Calculus

Problem 25901

Find the displacement and distance traveled of a particle with velocity v(t)=3t242t+135v(t)=3 t^{2}-42 t+135 over [0,10][0,10].

See Solution

Problem 25902

Find the critical points of the function f(x)=ex+ex6f(x)=\frac{e^{x}+e^{-x}}{6}.

See Solution

Problem 25903

Find the critical points of the function f(x)=1xlnxf(x)=\frac{1}{x}-\ln x.

See Solution

Problem 25904

Approximate 26f(x)dx\int_{2}^{6} f(x) dx using a Riemann sum with 2 rectangles and left endpoints. Values: 4, -2, -3.

See Solution

Problem 25905

Evaluate the integral: 48x2x426x2+25dx\int \frac{48 x^{2}}{x^{4}-26 x^{2}+25} dx and find its partial fraction decomposition.

See Solution

Problem 25906

Find the absolute extreme values of f(x)=24x12xf(x)=24 x^{\frac{1}{2}}-x on the interval [0,576][0,576].

See Solution

Problem 25907

Find the min/max, domain, range, and intervals of increase/decrease for f(x)=4x2+16x3f(x)=4x^2+16x-3 and g(x)=x2+5x+9g(x)=-x^2+5x+9.

See Solution

Problem 25908

Find the absolute extreme values of f(x)=2sin2xf(x)=2 \sin ^{2} x on the interval [0,π][0, \pi].

See Solution

Problem 25909

Estimate total water drained in 3 minutes using average of left- and right-endpoint approximations from v(t)v(t) values: 44,40,36,32,28,24,2044, 40, 36, 32, 28, 24, 20.

See Solution

Problem 25910

Estimate the total extinct marine families from t=514t=514 to t=524t=524 using M10M_{10} with r(t)=3130t+262r(t)=\frac{3130}{t+262}.

See Solution

Problem 25911

Find limx(7)+f(x)\lim _{x \rightarrow(-7)+} f(x) for the piecewise function: f(x)={(x21)/(x+1)if x7(x2+3x28)/(x+7)if x>7f(x)=\left\{\begin{array}{ll}\left(x^{2}-1\right)/(x+1) & \text{if } x \leq-7 \\ \left(x^{2}+3x-28\right)/(x+7) & \text{if } x>-7\end{array}\right.. Choices: (A) -7, (B) -8, (C) 7, (D) -11, (E) does not exist.

See Solution

Problem 25912

Find the 4th derivative of f(x)=cos(sin(x))f(x) = \cos(\sin(x)) at x=0x=0 using Taylor series: f(4)(0)f^{(4)}(0).

See Solution

Problem 25913

Estimate cardiac output RR using A=4mgA=4 \mathrm{mg} and c(t)c(t) values from t=0t=0 to t=10t=10. Calculate RR in L/min\mathrm{L} / \mathrm{min}.

See Solution

Problem 25914

Evaluate the integral 22x2x461x2+900dx\int \frac{22 x^{2}}{x^{4}-61 x^{2}+900} d x and find its partial fraction decomposition.

See Solution

Problem 25915

Find where the function h(x)=5+5sinxcosxh(x)=\frac{5+5 \sin x}{\cos x} is continuous and analyze the limits: limxπ/2h(x)\lim _{x \rightarrow \pi / 2^{-}} h(x) and limx4π/3h(x)\lim _{x \rightarrow 4 \pi / 3} h(x).

See Solution

Problem 25916

Find the limit: limxπ/25+5sinxcosx\lim _{x \rightarrow \pi / 2^{-}} \frac{5+5 \sin x}{\cos x}.

See Solution

Problem 25917

Calculate the first four approximations of the largest positive root of x3+x=17x^{3}+x=17 using Newton's Method, starting with x0=3x_{0}=3. Round to six decimal places.

See Solution

Problem 25918

Evaluate the integral: 54x2x445x2+324dx\int \frac{54 x^{2}}{x^{4}-45 x^{2}+324} d x. Find the result: 54x2x445x2+324dx=\int \frac{54 x^{2}}{x^{4}-45 x^{2}+324} d x=\square.

See Solution

Problem 25919

Evaluate the integral: 42x2x429x2+100dx=\int \frac{42 x^{2}}{x^{4}-29 x^{2}+100} d x=\square

See Solution

Problem 25920

Find the limit: limx4π/35+5sinxcosx\lim _{x \rightarrow 4 \pi / 3} \frac{5+5 \sin x}{\cos x}.

See Solution

Problem 25921

Evaluate the integral: 2z33z217z+23z2z12dz\int \frac{2 z^{3}-3 z^{2}-17 z+23}{z^{2}-z-12} d z.

See Solution

Problem 25922

Find the derivative of y with respect to θ for y = ln(8 cos^6(θ)).

See Solution

Problem 25923

Find the length xx that maximizes the area of a rectangular playground using 120 meters of fencing for three sides.

See Solution

Problem 25924

Find the absolute extreme values of f(x)=2x2+2cos1xf(x)=2 x^{2}+2 \cos ^{-1} x on the interval [1,1][-1,1].

See Solution

Problem 25925

Find the absolute extreme values of f(x)=5(4x)xf(x)=5(4x)^{x} on the interval [0.05,1][0.05,1].

See Solution

Problem 25926

Determine if f(x)=7x46x23f(x)=7 x^{4}-6 x^{2}-3 has a real zero between 1 and 2 using the Intermediate Value Theorem.

See Solution

Problem 25927

Check if f(x)=7x46x23f(x)=7 x^{4}-6 x^{2}-3 has a real zero between 1 and 2 using the Intermediate Value Theorem.

See Solution

Problem 25928

Rolle's Theorem doesn't apply to f(x)=xf(x)=|x| on [a,a][-a, a] for any a>0a>0. Explain why this is the case.

See Solution

Problem 25929

Find the absolute extreme values of f(x)=5cscxf(x)=5 \csc x on the interval [π4,3π4]\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right].

See Solution

Problem 25930

Find the absolute extreme values of f(x)=x3exf(x)=x^{3} e^{-x} on the interval [1,4][-1,4].

See Solution

Problem 25931

Find points c\mathrm{c} where the Mean Value Theorem applies for f(x)=x3f(x)=x^{3} on [13,13][-13,13].

See Solution

Problem 25932

Find points cc where the Mean Value Theorem applies for f(x)=x3f(x)=x^{3} on [4,4][-4,4].

See Solution

Problem 25933

Check if Rolle's theorem applies to f(x)=x(x3)2f(x)=x(x-3)^{2} on [0,3][0,3] and find the guaranteed point(s).

See Solution

Problem 25934

Find the critical points of the function f(x)=(x2)5f(x)=(x-2)^{5}.

See Solution

Problem 25935

Find cc such that f(b)f(a)ba=f(c)\frac{f(b)-f(a)}{b-a}=f^{\prime}(c) for f(x)=tan1xf(x)=\tan^{-1} x on [3,3][-\sqrt{3}, \sqrt{3}]. Round to the nearest thousandth.

See Solution

Problem 25936

Determine the absolute max and min of F(x)=x3F(x)=\sqrt[3]{x} for 27x27-27 \leq x \leq 27.

See Solution

Problem 25937

Evaluate the integral (x45x35)dx=C\int (x^{4}-5 x^{3}-5) \, dx = \mathrm{C}.

See Solution

Problem 25938

Find cc for the Mean Value Theorem with f(x)=tan1xf(x) = \tan^{-1}x on [3,3][-\sqrt{3}, \sqrt{3}]: f(c)=f(3)f(3)23f'(c) = \frac{f(\sqrt{3}) - f(-\sqrt{3})}{2\sqrt{3}}.

See Solution

Problem 25939

Find values of cc for f(x)=x2+4x+1f(x)=x^{2}+4x+1 in [2,3][2,3] satisfying f(3)f(2)32=f(c)\frac{f(3)-f(2)}{3-2}=f^{\prime}(c).

See Solution

Problem 25940

Calculate the total revenue from the investment stream R(t)=400e0.08tR(t)=400 e^{0.08 t} between 4 and 6 years. Round to the nearest cent.

See Solution

Problem 25941

Find the absolute extreme values of h(x)=13x+5h(x)=\frac{1}{3} x+5 on the interval 3x4-3 \leq x \leq 4.

See Solution

Problem 25942

Interpret P(20)=80P(20)=80 and dPdxx=20=2\left.\frac{d P}{d x}\right|_{x=20}=2 for advertising profit in thousands.

See Solution

Problem 25943

Find the absolute max and min of f(x)=5x2/3f(x)=5 x^{2 / 3} on the interval [27,1][-27, 1].

See Solution

Problem 25944

Find the derivative of G(x)=(3x2+4x5)6G(x)=(3x^{2}+4x-5)^{6}.

See Solution

Problem 25945

Find cc such that f(7)f(5)75=f(c)\frac{f(7)-f(5)}{7-5}=f'(c) for f(x)=ln(x4)f(x)=\ln(x-4) on [5,7][5,7]. Round to the nearest thousandth.

See Solution

Problem 25946

Evaluate the limits: limxx+x3+x51x2+2023x5\lim _{x \rightarrow \infty} \frac{x+x^{3}+x^{5}}{1-x^{2}+2023 x^{5}}, limx52x32x5\lim _{x \rightarrow 5} \frac{2^{x}-32}{x-5}, limx0xtanx\lim _{x \rightarrow 0} \frac{x}{\tan x}, and limxx1x\lim _{x \rightarrow \infty} x^{\frac{1}{x}}.

See Solution

Problem 25947

Find the maximum and minimum values of the function f(x)=x2+x4f(x)=x^{2}+x-4 on the interval [4,4][-4,4].

See Solution

Problem 25948

Hydrazine, N2H4\mathrm{N}_{2} \mathrm{H}_{4}, reacts with O2\mathrm{O}_{2} to form N2\mathrm{N}_{2} and H2O\mathrm{H}_{2} \mathrm{O}. Find the temperature for spontaneity given ΔS=122.1 J/K\Delta S^{\circ} = -122.1 \mathrm{~J/K} and ΔH=95.4 kJ/mol\Delta H^{\circ} = 95.4 \mathrm{~kJ/mol}.

See Solution

Problem 25949

Find the area between the curves S(t)=3.5t+9S(t)=3.5t+9 and C(t)=5.2tC(t)=5.2t for tt years, and interpret the savings in \$. Round answers accordingly.

See Solution

Problem 25950

Bestimme den Tag xx, an dem die Funktion f(x)=(2x+1)e0,02xf(x)=(2 x+1) \cdot e^{-0,02 x} ihr Maximum erreicht.

See Solution

Problem 25951

Find the limit: limx0+(9x+1)cot(x)\lim _{x \rightarrow 0^{+}}(9 x+1)^{\cot (x)}. Use l'Hospital's Rule if needed.

See Solution

Problem 25952

Find the light intensity II (in thousands of foot-candles) that maximizes the photosynthesis rate P=90II2+I+1P=\frac{90 I}{I^{2}+I+1}.

See Solution

Problem 25953

Evaluate the limit: limx0f(4+3x)+f(4+6x)x\lim _{x \rightarrow 0} \frac{f(4+3 x)+f(4+6 x)}{x} given f(4)=0f(4)=0 and f(4)=8f^{\prime}(4)=8.

See Solution

Problem 25954

Find the area between the curves S(t)=3.8t+9S(t)=3.8t+9 and C(t)=5.4tC(t)=5.4t for tt in years. Round to 2 decimal and nearest integer.

See Solution

Problem 25955

Find the function ff if f(x)=16xf'(x) = 1 - 6x and f(0)=8f(0) = 8.

See Solution

Problem 25956

Find the general antiderivative of f(x)=9x3+2x5x6f(x)=\frac{9-x^{3}+2 x^{5}}{x^{6}}.

See Solution

Problem 25957

Find f(4)f(4) given f(1)=12f(1)=12, ff^{\prime} is continuous, and 14f(x)dx=17\int_{1}^{4} f^{\prime}(x) dx=17.

See Solution

Problem 25958

Find 59f(x)dx\int_{5}^{9} f(x) d x given that 39f(x)dx=8\int_{3}^{9} f(x) d x=8 and 35f(x)dx=5\int_{3}^{5} f(x) d x=5.

See Solution

Problem 25959

Evaluate the integral 021x13dx\int_{0}^{2} \frac{1}{\sqrt[3]{x-1}} d x.

See Solution

Problem 25960

Find the dimensions (in cm) of a box with a square base and volume 13,500 cm313,500 \mathrm{~cm}^{3} that minimizes material use.

See Solution

Problem 25961

Find the function ff such that f(x)=10+6x+36x2f^{\prime \prime}(x)=10+6x+36x^{2} with conditions f(0)=2f(0)=2 and f(1)=14f(1)=14.

See Solution

Problem 25962

Find F(x)F^{\prime}(x) if F(x)=sinxcosx(t+1)2024dtF(x)=\int_{\sin x}^{\cos x}(t+1)^{2024} dt.

See Solution

Problem 25963

Bestimme die Maße und maximale Fläche eines rechteckigen Tors in der Seitenwand f(x)=125x423x2+95f(x)=\frac{1}{25} x^{4}-\frac{2}{3} x^{2}+\frac{9}{5} für [1,84;1,84][-1,84 ; 1,84].

See Solution

Problem 25964

Find the function ff given that f(x)=2+36x12x2f''(x)=-2+36x-12x^2, f(0)=2f(0)=2, and f(0)=16f'(0)=16.

See Solution

Problem 25965

Aufgabe 1: Finde die Nullstellen von f(x)=x5+7,25x3+2,25xf(x)=x^{5}+7,25 x^{3}+2,25 x, g(x)=x3+10x2+7x18g(x)=x^{3}+10 x^{2}+7 x-18, h(x)=(3x7)(x2+5)(x)h(x)=(3 x-7)(x^{2}+5)(\sqrt{x}).
Aufgabe 2: Bestimme die Ableitung und die Steigung an x0x_{0} für f(x)=3x4f(x)=3 x^{4}, g(x)=3g(x)=3, h(x)=2x65x3+2xh(x)=2 x^{6}-5 x^{3}+2 x bei x0=2x_{0}=2, 55, 2-2.

See Solution

Problem 25966

Evaluate the integral from -1 to 2: 12(xx)dx\int_{-1}^{2}(x-|x|) d x.

See Solution

Problem 25967

Find the general antiderivative of f(x)=(x+7)(2x3)f(x)=(x+7)(2x-3) and check by differentiating. Use CC for the constant.

See Solution

Problem 25968

Find the general antiderivative of f(x)=3x+9cos(x)f(x)=3 \sqrt{x}+9 \cos (x) and check by differentiating. Use CC.

See Solution

Problem 25969

Find a function ff where f(x)=3x3f'(x)=3x^3 and the line 81x+y=081x+y=0 is tangent to ff. What is f(x)=?f(x)=?

See Solution

Problem 25970

Find the function ff such that f(x)=x2f''(x)=x^{-2} for x>0x>0, with conditions f(1)=0f(1)=0 and f(7)=0f(7)=0.

See Solution

Problem 25971

Determine if the sequence an=n+1na_{n}=\sqrt{n+1}-\sqrt{n} converges or diverges. If it converges, find the limit.

See Solution

Problem 25972

Find the position of a particle, s(t)s(t), given a(t)=t27t+5a(t)=t^{2}-7t+5, s(0)=0s(0)=0, and s(1)=20s(1)=20.

See Solution

Problem 25973

Find ff given that f(x)=f(x)=89x8/9f(x)=f^{\prime \prime}(x)=\frac{8}{9} x^{8 / 9}. Use constants CC and DD.

See Solution

Problem 25974

Check if the series n=1lnnn4\sum_{n=1}^{\infty} \frac{\ln n}{n^{4}} converges or diverges.

See Solution

Problem 25975

Find the position function s(t)s(t) for a particle with a(t)=2t+9a(t)=2t+9, s(0)=2s(0)=2, and v(0)=5v(0)=-5.

See Solution

Problem 25976

Find ff if f(x)=4x+sin(x)f^{\prime \prime}(x)=4x+\sin(x), using constants CC and DD. What is f(x)f(x)?

See Solution

Problem 25977

Calculate the integrals xsin(x2+1)dx\int x \sin(x^{2}+1) \, dx and sin2xdx\int \sin^{2} x \, dx.

See Solution

Problem 25978

Find the function ff given that f(x)=81x2f^{\prime}(x)=\frac{8}{\sqrt{1-x^{2}}} and f(12)=7f\left(\frac{1}{2}\right)=7.

See Solution

Problem 25979

Bestimme die unbestimmten Integrale der Funktionen: a) f(x)=12x2+3xf(x)=-\frac{1}{2} x^{2}+3 x, b) f(x)=x23xf(x)=x^{\frac{2}{3}}-x, c) f(x)=x31f(x)=-x^{3}-1, d) f(x)=3x2+4x7f(x)=-3 x^{2}+4 x-7.

See Solution

Problem 25980

Bestimme die unbestimmten Integrale für die Funktionen: a) f(x)=12x2+3xf(x)=-\frac{1}{2} x^{2}+3 x, b) f(x)=x23xf(x)=x^{\frac{2}{3}}-x, c) f(x)=x31f(x)=-x^{3}-1, d) f(x)=3x2+4x7f(x)=-3 x^{2}+4 x-7.

See Solution

Problem 25981

Find the derivative of F(x)=(3x2+x5)e2xF(x) = (3x^2 + x - 5)e^{2x}.

See Solution

Problem 25982

Find the limit as bb approaches infinity for AbA_b where f(x)=4x2f(x)=\frac{4}{x^{2}} and b>3b>3.

See Solution

Problem 25983

Invest how much now at 6.5%6.5\% interest, compounded continuously, to have \$3000 in 2 years? Round to the nearest cent.

See Solution

Problem 25984

Find the tangent line equation for f(x)=2e4xf(x)=2 e^{-4 x} at the point (0,2)(0,2).

See Solution

Problem 25985

Find the steepest tangent slope of f(x)=x+2f(x)=\sqrt{x+2} on [0,1][0,1], the secant line through endpoints, and compare slopes.

See Solution

Problem 25986

Find the derivative of y=lnxx3y=\frac{\ln x}{x^{3}}.

See Solution

Problem 25987

Speicherung elektrischer Energie:
a) Zeichne den Graphen von f(x)=x338x2+295x+750f(x)=x^{3}-38 x^{2}+295 x+750 und interpretiere die Extrempunkte. b) Finde die Integralfunktion zu f(x)f(x) und interpretiere sie. c) Berechne das Wasser im Becken nach 30 Tagen, wenn zu Beginn 10Millmm310 \mathrm{Mill}^{\mathrm{m}} \mathrm{m}^{3} vorhanden waren.

See Solution

Problem 25988

Find the steepest slope of the tangent line for f(x)=x+2f(x)=\sqrt{x+2} on the interval [0,1][0,1].

See Solution

Problem 25989

Finde die Hoch- und Tiefpunkte der Funktion g(x)=2x39x2+12x4g(x) = 2x^3 - 9x^2 + 12x - 4.

See Solution

Problem 25990

Bestimme die Tangentengleichung von f(x)=13x33x25x+6f(x)=\frac{1}{3} x^{3}-3 x^{2}-5 x+6 bei x=0x=0.

See Solution

Problem 25991

Find the blood flow speed in the plaque region and the pressure drop given diameter changes from 0.9 cm0.9 \mathrm{~cm} to 0.7 cm0.7 \mathrm{~cm}.

See Solution

Problem 25992

Given a differentiable function gg with g(x)<0g^{\prime}(x)<0, find where h(x)=g(x22x8)h(x)=g(x^{2}-2x-8) is increasing or decreasing.

See Solution

Problem 25993

Berechne die Tangentensteigung von f(x)=x2+5f(x)=x^{2}+5 bei x0=1x_{0}=1 mit der h-Methode.

See Solution

Problem 25994

Entscheide, welche Aussagen zu den Verschiebungen und Streckungen der Funktion g und ihrer Ableitung zutreffen.

See Solution

Problem 25995

Two stones, AA (15 m/s) and BB (30 m/s), are thrown from a cliff. How does their fall time compare? a) same b) twice c) half d) four times

See Solution

Problem 25996

Finde den Punkt im Intervall (3,0)(-3, 0), wo die Funktion g(x)=14x4+23x332x2g(x) = \frac{1}{4} x^{4} + \frac{2}{3} x^{3} - \frac{3}{2} x^{2} die größte Steigung hat.

See Solution

Problem 25997

Vergleiche die Steigungen von h(t)=13t3+3t2+150t+500h(t)=-\frac{1}{3} t^{3}+3 t^{2}+150 t+500 bei t=1t=1 und t=4t=4.

See Solution

Problem 25998

Find the height of a projectile after 3 seconds using 6 rectangles and the midpoint Riemann sum for v(t)=15.3t+145v(t)=-15.3t+145.

See Solution

Problem 25999

Evaluate the limit: limx0(2+1+sinx53)1x\lim _{x \rightarrow 0}\left(\frac{2+\sqrt[5]{1+\sin x}}{3}\right)^{\frac{1}{x}}

See Solution

Problem 26000

Find the marginal profit at a production level of 60 items for C(q)=q311q2+58q+5000C(q)=q^{3}-11 q^{2}+58 q+5000 and R(q)=3q2+2400qR(q)=-3 q^{2}+2400 q.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord