Calculus

Problem 701

Find the derivative of yy with respect to xx for the expression x+lnx3+2x3x+\ln |x-3|+\frac{2}{x-3}.

See Solution

Problem 702

Find the formula for the marginal average profit of the profit function P(x)=100ln(2x+1)5x10 P(x)=100 \ln (2 x+1)-5 x-10 . Options are provided.

See Solution

Problem 703

Find the derivatives of these functions: 1. f(x)=6x39x+4f(x)=6 x^{3}-9 x+4, 2. y=2t4t2+13ty=2 t^{4}- t^{2}+13 t, 3. g(z)=4z73z7+9zg(z)=4 z^{7}-3 z^{-7}+9 z.

See Solution

Problem 704

Un point P\mathrm{P} de masse m\mathrm{m} se déplace en coordonnées polaires. Trouvez les équations du mouvement et les expressions pour r(t)\mathrm{r}(t) et ω\omega quand ω\omega est constant.

See Solution

Problem 705

Find the integral of 23x22sec2(5x)\frac{2}{3 x^{2}} - 2 \sec^{2}(5x) with respect to xx.

See Solution

Problem 706

Evaluate the integral: 2(23x22sec25x)dx\int_{2}\left(\frac{2}{3 x^{2}}-2 \sec ^{2} 5 x\right) d x

See Solution

Problem 707

Find the integral: 6cosec2xcot2xdx\int 6 \operatorname{cosec} 2 x \cot 2 x \, dx

See Solution

Problem 708

Find the integral of 103x10^{3 x} with respect to xx.

See Solution

Problem 709

Calculate the integral: 0π44sin2xdx\int_{0}^{\frac{\pi}{4}} 4 \sin 2 x \, dx

See Solution

Problem 710

Find the integral: 5x3x24xdx\int \frac{5-x-3 x^{2}}{4 \sqrt{x}} \, dx

See Solution

Problem 711

Find the limit of f(x)=sin4x4sin3xf(x)=\frac{\sin 4x}{4 \sin 3x} as xx approaches 0.

See Solution

Problem 712

Find the limit of f(x)=sin4x4sin3x+sin(x/3)9xf(x)=\frac{\sin 4x}{4\sin 3x}+\frac{\sin (x/3)}{9x} as x0x \to 0.

See Solution

Problem 713

Find the limit: limx0f(x)\lim_{x \rightarrow 0} f(x) where f(x)=2xcos(1x2)f(x)=2 x \cos \left(\frac{1}{x^{2}}\right).

See Solution

Problem 714

Find ddxf1(0)\frac{d}{d x} f^{-1}(0) for f(x)=x+sinxf(x)=x+\sin x. At x=0x=0, ff has slope 2, so f1f^{-1} slope is 12\frac{1}{2}.

See Solution

Problem 715

Find the derivative of f(x)=x2f(x) = x^2 using the limit definition: f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}.

See Solution

Problem 716

Find the limit: If f(z)=z+zˉzf(z)=\frac{z+\bar{z}}{z}, then limx0f(x+0i)=\lim _{x \rightarrow 0} f(x+0 i)=.

See Solution

Problem 717

Find limx0f(x+0i)\lim _{x \rightarrow 0} f(x+0 i) and limy0f(0+iy)\lim _{y \rightarrow 0} f(0+i y) for f(z)=z+zˉzf(z)=\frac{z+\bar{z}}{z}.

See Solution

Problem 718

Evaluate the limit as xx approaches 0: limx0x225x24x5\lim _{x \rightarrow 0} \frac{x^{2}-25}{x^{2}-4 x-5}.

See Solution

Problem 719

Find dydx\frac{d y}{d x} for the equation 2xln(y)+y2=52 \cdot x \cdot \ln (y) + y^{2} = 5.

See Solution

Problem 720

Find dydx\frac{d y}{d x} if exy+5y4=2ye^{x \cdot y}+5 \cdot y^{4}=2 \cdot y.

See Solution

Problem 721

Find the marginal profit P(x)P^{\prime}(x) for P(x)=3x8xP(x)=3 \cdot x-8 \cdot \sqrt{x} and calculate P(x)x\frac{P^{\prime}(x)}{x}.

See Solution

Problem 722

Find the marginal cost for businesses A and B with CA(x)=350+40x+0.12x2C_A(x)=350+40x+0.12x^2 and CB(x)=280+30x+0.09x2C_B(x)=280+30x+0.09x^2. For x=500x=500, which is cheaper?

See Solution

Problem 723

Find the greatest integer less than or equal to 12log2(x3+1)dx+1log29(2x1)13dx\int_{1}^{2} \log _{2}(x^{3}+1) dx + \int_{1}^{\log _{2} 9}(2^{x}-1)^{\frac{1}{3}} dx.

See Solution

Problem 724

Find the cost increase when producing 60 items instead of 50, given C=0.001x30.3x2+40x+1000C=0.001 x^{3}-0.3 x^{2}+40 x+1000.

See Solution

Problem 725

Find the cost increase when producing from 50 to 60 items with C=0.001x30.3x2+40x+1000C=0.001 x^{3}-0.3 x^{2}+40 x+1000. Also, calculate the average cost per additional unit.

See Solution

Problem 726

Find the ball's instantaneous velocity at t=10.0t=10.0 s given x(t)=0.000015t50.004t3+0.4tx(t)=0.000015 t^5 - 0.004 t^3 + 0.4 t.

See Solution

Problem 727

A company sells Q(x)=60xx2Q(x)=60x-x^{2} units after spending $x\$x thousand on ads. Find Q(7)Q(7) and Q(7)Q^{\prime}(7).

See Solution

Problem 728

Find the change in demand xx when price pp drops from \2.25to$1using2.25 to \$1 using x=\frac{1000}{\sqrt{p}+1}.Also,calculate. Also, calculate \frac{\Delta X}{\Delta P}$.

See Solution

Problem 729

Find the derivative of (x+1)sinx(x+1) \sin x. What is it?

See Solution

Problem 730

Find the integral of the constant function f(x)=kf(x)=k. What is it?

See Solution

Problem 731

Find the derivative of f(x)=4cos2x+logx+xf(x)=4 \cos 2 x+\log x+x. Options: 8sin2x+1/x+x8 \sin 2 x+1 / x+x, 8sin2x+1/x+x-8 \sin 2 x+1 / x+x, 8sin2x+1/x+1-8 \sin 2 x+1 / x+1, 8sin2x+1/x+18 \sin 2 x+1 / x+1.

See Solution

Problem 732

Find the rate of price change when x=100x=100 and supply decreases at 8 crates/day from px20p6x+40=0p x - 20 p - 6 x + 40 = 0.

See Solution

Problem 733

Differentiate the function: y=x+1xx1xy = \sqrt{\frac{\sqrt{x}+\frac{1}{\sqrt{x}}}{\sqrt{x}-\frac{1}{\sqrt{x}}}}

See Solution

Problem 734

Find the derivative of 2x+2+3y+1=182^{x+2} + 3^{y+1} = 18 with respect to xx.

See Solution

Problem 735

Evaluate the integral: x3(4+x2)32dx\int x^{3}\left(4+x^{2}\right)^{\frac{3}{2}} d x

See Solution

Problem 736

Sketch the curves y=x2+xy=x^{2}+x and y=2x2+4y=-2 \cdot x^{2}+4 from x=0x=0 to x=2x=2. Find the area between them using integrals.

See Solution

Problem 737

Find a formula for dx(xa)(xb)\int \frac{d x}{(x-a)(x-b)} and compute the length of y=log(sinx)y=\log (\sin x) from (π4,log22)\left(\frac{\pi}{4}, \log \frac{\sqrt{2}}{2}\right).

See Solution

Problem 738

Find the derivative f(x)f^{\prime}(x) of f(x)=xf(x)=|x| for x>0x>0, x<0x<0, and at x=0x=0. Explain why it's undefined at 00.

See Solution

Problem 739

Find the xx values where the function ff has a relative maximum given f(x)=x2(x+1)3(x4)2f^{\prime}(x)=x^{2}(x+1)^{3}(x-4)^{2}.

See Solution

Problem 740

Evaluate π/4π/2sin3αcosαdα\int_{\pi / 4}^{\pi / 2} \sin ^{3} \alpha \cos \alpha d \alpha. What is the result?

See Solution

Problem 741

Find the value of cc such that f(x)=x+cxf(x)=x+\frac{c}{x} has a local minimum at x=3x=3.

See Solution

Problem 742

Given values of f(x)f^{\prime \prime}(x): at x=1x=-1 is -4, x=0x=0 is -1, x=1x=1 is 2, x=2x=2 is 5, x=3x=3 is 8. What type of function is ff? (A) linear (B) quadratic (C) cubic (D) fourth-degree (E) exponential

See Solution

Problem 743

Find the time tt (from 0 to 10) when the object with velocity v(t)=tcostln(t+2)v(t)=t \cos t-\ln (t+2) reaches maximum speed.

See Solution

Problem 744

Find the area under the curve y=41+x2y=\frac{4}{1+x^{2}} from x=1x=-1 to x=0x=0. Choices: (A) 4π44-\frac{\pi}{4}, (B) 82π8-2 \pi, (C) 8π8-\pi, (D) 8π28-\frac{\pi}{2}, (E) 2π42 \pi-4.

See Solution

Problem 745

Calculate the area under the curve y=41+x2y=\frac{4}{1+x^{2}} from x=1x=-1 to x=1x=1.

See Solution

Problem 746

Find the function f(x)f(x) given that f(x)=2f(x)f^{\prime}(x)=2 f(x) and f(2)=1f(2)=1.

See Solution

Problem 747

Find the time tt in [0,10][0, 10] when the velocity v(t)=tcostln(t+2)v(t)=t \cos t - \ln(t+2) is maximized. Options: A. 9.5 B. 5.1 C. 6.4 D. 7.6

See Solution

Problem 748

Estimate yy at x=3.1x=3.1 using the tangent line of the curve x3+xtany=27x^{3}+x \tan y=27 at (3,0)(3,0). Choose from (A) -2.7 (B) -0.9 (C) 0 (D) 0.1 (E) 3.0.

See Solution

Problem 749

Find the rate of change of sales S(t)=10,000+2000t200t2S(t)=10,000+2000 t-200 t^{2} and interpret S(t)S^{\prime}(t).

See Solution

Problem 750

Analyze the stability of equilibrium points for x¨=(xa)(x2a)\ddot{x}=(x-a)(x^{2}-a) across all real values of aa.

See Solution

Problem 751

Find the derivative of the function f(x)=6x(x5)f(x)=6 \cdot \sqrt{x} \cdot(x-5). What is f(x)f^{\prime}(x)?

See Solution

Problem 752

Find the derivative f(x)f^{\prime}(x) of the function f(x)=3ln(4x)f(x)=-3 \cdot \ln (4 \cdot x) and calculate f(2)f^{\prime}(2).

See Solution

Problem 753

Find the derivative of f(x)=x7x+7f(x)=\frac{\sqrt{x}-7}{\sqrt{x}+7} and calculate f(5)f^{\prime}(5).

See Solution

Problem 754

Find the derivative f(x)f'(x) of the function f(x)=4x2+4x+4f(x)=\sqrt{4x^2 + 4x + 4} and evaluate it at x=4x=4.

See Solution

Problem 755

Calculate the derivative of g(x)=(4x2+5x)exg(x)=(4x^{2}+5x) \cdot e^{x}.

See Solution

Problem 756

Find y(4)y^{\prime}(4) using implicit differentiation for 4x2+3x+xy=44 \cdot x^{2}+3 \cdot x+x \cdot y=4 and y(4)=18y(4)=-18.

See Solution

Problem 757

Find discontinuities of f(x)={x21,x<1x,x1f(x)=\left\{\begin{array}{ll}x^{2}-1, & x<1 \\ x, & x \geq 1\end{array}\right. and explain why.

See Solution

Problem 758

Find the derivative f(x)f^{\prime}(x) of the function f(x)=2+7x+7x2f(x)=2+\frac{7}{x}+\frac{7}{x^{2}}.

See Solution

Problem 759

Find the derivative of R(j)=(ln(j2))2R(j)=\left(\ln \left(j^{2}\right)\right)^{2} at j=ej=e.

See Solution

Problem 760

Find the derivative f(t)f^{\prime}(t) of the function f(t)=(t2+5t+3)(2t2+6t5)f(t)=(t^{2}+5t+3)(2t^{-2}+6t^{-5}).

See Solution

Problem 761

Find the slope of the tangent line to the curve 4xy3+3xy=74xy^{3}+3xy=7 at the point (1,1)(1,1) using implicit differentiation.

See Solution

Problem 762

Find the marginal cost for both businesses given their cost functions: CA(x)=200+25x+0.1x2C_A(x)=200+25x+0.1x^2 and CB(x)=400+80x+0.06x2C_B(x)=400+80x+0.06x^2. For x=500x=500, which business has the lowest cost for the next tire?

See Solution

Problem 763

Find the critical number of the function f(x)=(8x7)e5xf(x)=(8 \cdot x-7) \cdot e^{5 \cdot x}.

See Solution

Problem 764

The demand function is D(x)=96725xD(x)=967-25-x.
(a) Find the elasticity of demand. (b) Find the price where elasticity equals 1. (c) Determine the price for maximum revenue.

See Solution

Problem 765

Find the value of xx that satisfies the equation ddx(x(96725x))=0\frac{d}{d x}(x \cdot(967-25-x))=0.

See Solution

Problem 766

Evaluate the integral: (3x2+5x4)dx\int(3x^{2}+5x-4) \, dx

See Solution

Problem 767

Projectile height is given by h(t)=16t2+256th(t)=-16 \cdot t^{2}+256-t. Find: (a) average velocity for 3s, (b) speed & height at 6s, (c) max height & time, (d) acceleration at t=5t=5.

See Solution

Problem 768

Find the antiderivative of the function: (56x2x3)dx\int(5 - 6x^{2} - x^{3}) \, dx

See Solution

Problem 769

Helium fills a balloon at 2 ft³/s. Find the radius increase rate (in ft/s) after 7 minutes. Use V=43πr3V=\frac{4}{3} \cdot \pi \cdot r^{3}.

See Solution

Problem 770

Evaluate the integral 03yy+1dy\int_{0}^{3} \frac{y}{y+1} dy using the substitution t=y+1t=y+1.

See Solution

Problem 771

Substitute t=y+1t=y+1 in the integral 03yy+1dy\int_{0}^{3} \frac{y}{y+1} dy.

See Solution

Problem 772

Approximate the integral 12(x43x2+1)dx\int_{-1}^{2}(x^{4}-3 \cdot x^{2}+1) d x using left Riemann sums with 8 subdivisions. Round to three decimal places.

See Solution

Problem 773

Solve the integral 03yy+1dy\int_{0}^{3} \frac{y}{y+1} d y using t=y+1t=y+1. Which option is correct? 1-5.

See Solution

Problem 774

Find the total displacement of a ball with velocity v(t)=9032tv(t)=90-32 \cdot t from t=2t=2 to t=5t=5 seconds.

See Solution

Problem 775

Calculate the integral using integration by parts: xln(x)dx=\int x \cdot \ln (x) \, dx =

See Solution

Problem 776

Calculate the area between y=xy=\sqrt{x} and y=0y=0 over the interval [1,1][-1,1].

See Solution

Problem 777

Calculate the daily consumer surplus for sales at price p=15p=15 using the demand equation p=30e401p=30 e^{-401}.

See Solution

Problem 778

Find the average rate of change of profit P(x)=400x2+6800x12000P(x)=-400x^2+6800x-12000 over [6,6+h][6,6+h] for h=1,0.1,0.01,0.001,0.0001h=1, 0.1, 0.01, 0.001, 0.0001. What do the results indicate?

See Solution

Problem 779

Evaluate the integral 4ex4dx\int_{4}^{\infty} e^{-\frac{x}{4}} dx. Enter "undefined" if it diverges.

See Solution

Problem 780

Evaluate the integral: 114x2dx\int \frac{1}{\sqrt{1-4 x^{2}}} d x.

See Solution

Problem 781

A particle's position is given by s=2t37t29t+12s=2 \cdot t^{3}-7 \cdot t^{2}-9 \cdot t+12. Find velocity, acceleration, and specific values.

See Solution

Problem 782

Projectile height is given by h(t)=16t2+256th(t)=-16 \cdot t^{2}+256 \cdot t. Find average velocity, speed, max height, and acceleration at t=5t=5.

See Solution

Problem 783

Show that the limit limitx2x2x2\operatorname{limit}_{x \rightarrow 2} \frac{|x-2|}{x-2} does not exist.

See Solution

Problem 784

Calculate the integral (2+5x1(x2)2)dx\int\left(2+5 x-\frac{1}{(x-2)^{2}}\right) d x.

See Solution

Problem 785

Calculate the integral of the function 2x2x with respect to xx: 2xdx\int 2 x \, dx.

See Solution

Problem 786

Solve the differential equation: y7y+12y=0y^{\prime \prime}-7 y^{\prime}+12 y=0.

See Solution

Problem 787

Calculate the integral 2xcos(x25)dx\int 2 x \cos \left(x^{2}-5\right) \, dx.

See Solution

Problem 788

Differentiate y=1a+x2y=\frac{1}{\sqrt{a+x^{2}}} with respect to xx.

See Solution

Problem 789

Differentiate y=a+xy=\sqrt{a+x}.

See Solution

Problem 790

Calculate the integral: x(4x+1)e4x2dx\int_{-\infty}^{\infty} x(4 x+1) e^{-4 x^{2}} d x given that ex2dx=π\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}.

See Solution

Problem 791

Calculate the integral x2ex2dx\int_{-\infty}^{\infty} x^{2} e^{-x^{2}} d x given that ex2dx=π\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}.

See Solution

Problem 792

Calculate the integral: cos(ln(x))xdx\int \frac{\cos (\ln (x))}{x} d x.

See Solution

Problem 793

Find the derivative of y=x3ln(x)y=x^{3} \ln (x) with respect to xx: dydx\frac{d y}{d x}.

See Solution

Problem 794

Evaluate J29J58I15I14\frac{J_{29}-J_{58}}{I_{15}-I_{14}} and 115πk=129Ik+(1)kJ2k\frac{1}{15 \pi} \sum_{k=1}^{29} I_{k}+(-1)^{k} J_{2 k}.

See Solution

Problem 795

Evaluate the integral dθ\int d \theta.

See Solution

Problem 796

Calculate the integral: 5cosπxdx\int -5 \cos \pi x \, dx

See Solution

Problem 797

Find the area between y=exy=e^{x}, y=x2y=x^{2}, from x=0x=0 to x=1x=1.

See Solution

Problem 798

Find the slant asymptotes of the curve given by the equation y=x2+4xy=\sqrt{x^{2}+4 x}.

See Solution

Problem 799

Evaluate the integral: 15x230x+65dx\int \frac{1}{5 x^{2}-30 x+65} dx

See Solution

Problem 800

Find the integral 1x28x+65dx\int \frac{1}{x^{2}-8 x+65} d x. Choose the correct answer: (A), (B), (C), or (D).

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord