Calculus

Problem 11701

Travel D miles is T(x)=60D(60+x)1T(x)=60 D(60+x)^{-1}. Approximate time for 77 miles at 58 mph using L(x)L(x); find exact time too.

See Solution

Problem 11702

Identify the integral for the volume of the cylinder defined by x2+y2=4x^{2}+y^{2}=4 and 0z20 \leq z \leq 2.

See Solution

Problem 11703

Find the linear approximation of f(x)=xx+1f(x)=\frac{x}{x+1} at a=1a=1, estimate f(0.9)f(0.9), and compute the percent error.

See Solution

Problem 11704

Find the line for the linear approximation of f(x)=secxf(x)=\sec x at a=0a=0, estimate f(0.02)f(-0.02), and calculate the percent error.

See Solution

Problem 11705

Find the tangent line equations for the function f(x)=e2xf(x)=e^{2x} at the point where x=2x=2.

See Solution

Problem 11706

Given the demand function q=D(p)=445pq=D(p)=445-p, find: a) elasticity, b) elasticity at p=88p=88 (elastic, inelastic, or unit), c) pp for max total revenue.

See Solution

Problem 11707

Find the maximum height and time to reach it for h(t)=3t2+120th(t)=-3t^{2}+120t. Also, how long is the rocket above 900 m900 \mathrm{~m}?

See Solution

Problem 11708

Find the linear approximation of f(x)=2x+1f(x)=\frac{2}{x+1} at a=0a=0, estimate 21.1\frac{2}{1.1}, and compute percent error.

See Solution

Problem 11709

Find the line equation for f(x)=2exf(x)=2 e^{x} at a=0a=0, estimate f(0.03)f(0.03), and compute percent error.

See Solution

Problem 11710

Find the value of x=ax=a where the linearization of f(x)=lnxf(x)=\ln x is y=1+1e(xe)y=1+\frac{1}{e}(x-e).

See Solution

Problem 11711

Find the following limits: (a) limx9x+15x26x14\lim _{x \rightarrow \infty} \frac{9 \sqrt{x}+15 x^{-2}}{6 x-14} (b) limx7+10x5710x5\lim _{x \rightarrow-\infty} \frac{7+10 \sqrt[5]{x}}{7-10 \sqrt[5]{x}} (c) limx12x5/3x1/3+3x8/5+5x+12x\lim _{x \rightarrow \infty} \frac{12 x^{5 / 3}-x^{1 / 3}+3}{x^{8 / 5}+5 x+12 \sqrt{x}} (d) limx10x58x+127x+4x2/310\lim _{x \rightarrow-\infty} \frac{10 \sqrt[5]{x}-8 x+12}{7 x+4 x^{2 / 3}-10}

See Solution

Problem 11712

Find the marginal revenue function from R(x)=100xe0.006xR(x)=100 x e^{-0.006 x}. What units maximize revenue? Use calculus.

See Solution

Problem 11713

Find the quantity qq for max profit, price pp, and max profit PP given: C(q)=70+5qe0.02qC(q)=70+5q e^{-0.02 q} and p=20e0.02qp=20 e^{-0.02 q}.

See Solution

Problem 11714

Find the value of limx3x3f(x)54g(x)1\lim _{x \rightarrow 3} \frac{x^{3} f(x)-54}{g(x)-1} given f(3)=2f(3)=2, g(3)=1g(3)=1. Choices: (A) -108 (B) -54 (C) -27 (D) nonexistent.

See Solution

Problem 11715

Find the total distance traveled by the particle with position x(t)=2t3+3t236t+50x(t)=2 t^{3}+3 t^{2}-36 t+50 from t=0t=0 to t=5t=5.

See Solution

Problem 11716

Find the relative extrema of power usage described by P(t)=0.005899t3+0.1925t21.077t+18.08P(t)=-0.005899 t^{3}+0.1925 t^{2}-1.077 t+18.08 for 0t240 \leq t \leq 24.

See Solution

Problem 11717

Maximize profit P(x)=ln(x3+6x2+135x+1)P(x)=\ln(-x^{3}+6x^{2}+135x+1) for 0x100 \leq x \leq 10. Find optimal xx and max profit.

See Solution

Problem 11718

A conical tank (diameter 10 ft, height 15 ft) has water leaking at 12 ft³/hr. Volume is 27π27 \pi ft³. Find height change rate.

See Solution

Problem 11719

Find the training session length tt that maximizes the rating R(t)=18tt2+81R(t)=\frac{18 t}{t^{2}+81}.

See Solution

Problem 11720

Given advertising spending (in thousands) and revenue (in thousands), find a cubic polynomial that models the data, its derivatives, and analyze the results.

See Solution

Problem 11721

Maximize profit P(x)=ln(x3+9x2+21x+1)P(x)=\ln(-x^{3}+9x^{2}+21x+1) for 0x100 \leq x \leq 10. Find optimal xx and max profit.

See Solution

Problem 11722

Which statement ensures the tangent line at x=5x=5 overestimates f(5.25)f(5.25)? (A) ff is decreasing on [5,5.25][5, 5.25]. (B) ff is increasing on [5,5.25][5, 5.25]. (C) ff is concave down on [5,5.25][5, 5.25]. (D) ff is concave up on [5,5.25][5, 5.25].

See Solution

Problem 11723

A car is 0.5 miles from a sign 0.25 miles east of an intersection. Is the distance to the intersection increasing or decreasing?

See Solution

Problem 11724

Approximate the area under f(x)=0.03x41.69x2+91f(x)=0.03 x^{4}-1.69 x^{2}+91 from x=3x=3 to x=11x=11 using 4 left endpoints.

See Solution

Problem 11725

Find the relative extrema of power usage given by P(t)=0.005899t3+0.1925t21.077t+18.08P(t)=-0.005899 t^{3}+0.1925 t^{2}-1.077 t+18.08 for 0t240 \leq t \leq 24.

See Solution

Problem 11726

Find the intervals where the function y=4(9+x)2y=\frac{4}{(9+x)^{2}} is increasing and decreasing, with x9x \neq -9.

See Solution

Problem 11727

Calculate the volume of the solid formed by rotating the area between y=(1x2)1/2y=(1-x^2)^{1/2} and y=((x/2)1/2)(1x)y=((x/2)^{1/2})(1-x) from x=0x=0 to x=1x=1 around y=0y=0.

See Solution

Problem 11728

Evaluate the integral R2x+2y4dxdy\int_{R} \frac{2 x+2-y}{4} d x d y over the region R={(x,y):0x1,0y2,x+y1}R=\{(x, y): 0 \leq x \leq 1,0 \leq y \leq 2, x+y \geq 1\}.

See Solution

Problem 11729

Find where the function y=x34x2+4x+1y=x^{3}-4 x^{2}+4 x+1 is increasing, decreasing, concave up, and concave down using derivatives.

See Solution

Problem 11730

Evaluate the integral from -2 to 3 of the function (6x+3)(6x + 3).

See Solution

Problem 11731

Find the total distance a particle travels on the xx-axis from t=0t=0 to t=3t=3 given x(t)=2t36t2+15x(t)=2t^{3}-6t^{2}+15.

See Solution

Problem 11732

Analyze the function y=15xexy=15 x e^{-x} for intervals of increase, decrease, concavity up, and concavity down using the first and second derivative tests.

See Solution

Problem 11733

Analyze the function y=15xexy=15 x e^{-x} for intervals of increase, decrease, concavity up, and concavity down.

See Solution

Problem 11734

Find f(x)f(x) if f(x)dx=(x+1)3ex+ln(x)+C\int f(x) d x=(x+1)^{3} e^{x}+\ln (|x|)+C.

See Solution

Problem 11735

A 15-foot ladder leans against a wall. It slides down at 2 ft/s. Find how fast θ\theta changes when θ=π4\theta = \frac{\pi}{4}.

See Solution

Problem 11736

Find kk such that x4ex5dx=kex5+C\int x^{4} e^{x^{5}} dx = k e^{x^{5}} + C.

See Solution

Problem 11737

Given f(2)=5f(2)=-5, g(2)=3g(2)=3, f(2)=4f^{\prime}(2)=-4, g(2)=2g^{\prime}(2)=2. Find h(2)h^{\prime}(2) for: (a) h(x)=3f(x)4g(x)h(x)=3 f(x)-4 g(x) (b) h(x)=f(x)g(x)h(x)=f(x) g(x) (c) h(x)=f(x)g(x)h(x)=\frac{f(x)}{g(x)} (d) h(x)=g(x)1+f(x)h(x)=\frac{g(x)}{1+f(x)}

See Solution

Problem 11738

Given f(2)=3,g(2)=5,f(2)=1,g(2)=4f(2)=-3, g(2)=5, f^{\prime}(2)=-1, g^{\prime}(2)=4, find h(2)h^{\prime}(2) for: (a) h(x)=3f(x)4g(x)h(x)=3 f(x)-4 g(x), (b) h(x)=f(x)g(x)h(x)=f(x) g(x), (c) h(x)=f(x)g(x)h(x)=\frac{f(x)}{g(x)}, (d) h(x)=g(x)1+f(x)h(x)=\frac{g(x)}{1+f(x)}.

See Solution

Problem 11739

Find f(3)f(3) given that f(t)=6t2+etf^{\prime}(t)=6 t^{2}+e^{t} and f(0)=6f(0)=6.

See Solution

Problem 11740

Find local maxima, minima, and intervals of increase/decrease for y=x312x+6,xRy=x^{3}-12 x+6, x \in \mathbb{R}.

See Solution

Problem 11741

How long did King Kong take to fall 380 m380 \mathrm{~m}? What was his velocity just before landing?

See Solution

Problem 11742

Compute the integral of the function: (1x7+1x7+e8x)dx\int\left(\frac{1}{x^{7}}+\frac{1}{x-7}+e^{-8 x}\right) d x

See Solution

Problem 11743

Prove that if f(x)=cos(x)f(x)=\cos (x), then f(x)=sin(x)f^{\prime}(x)=-\sin (x) using the derivative definition.

See Solution

Problem 11744

Determine where the function f(x)=x450x2+625f(x)=x^{4}-50 x^{2}+625 is increasing, decreasing, and find local extrema.

See Solution

Problem 11745

Find the average rate of change of f(x)=x2+3x+2f(x)=-x^{2}+3x+2 from x=2x=-2 to x=2x=2. Simplify your answer.

See Solution

Problem 11746

Find the formula for the zz-coordinate of the centroid for the region defined by x2+y2+z24x^{2}+y^{2}+z^{2} \leq 4 and z0z \geq 0.

See Solution

Problem 11747

A stream with insecticide at 9 g/m39 \mathrm{~g/m}^{3} flows into a pond at 25 m3/25 \mathrm{~m}^{3}/day with 2000 m32000 \mathrm{~m}^{3} volume.
(a) Let y(t)y(t) be the insecticide amount (grams) in the pond. Write and solve the differential equation for y(t)y(t) with initial condition. (b) What happens to the insecticide concentration after a long time? (c) How many days until the concentration reaches 7 g/m37 \mathrm{~g/m}^{3}?

See Solution

Problem 11748

Find dydt\frac{d y}{d t} at x=0x=0 for y=x+2x2+1y=\frac{x+2}{x^{2}+1}, given dxdt=5.2\frac{d x}{d t}=-5.2.

See Solution

Problem 11749

Find the absolute extreme values of f(x)=2x327x2+84xf(x)=2 x^{3}-27 x^{2}+84 x on the interval [1,8][1,8].

See Solution

Problem 11750

A winch pulls a 12m pipe vertically at -0.7 m/s. Find horizontal and vertical change rates when y=4y=4. Round to three decimals.

See Solution

Problem 11751

Find the dimensions of a cylindrical container with volume 5 m35 \mathrm{~m}^{3} that minimizes material cost: top/bottom at \$6/m², side at \$9/m².

See Solution

Problem 11752

Find the dimensions of a cylindrical container with volume 5 m35 \mathrm{~m}^{3} that minimizes material costs of \$6/m² for top/bottom and \$9/m² for the side.

See Solution

Problem 11753

Compute the future value after 6 years for income f(t)=8000e0.04tf(t)=8000 e^{0.04 t} at 6.2%6.2\% interest using 06f(t)e0.062tdt\int_{0}^{6} f(t) e^{0.062 t} dt. Find the present value using 06f(t)e0.062tdt\int_{0}^{6} f(t) e^{-0.062 t} dt.

See Solution

Problem 11754

Find the second derivative of f(x)=ex(2x+x24)f(x) = e^{x}(2x + x^{2} - 4).

See Solution

Problem 11755

Find the area between f(x)=x3f(x)=x^{3} and g(x)=2kx2k2xg(x)=2 k x^{2}-k^{2} x for all real kk. Calculate this area.

See Solution

Problem 11756

Invest \11,000for2years.Whichisbetter:11,000 for 2 years. Which is better: 7\%monthlyor monthly or 6.94\%$ continuous compounding?

See Solution

Problem 11757

Gegeben ist die Funktion f(x)=(x+3)exf(x)=(x+3) \cdot e^{-x}. Finde Nullstellen, Ableitungen, Hoch-/Tiefpunkte und die Tangente in A(03)A(0 \mid 3).

See Solution

Problem 11758

Find the first and second derivatives of fk(x)=x(xk)exf_{k}(x)=x(x-k)e^{-x}.

See Solution

Problem 11759

Determine the inflection point of fk(x)=ex(2+4x+x2k)f_{k}^{\prime \prime}(x)=e^{x}(2+4x+x^{2}-k) in terms of kk.

See Solution

Problem 11760

Find the derivative of f(y)=(1y23y4)(y+5y3)f(y)=\left(\frac{1}{y^{2}}-\frac{3}{y^{4}}\right)\left(y+5y^{3}\right).

See Solution

Problem 11761

Find the derivative of f(z)=(1ez)(z+e2)f(z)=(1-e^{z})(z+e^{2}).

See Solution

Problem 11762

Analyze the function f(z)=(1ez)(z+ez)f(z)=(1-e^{z})(z+e^{z}) to find its derivatives or zeros.

See Solution

Problem 11763

Find the derivative of y=t3+3tt24t+3y=\frac{t^{3}+3t}{t^{2}-4t+3}.

See Solution

Problem 11764

Determine if the function f(x)={sin(πx) for x2π(x2) for x>2f(x)=\left\{\begin{array}{l}\sin (\pi x) \text { for } x \leq 2 \\ \pi(x-2) \text { for } x>2\end{array}\right. is continuous or differentiable at x=1x=1 and x=2x=2.

See Solution

Problem 11765

Ordnen Sie die Grenzwertterme den passenden Grenzwerten zu:
1. limx2xx2\lim _{x \rightarrow \infty} \frac{2 x}{x-2}
2. limx22x28x2\lim _{x \rightarrow 2} \frac{2 x^{2}-8}{x-2}

Wählen Sie aus: -1, 0, 4.5, 2, 8, \infty.

See Solution

Problem 11766

Untersuchen Sie die Grenzwerte von links und rechts für die Funktionen: a) f(x)=1xf(x)=\frac{1}{x} bei x0=0x_{0}=0 b) f(x)={x1,x0x2,x>0f(x)=\left\{\begin{array}{ll}x-1, & x \leq 0 \\ x^{2}, & x>0\end{array}\right. bei x0=0x_{0}=0 c) f(x)={x2+1,x13x,x>1f(x)=\left\{\begin{array}{l}x^{2}+1, & x \leq 1 \\ 3-x, & x>1\end{array}\right. bei x0=1x_{0}=1

See Solution

Problem 11767

Untersuchen Sie die Funktion fa(x)=x3f_a(x) = x^3 für a>0a > 0: Bestimmen Sie Extrema, Wendepunkte und Nullstellen.

See Solution

Problem 11768

Untersuchen Sie die Funktion fa(x)=a13x3axf_{a}(x)=\frac{a-1}{3} x^{3}-a x auf:
1. Definitionsbereich
2. Nullstellen
3. Extremstellen
4. Wendepunkte
5. Verhalten für x±x \rightarrow \pm \infty

See Solution

Problem 11769

Finde den Wendepunkt der Funktion fa(x)=(xa)e0.5xf_a(x)=(x-a) \cdot e^{0.5 x}.

See Solution

Problem 11770

Leiten Sie die Funktion f(x)=1n+2xn+2f(x)=\frac{1}{\sqrt{n}+2} x^{\sqrt{n}+2} ab.

See Solution

Problem 11771

Determine if the function f(x)={sin(πx) for x2π(x2) for x>2f(x)=\left\{\begin{array}{l}\sin (\pi x) \text{ for } x \leq 2 \\ \pi(x-2) \text{ for } x>2\end{array}\right. is continuous or differentiable at each point.

See Solution

Problem 11772

Find f(x)f(x) from the equation dydx=f(x)=3x2\frac{d y}{d x}=f^{\prime}(x)=3 x^{2} with f(2)=7f(2)=7.

See Solution

Problem 11773

Gegeben ist die Funktion f(x)=x22xf(x)=x^{2}-2x. Zeichne den Graphen für 2x4-2 \leq x \leq 4 und berechne die mittlere Steigung in den Intervallen [2;0][-2; 0], [0;3][0; 3] und [1;3][-1; 3]. Nenne zwei Intervalle mit mittlerer Steigung 1 und 2.

See Solution

Problem 11774

Find the tangent and normal line equations for the curve y=x4+2exy=x^{4}+2 e^{x} at the point (0,2)(0,2).

See Solution

Problem 11775

Sketch the area between y=13xx2y=13x-x^{2} and y=10xy=10x, then find the enclosed area.

See Solution

Problem 11776

Given the function f(x)=2x3+3x2336xf(x)=2 x^{3}+3 x^{2}-336 x, find where it's increasing, decreasing, local min/max, and inflection point.

See Solution

Problem 11777

Find the first derivative of f(x)=x5/3ln(x)f(x)=x^{5/3} \ln(x) and determine where it has horizontal tangents. x=x=

See Solution

Problem 11778

Find the max/min values, zeroes, increasing/decreasing intervals, and yy-intercept for: 5. g(x)=2x25x9g(x)=2 x^{2}-5 x-9, 6. h(x)=0.5x37x2+8h(x)=0.5 x^{3}-7 x^{2}+8, 7. j(x)=x4x3x21j(x)=x^{4}-x^{3}-x^{2}-1.

See Solution

Problem 11779

Find f(x)f^{\prime \prime}(x) from f(x)=8cosx8sinxf^{\prime}(x)=8 \cos x-8 \sin x and solve tanx=\tan x= when it equals 0.

See Solution

Problem 11780

Let f(x)=x+1+lnxxf(x)=x+\frac{1+\ln x}{x}. Find limx0f(x)\lim_{x \to 0} f(x), limx+f(x)\lim_{x \to +\infty} f(x), and show y=xy=x is an asymptote for the curve.

See Solution

Problem 11781

Given the graph of the derivative ff' for 0x90 \leq x \leq 9:
(i) (a) Where is ff increasing? (0,4)(6,8) (0,4) \cup(6,8) (b) Where are local maxima for ff? x=4,8 x=4,8 Where is the local minimum? x=6 x=6 (c) Where is ff concave upward? (0,1)(2,3)(5,7) (0,1) \cup(2,3) \cup(5,7) Where is ff concave downward? (1,2)(3,5)(7,9) (1,2) \cup(3,5) \cup(7,9) (d) What are the inflection points of ff? x= x=

See Solution

Problem 11782

Find the derivative of f(x)=13x3x2f(x) = \frac{1}{3} x^{3} - x^{2}.

See Solution

Problem 11783

Cliff divers in Acapulco jump from 39.8 m39.8 \mathrm{~m}. Find their speed upon hitting the water, rounded to 1 decimal place.

See Solution

Problem 11784

Soit la fonction f(x)=x+1+lnxxf(x)=x+\frac{1+\ln x}{x}. Trouvez limx0f(x)\lim _{x \rightarrow 0} f(x) et limxf(x)\lim _{x \rightarrow \infty} f(x) pour déterminer une asymptote.

See Solution

Problem 11785

Deutschland hat 55,5% Nadelbäume. Wachstumsrate der Fichte: f(x)=0,3xe0,1xf(x)=0,3 x \cdot e^{-0,1 x}.
a) Beschreibe das Wachstum der Fichte. b) Prognostiziere die Höhe nach 20 Jahren. c) Zeige, dass F(x)=3(x+10)e0,1x+cF(x)=-3(x+10) \cdot e^{-0,1 x}+c eine Stammfunktion ist. d) Bestimme, wann eine Fichte mit 8 m gefällt werden muss. e) Passe die Funktion für verlangsamtes Wachstum an.

See Solution

Problem 11786

Select a graph of y=f(x)y=f(x) based on these derivative properties:
- x<2x<-2: y>0,y<0y'>0, y''<0 - 2-2: y=0,y<0y'=0, y''<0 - 2<x<0-2<x<0: y<0,y<0y'<0, y''<0 - 00: y<0,y=0y'<0, y''=0 - 0<x<20<x<2: y<0,y>0y'<0, y''>0 - 22: y=0,y>0y'=0, y''>0 - x>2x>2: y>0,y>0y'>0, y''>0

See Solution

Problem 11787

求一只重 889 g889 \mathrm{~g} 的猎鹰在自由落体中达到 73 m/s73 \mathrm{~m} / \mathrm{s} 所需的最小高度。

See Solution

Problem 11788

Given functions f(x)=(x1)(ln(x)1)f(x)=(x-1)(\ln (x)-1) and g(x)=ln(x)1xg(x)=\ln (x)-\frac{1}{x}, find limits, derivatives, and variations for gg and ff.

See Solution

Problem 11789

Which function has the largest integral value on [a,b][a, b]: f(x)f(x), f(x)1f(x)-1, f(x)3-f(x)-3, 3f(x)-3 f(x), or 2f(x)2 f(x)?

See Solution

Problem 11790

Find the dimensions of a box with a square base and open top that has a volume of 32 cm332 \mathrm{~cm}^{3} and minimizes material.

See Solution

Problem 11791

Analyze the function with derivative f(x)=(x3)2(x+4)f^{\prime}(x)=(x-3)^{2}(x+4): a. When is ff increasing or decreasing? b. Where are the local maxima and minima?

See Solution

Problem 11792

Find the tangent line y=mx+by=m x+b to f(x)=5sinx2sinx+4cosxf(x)=\frac{5 \sin x}{2 \sin x+4 \cos x} at a=π3a=\frac{\pi}{3}, with m=m=\square, b=b=\square.

See Solution

Problem 11793

Find the tangent line to y=f(x)y=f(x) at a=π/3a=\pi/3 where f(x)=5sinx2sinx+4cosxf(x)=\frac{5 \sin x}{2 \sin x+4 \cos x}, with m=1m=1 and b=b=\square.

See Solution

Problem 11794

Find critical numbers, intervals of increase/decrease/constancy, and local extrema for f(x)=x2+4x3f(x)=\sqrt[3]{x^{2}+4 x}.

See Solution

Problem 11795

Bestimmen Sie die Extremstellen und den Wendepunkt der Funktion fa(x)=x33a2x+2a3f_{a}(x)=x^{3}-3 a^{2} x+2 a^{3}.

See Solution

Problem 11796

Find the derivative of the function 12(x6)2\frac{-12}{(x-6)^{2}}.

See Solution

Problem 11797

Bestimmen Sie den Wendepunkt der Funktion fa(x)=x33a2x+2a3f_{a}(x)=x^{3}-3 a^{2} x+2 a^{3}.

See Solution

Problem 11798

Bestimme den Parameter a>2a > 2, sodass s(t)=1500t2s(t)=1500 t^{2} für tt im Intervall [2; a] den Wert 6 erreicht. Wie lange dauert das und was ist die mittlere Geschwindigkeit?

See Solution

Problem 11799

Calculate the integral: (12x+12x)dx\int\left(\frac{12}{\sqrt{x}}+12 \sqrt{x}\right) dx.

See Solution

Problem 11800

Calculate the integral of (6x+5)2(6x + 5)^{2} with respect to xx.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord