e^{-\frac{1}{2}}, INF)
(C) Decreasing: (0,e12)(0, e^{-\frac{1}{2}})
(D) Local maxima: NONE
(E) Local minima: e12e^{-\frac{1}{2}}
(F) Concave up: (e32,INF)(e^{-\frac{3}{2}}, INF)
(G) Concave down:
(H) Inflection points: NONE

See Solution

Problem 22452

Given the function f(x)=3x2ln(x)f(x)=3 x^{2} \ln (x) for x>0x>0, find critical values, intervals of increase/decrease, local maxima/minima, concavity, and inflection points.

See Solution

Problem 22453

Find the average slope of f(x)=10x+5f(x)=10 \sqrt{x}+5 on [3,9][3,9]: f(9)f(3)93\frac{f(9)-f(3)}{9-3}.

See Solution

Problem 22454

Find the number cc that satisfies the Mean Value Theorem for f(x)=3x3+3x+19f(x)=3x^3+3x+19 on the interval [0,2][0,2].

See Solution

Problem 22455

Estimate the balance in a savings account after 5 years with daily deposits and \$19,000 at 8\% interest compounded continuously.

See Solution

Problem 22456

Which option helps find the slope of the tangent line to sin1(2x2+y2)=2x+y2\sin^{-1}(2x^2+y^2)=\frac{2}{x}+y^2?

See Solution

Problem 22457

Given f(x)=(75x)exf(x)=(7-5 x) e^{x}, find critical values, intervals of increase/decrease, local maxima/minima, concavity, and inflection points.

See Solution

Problem 22458

Graph f(x)=x+4/xf(x)=x+4/x and the secant line through (1,5)(1,5) and (8,8.5)(8,8.5). Find cc for the Mean Value Theorem on [1,8][1,8]. c=c=

See Solution

Problem 22459

Check if the Mean Value Theorem applies to f(x)=15x2+9x+5f(x)=15 x^{2}+9 x+5 on [1,6][1,6]. If yes, find cc values. If no, enter DNE. c=c=

See Solution

Problem 22460

Which option does not need the chain rule to find dydx\frac{d y}{d x}? (A) y=cos1(10x5x2)y=\cos ^{-1}(10 x^{5}-x^{2}) (B) 4x10+6y3=x2y524 x^{10}+6 y^{3}=x^{2} y^{5}-2 (C) y=10x4x3+x5y=10 \sqrt{x}-\frac{4}{x^{3}}+x^{5} (D) sin(2xy)+e2y+x6=0\sin(2 x-y)+e^{2 y}+\frac{x}{6}=0

See Solution

Problem 22461

Check if the Mean Value Theorem applies to f(x)=9ln(x)+3f(x)=9 \ln (x)+3 on [1,10][1,10]. Find values of cc or enter DNE. c=c=

See Solution

Problem 22462

Find the average slope of f(x)=10x+5f(x)=10 \sqrt{x}+5 on the interval [3,9][3,9]: f(9)f(3)93=\frac{f(9)-f(3)}{9-3}=\square.

See Solution

Problem 22463

Find local extrema and inflection points for f(x)f(x) given f(x)=(x+4)(10x)(14x)f^{\prime}(x)=(x+4)(10-x)(14-x).

See Solution

Problem 22464

Find the volume of the solid formed by revolving y=xy=\sqrt{x} from x=0x=0 to x=16x=16 around the x\mathrm{x}-axis.

See Solution

Problem 22465

Check if the Mean Value Theorem applies to f(x)=2sin1xf(x)=2 \sin^{-1} x on [1,1][-1,1] and find values of cc in [a,b][a,b].

See Solution

Problem 22466

Estimate 35(x22)dx\int_{-3}^{5} (x^{2}-2) \, dx using R4R_{4} and M4M_{4} sums. Sketch rectangles and label x1,x2,x_{1}, x_{2}, \ldots.

See Solution

Problem 22467

Find the volume of the solid formed by revolving the area between y=exy=e^{x}, y=0y=0, x=1x=-1, and x=7x=7 around the xx-axis.

See Solution

Problem 22468

Find g(x)g(x) given that g(x)=26xsin(x)g^{\prime \prime}(x)=2-6x-\sin(x), g(0)=4g^{\prime}(0)=4, and g(0)=1g(0)=1.

See Solution

Problem 22469

Find the average weekly sales from week 1 to week 8 for S(t)=700etS(t) = 700 e^{t}.

See Solution

Problem 22470

Find the average rate of change of f(x)=6x+58xf(x)=-6 \sqrt{x+5}-8 x from x=2x=-2 to x=5x=5, rounded to the nearest tenth.

See Solution

Problem 22471

If ff and gg are continuous, find 14[3g(x)4f(x)9(x1)2]dx\int_{1}^{4}\left[3 g(x) - 4 f(x) - \sqrt{9 - (x - 1)^{2}}\right] \, dx given 413f(x)dx=36\int_{4}^{1} 3 f(x) \, dx = 36 and 145g(x)dx=21\int_{1}^{4} 5 g(x) \, dx = -21.

See Solution

Problem 22472

Evaluate the Riemann sum for f(x)=4x23f(x)=4 x^{2}-3 with endpoints, a=0a=0, b=4b=4, and n=4n=4. Then, find 04(4x23)dx\int_{0}^{4}(4 x^{2}-3) dx as nn \rightarrow \infty.

See Solution

Problem 22473

Evaluate the Riemann sum for f(x)=4x23f(x)=4 x^{2}-3 with endpoints a=0a=0, b=4b=4, and n=4n=4. Then find 04(4x23)dx\int_{0}^{4}(4 x^{2}-3) dx as nn \rightarrow \infty.

See Solution

Problem 22474

A forest fire covers 1300 acres at midnight and spreads at f(t)=3tf(t)=3 \sqrt{t}. What is the rate after 20 hours? \square acres/hour.

See Solution

Problem 22475

Show that if ff has continuous derivatives on [a,b][a, b] with f(a)=f(b)=0f^{\prime}(a)=f^{\prime}(b)=0, then
abxf(x)dx=f(a)f(b)\int_{a}^{b} x f^{\prime \prime}(x) d x=f(a)-f(b)
by using integration by parts. Define u(x)=xu(x)=x and find u(x)u^{\prime}(x) and v(x)v(x).

See Solution

Problem 22476

Find the slope of the tangent to the curve f(x)=(4x+7)13f(x)=(4x+7)^{\frac{1}{3}} at x=5x=5, rounded to 1 decimal place.

See Solution

Problem 22477

Show that if ff has continuous derivatives on [a,b][a, b] with f(a)=f(b)=0f^{\prime}(a)=f^{\prime}(b)=0, then abxf(x)dx=f(a)f(b)\int_{a}^{b} x f^{\prime \prime}(x) d x=f(a)-f(b). Use integration by parts with u(x)=xu(x)=x and v(x)=f(x)v(x)=f^{\prime}(x).

See Solution

Problem 22478

Find the slope of the tangent line to tan1(x2y+2)=x23y+tan1(2)1\tan^{-1}(x-2y+2)=x^2-3y+\tan^{-1}(2)-1. Which equation applies?

See Solution

Problem 22479

Estimez l'intégrale J=00.4x2exdxJ=\int_{0}^{0.4} x^{2} e^{x} d x en utilisant les méthodes suivantes : (1) points milieux avec n=4n=4, (2) Simpson avec n=4n=4, (3) théorème fondamental du calcul. Arrondissez à 6 décimales.

See Solution

Problem 22480

Calculate the area between the curve y=x2(x2)2y=x^{2}(x-2)^{2} and the xx-axis for 0x20 \leq x \leq 2.

See Solution

Problem 22481

Find the tangent line equation for y=x2+16y=\sqrt{x^{2}+16} at x=3x=3 and compute f(x)f^{\prime \prime}(x) for f(x)=53x+4f(x)=\frac{5}{3x+4}.

See Solution

Problem 22482

Find the intervals where the function f(x)=0x(et3+3t)dtf(x)=\int_{0}^{x}\left(e^{-t^{3}+3 t}\right) d t is concave up and down.

See Solution

Problem 22483

Find the derivative of y=0x4t+9dty=\int_{0}^{x} \sqrt{4 t+9} \, dt.

See Solution

Problem 22484

Find the derivative of the integral: ddt0sint11u2du\frac{d}{d t} \int_{0}^{\sin t} \frac{1}{1-u^{2}} d u.

See Solution

Problem 22485

If \8000isinvestedat88000 is invested at 8% interest compounded continuously, graph S = 8000e^{0.08t}for for 0 \leq t \leq 15$.

See Solution

Problem 22486

Find the average value of g(x)=2x25x+3g(x)=2 x^{2}-5 x+3 over [1,5][-1,5]. Provide your answer as an EXACT value.

See Solution

Problem 22487

Find all functions f(x)f(x) such that f(x)=x8f'(x) = x^8 and f(0)=5f(0) = 5.

See Solution

Problem 22488

Evaluate the integral: (3+ln(x))2(2ln(x))4xdx\int \frac{(3+\ln (x))^{2}(2-\ln (x))}{4 x} d x.

See Solution

Problem 22489

Evaluate the integral: (3+ln(x))2(2ln(x))4xdx \int \frac{(3+\ln (x))^{2}(2-\ln (x))}{4 x} d x

See Solution

Problem 22490

Calculez les dépenses annuelles moyennes de santé en Ontario de 1990 à 2020 avec F(t)=296(1.08)tF^{\prime}(t)=296(1.08)^{t}.

See Solution

Problem 22491

Find the linear approximation LL of f(x)=8x2f(x)=8-x^{2} at a=1a=-1. Graph ff and LL, then determine if LL underestimates or overestimates ff.

See Solution

Problem 22492

A ball is thrown from 640 ft with an initial speed of 96 ft/s. Find s(t)s(t), time to ground, and max height.

See Solution

Problem 22493

Find the derivative of the function h(x)=(2x1)3(x+2)h(x) = (2x - 1)^3(x + 2) at x=1x = 1.

See Solution

Problem 22494

Let f(x)=8x2f(x)=8-x^{2} and a=1a=-1. Are linear approximations near aa under or over estimates? Compute f(1)f''(-1).

See Solution

Problem 22495

Find the integral of xk\frac{x}{k} with respect to xx, where kk is a non-zero constant.

See Solution

Problem 22496

Find the derivatives of the functions: 5. h(x)=4f(x)+g(x)7h(x)=4 f(x)+\frac{g(x)}{7} and 6. h(x)=x3f(x)h(x)=x^{3} f(x).

See Solution

Problem 22497

Find the derivatives of the following functions: 5. h(x)=4f(x)+e(x)9h(x)=4 f(x)+\frac{e(x)}{9}, 6. h(x)=x3f(x)h(x)=x^{3} f(x), 7. f(x)=f(mog(x))2f(x)=\frac{f(\operatorname{mog}(x))}{2}, 8. h(x)=3f(x)g(x)+2h(x)=\frac{3 f(x)}{g(x)+2}.

See Solution

Problem 22498

Find the horizontal tangent lines for the graph of (y3+1)2=x2+4x+4(y^{3}+1)^{2}=x^{2}+4x+4.

See Solution

Problem 22499

Find the temperature of an object taken from a freezer at 8C-8^{\circ} \mathrm{C}, given T(t)=10e0.5tT^{\prime}(t)=10 e^{-0.5 t}.

See Solution

Problem 22500

Find the profit function for a tie shop with marginal profit MP(x)=1.95+0.08x0.0027x2M P(x) = 1.95 + 0.08x - 0.0027x^2 and loss of \.60at.60 at x=0$.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord