Calculus

Problem 26701

Differentiate the equation x2+y5=7x^{2}+y^{5}=-7 implicitly to find dydx\frac{d y}{d x}. dydx=\frac{d y}{d x}=

See Solution

Problem 26702

Find the derivative f(x)f'(x) of f(x)=4x2+5x+5f(x)=\sqrt{4x^2+5x+5} and calculate f(3)f'(3).

See Solution

Problem 26703

Find the derivative of the function f(x)=8x+54x+5f(x)=\frac{8 x+5}{4 x+5}. What is f(x)?f^{\prime}(x) ?

See Solution

Problem 26704

Die C-14-Methode zur Altersbestimmung hat folgende Aufgaben: a) Halbwertszeit von C-14 berechnen. b) Alter eines Organismus bei 10% C-14. c) Prozent C-14 in einem 1000 Jahre alten Fossil. d) Zerfallsgesetz in der Form N(t)=N0atN(t)=N_{0} \cdot a^{t} umformen.

See Solution

Problem 26705

Find the derivative f(x)f'(x) of the function f(x)=2x2+3x+3f(x)=\sqrt{2 x^{2}+3 x+3} and evaluate f(2)f'(2).

See Solution

Problem 26706

How much must Ashley invest at a continuous interest rate of 5.6%5.6\% to have \$2,080 in 16 years?

See Solution

Problem 26707

Find the derivative of the function f(x)=6+8x+5x2f(x)=6+\frac{8}{x}+\frac{5}{x^{2}} and evaluate f(5)f^{\prime}(5).

See Solution

Problem 26708

Find the local minimum and maximum of the function f(x)=2x3+27x2108x+1f(x)=-2 x^{3}+27 x^{2}-108 x+1.

See Solution

Problem 26709

How much must Alang invest at a 5.7%5.7\% continuous interest rate to reach $113,000\$113,000 in 5 years?

See Solution

Problem 26710

Find where the function f(x)=4x3+48x2+108x6f(x) = -4x^3 + 48x^2 + 108x - 6 is increasing by analyzing its first derivative.

See Solution

Problem 26711

Find the growth rate of the bacterial colony p(t)=4t2+20t+200p(t)=4 t^{2}+20 t+200 after 2 hours. Answer in bacteria/hour.

See Solution

Problem 26712

How much must Addison invest at 6%6\% continuous interest to have $94,000\$94,000 in 5 years? Round to the nearest \$10.

See Solution

Problem 26713

Calculate the integral dx64x281\int \frac{d x}{\sqrt{64 x^{2}-81}} for x>98x > \frac{9}{8}.

See Solution

Problem 26714

Evaluate the integral: dx49x281\int \frac{d x}{\sqrt{49 x^{2}-81}}, where x>97x > \frac{9}{7}.

See Solution

Problem 26715

Find xx values where the tangent line of f(x)=2x336x2+210x7f(x)=2 x^{3}-36 x^{2}+210 x-7 is horizontal. Smaller x=x=, larger x=x=.

See Solution

Problem 26716

Evaluate the integral dxx2x2169\int \frac{d x}{x^{2} \sqrt{x^{2}-169}} for x>13x > 13.

See Solution

Problem 26717

Find the tangent line equation for the function ff at x=15x=\frac{1}{5}, given f(15)=1.4f\left(\frac{1}{5}\right)=-1.4 and f(15)=3f^{\prime}\left(\frac{1}{5}\right)=3.

See Solution

Problem 26718

Find the first and second derivatives of f(x)=x3+3x2189x+8f(x)=x^{3}+3 x^{2}-189 x+8 and determine intervals for increasing, decreasing, concave up, and concave down.

See Solution

Problem 26719

Find the critical value of f(x)=(25x)6f(x)=(2-5x)^{6} at A=A=. Determine the behavior of f(x)f(x) for x<Ax<A and x>Ax>A.

See Solution

Problem 26720

Evaluate the integral dxx2x2121\int \frac{d x}{x^{2} \sqrt{x^{2}-121}} for x>11x > 11.

See Solution

Problem 26721

Evaluate the integral 0532dx25x2\int_{0}^{\frac{5 \sqrt{3}}{2}} \frac{d x}{\sqrt{25-x^{2}}}.

See Solution

Problem 26722

A ball rolls off a 0.84m0.84-\mathrm{m} table at 0.580 m/s0.580 \mathrm{~m/s}. Find its speed just before hitting the ground.

See Solution

Problem 26723

Compute the limits: (a) limx5(x3+x)\lim_{x \to 5} (x^3 + x), (b) limx4x2+x12x+4\lim_{x \to -4} \frac{x^2 + x - 12}{x + 4}, (c) limx2x2+5x14x24x+4\lim_{x \to 2} \frac{x^2 + 5x - 14}{x^2 - 4x + 4}, (d) limx19x4+30x23x+1x6+15x3\lim_{x \to \infty} \frac{19x^4 + 30x^2 - 3x + 1}{x^6 + 15x^3}, (e) limx10x54x3+52x5+14x236x\lim_{x \to -\infty} \frac{10x^5 - 4x^3 + 5}{2x^5 + 14x^2 - 36x}.

See Solution

Problem 26724

Evaluate the expressions: Round to the nearest thousandth. Use e0.35e^{-0.35} and 125e0.7125 e^{0.7}.

See Solution

Problem 26725

Compute the derivatives of these functions: (a) f(x)=sin(x)cos(x)f(x)=\sin (x) \cos (x), (b) g(x)=1x1g(x)=\frac{1}{\sqrt{x}-1}, (c) h(x)=(x3+sin(x))2h(x)=(x^{3}+\sin (x))^{2}, (d) s(x)=ln(x53)s(x)=\ln (\sqrt[3]{x^{5}}), (e) r(x)=x2e3xr(x)=x^{2} e^{3 x}.

See Solution

Problem 26726

A carpenter builds an open box with a square base and surface area of 8 m28 \mathrm{~m}^{2}. Find dimensions for maximum volume.

See Solution

Problem 26727

Find the sum of the series: n=1(1)nπ2n(2n)!4n9n.\sum_{n=1}^{\infty}(-1)^{n} \frac{\pi^{2 n}}{(2 n) ! 4^{n} 9^{n}}.

See Solution

Problem 26728

Find the global max and min for these functions on the specified intervals: (a) f(x)=x2x2f(x)=\frac{x^{2}}{x-2} on [1,1][-1, 1] (b) g(x)=(ln(x)1)2/3g(x)=(\ln (x)-1)^{2/3} on [1,e2][1, e^{2}]

See Solution

Problem 26729

Find global max and min for: (a) f(x)=x2x2f(x)=\frac{x^{2}}{x-2} on [1,1][-1,1]; (b) g(x)=(ln(x)1)2/3g(x)=(\ln (x)-1)^{2/3} on [1,e2][1,e^{2}].

See Solution

Problem 26730

Bestimme die Halbwertszeit der C-14 Zerfallsgleichung y(t)=100e0,00012097ty(t)=100 \cdot e^{-0,00012097 \cdot t}. Finde das Alter eines Baumstamms mit 60\% C-14.

See Solution

Problem 26731

A bicyclist moving at 20.0 m/s20.0 \mathrm{~m/s} descends a hill. Find the maximum height he can reach, ignoring friction.

See Solution

Problem 26732

Aufgabe: Apfelsaft kühlt nach T(t)=5+18e0,1tT(t)=5+18 \cdot e^{-0,1 t} ab. Bestimme a) den Abnahmeprozess, b) die Kühlschranktemperatur, c) die Anfangstemperatur und d) T(10)T(10).

See Solution

Problem 26733

What is the maximum value of 02f(x)dx\int_{0}^{2} f(x) \, dx if 0f(x)40 \leq f(x) \leq 4 for a continuous function ff?

See Solution

Problem 26734

Find the limit: limh010+h10h\lim _{h \rightarrow 0} \frac{\sqrt{10+h}-\sqrt{10}}{h}.

See Solution

Problem 26735

Find the average velocity of a particle with v(t)=et+tetv(t)=e^{t}+t e^{t} from t=0t=0 to t=3t=3.

See Solution

Problem 26736

Find 010f(x)dx\int_{0}^{10} f(x) d x given 05f(x)dx=5\int_{0}^{5} f(x) d x=-5 and 610f(x)dx=8\int_{6}^{10} f(x) d x=8.

See Solution

Problem 26737

Find F(x)F'(x) if F(x)=1x21+t3dtF(x)=\int_{1}^{x^{2}} \sqrt{1+t^{3}} dt. Choices: (A) 2x1+x62 x \sqrt{1+x^{6}}, (B) 2x1+x32 x \sqrt{1+x^{3}}, (C) 1+x6\sqrt{1+x^{6}}, (D) 1+x3\sqrt{1+x^{3}}, (E) 1x23t221+t3dt\int_{1}^{x^{2}} \frac{3 t^{2}}{2 \sqrt{1+t^{3}}} dt.

See Solution

Problem 26738

Find G(1)G'(1) and G(2)G(2) for G(x)=22xf(t)dtG(x)=\int_{2}^{2x} f(t) dt using ff from the graph on [0,7][0,7].

See Solution

Problem 26739

Find g(6)g(6) if g(x)g(x) is an antiderivative of f(x)=exx2f(x)=\frac{e^{x}}{x^{2}} and g(3)=0g(3)=0. Choices: (A) 8.488 (B) 8.975 (C) 10.206 (D) 11.206 (E) 15.513

See Solution

Problem 26740

Find the integral of the function ex3e^{x^3} with respect to xx: ex3dx\int e^{x^3} \, dx.

See Solution

Problem 26741

Determine if f(x)=1x2f(x)=\frac{1}{x-2} is continuous at f(2)f(2); if not, identify the type of discontinuity.

See Solution

Problem 26742

Evaluate the series: k=175(16)k\sum_{k=1}^{\infty} 75\left(\frac{1}{6}\right)^{k}

See Solution

Problem 26743

Find dydx\frac{d y}{d x} for y=16(3t25t)dty=\int_{1}^{6}(3 t^{2}-5 t) dt. Choose from the options (A) to (E).

See Solution

Problem 26744

If abξ(x)dx=4a+b\int_{a}^{b} \xi(x) d x=4 a+b, find ab(g(x)+7)dx\int_{a}^{b}(g(x)+7) d x.

See Solution

Problem 26745

Find dydx-\frac{d y}{d x} for y=16(3t25t)dty=\int_{1}^{6}(3 t^{2}-5 t) dt. Choose from options (A) to (E).

See Solution

Problem 26746

Find intervals where ff is decreasing given f(x)=1xexsinxf^{\prime}(x)=\frac{1}{x}-e^{x} \sin x for 0<x40<x \leq 4.

See Solution

Problem 26747

Find the position of a particle at time t=1t=1 if v(t)=3t2+6tv(t)=3 t^{2}+6 t and x(0)=2x(0)=2. Choices: (A) 4 (B) 6 (C) 9 (D) 11 (E) 12

See Solution

Problem 26748

Find the integral: (5sec2t+t3)dt=\int\left(5 \sec ^{2} t+\sqrt[3]{t}\right) d t= (A) (B) (C) (D) (E)

See Solution

Problem 26749

Find y(0)y^{\prime \prime}(0) if y(x)=0x2et2dty(x)=\int_{0}^{x^{2}} e^{t^{2}} d t.

See Solution

Problem 26750

Determine where the function f(x)=2x33x212xf(x)=2 x^{3}-3 x^{2}-12 x is increasing or decreasing.

See Solution

Problem 26751

Find where the function f(x)=x3x13f(x)=x-3 x^{\frac{1}{3}} is increasing or decreasing.

See Solution

Problem 26752

Determine where the function f(x)=x44x2+3f(x)=x^{4}-4 x^{2}+3 is increasing or decreasing.

See Solution

Problem 26753

Show that the function y=c(ex)y=c\left(e^{x}\right) is its own derivative for any constant cc.

See Solution

Problem 26754

Find the average rate of change of f(x)=cosxf(x) = \cos x from 0 to 4π3\frac{4 \pi}{3}.

See Solution

Problem 26755

Calculate the average rate of change of f(x)=tan(2x)f(x)=\tan(2x) from 0 to 11π12\frac{11\pi}{12}.

See Solution

Problem 26756

Find the second derivative of these functions: (a) f(x):x4sinxf(x): x^{4}-\sin x (b) f(x):sin(x2)f(x): \sin(x^{2}) (c) f(x)=e4x2f(x)=e^{4x-2}
Also, find the derivative of: (a) f(x)=(2x3+3)(8x2+4)f(x)=(2x^{3}+3)(8x^{2}+4) (b) f(x)=(4x+2)3f(x)=(4x+2)^{3} (c) f(x)=8x4+2x144x2+3f(x)=\frac{8x^{4}+2x-14}{4x^{2}+3}

See Solution

Problem 26757

Find the derivatives of these functions: a. f(x)=(2x3+3)(8x2+4)f(x)=(2 x^{3}+3)(8 x^{2}+4) b. f(x)=(4x+2)3f(x)=(4 x+2)^{3} c. f(x)=8x4+2x144x2+3f(x)=\frac{8 x^{4}+2 x-14}{4 x^{2}+3}

See Solution

Problem 26758

Find the second derivative of these functions: (a) f(x)=x4sinxf(x) = x^{4} - \sin x, (b) f(x)=sin(x2)f(x) = \sin(x^{2}), (c) f(x)=e4x2f(x) = e^{4x - 2}.

See Solution

Problem 26759

Find the equation of the tangent line to f(x)=3x2+2x14f(x)=3 x^{2}+2 x-14 with a slope of 4.

See Solution

Problem 26760

Find the average rate of change of f(x)=tan(2x)f(x)=\tan(2x) from 0 to π12\frac{\pi}{12}.

See Solution

Problem 26761

Calculate the average rate of change of f(x)=tan(2x)f(x) = \tan(2x) from 00 to 11π12\frac{11\pi}{12}.

See Solution

Problem 26762

Evaluate these limits: a. limx4x2+12x+32x+4\lim _{x \rightarrow 4} \frac{x^{2}+12 x+32}{x+4} b. limx4x2+12x+32x+4\lim _{x \rightarrow-4} \frac{x^{2}+12 x+32}{x+4}

See Solution

Problem 26763

A car of mass mm starts with velocity V0V_0. Given a constant force F0F_0, find its velocity at time tt.

See Solution

Problem 26764

Bestimme die Ableitungsfunktion von f(x)=x16f(x)=x^{16}. Was ist f(x)f^{\prime}(x)?

See Solution

Problem 26765

Bestimme die Tangentengleichung von f(x)=x6f(x)=x^{6} bei x0=2x_{0}=2.

See Solution

Problem 26766

Estimate f(1.9)f(1.9) using local linear approximation at x=2x=2 given f(2)=3f(2)=-3 and f(2)=4f'(2)=4. Is it an underestimate or overestimate?

See Solution

Problem 26767

Bestimme die Ableitung von f(x)=(x2)3f(x)=(x^{-2})^{-3} und fasse sie zuerst mit Potenzgesetzen zusammen. A: f(x)=f(x)=\square, f(x)=f'(x)=\square

See Solution

Problem 26768

Calculate the volume of a cylinder using V=πr2hV = \pi r^{2} h and an oblique cylinder with height hh and radius rr.

See Solution

Problem 26769

Bestimme die Ableitungsfunktion von f(x)=(x3)5f(x)=(x^{-3})^{-5}. Fasse zuerst zu einer Potenz zusammen. A f(x)=f(x)=\square, f(x)=f^{\prime}(x)=\square

See Solution

Problem 26770

Gegeben ist die Funktion f(x)=14(x22x+1)f(x)=\frac{1}{4}(x^{2}-2x+1). Berechnen Sie die Steigung der Sekanten in den Intervallen a) [1;5][-1;5], b) [0;4][0;4], c) [1;3][1;3], d) [1.5;2.5][1.5;2.5], e) [1.75;2.25][1.75;2.25], f) [1.9;2.1][1.9;2.1], g) [1.99;2.01][1.99;2.01]. Bestimmen Sie den Grenzwert des Differenzenquotienten für h0h \rightarrow 0 in [2h;2+h][2-h;2+h].

See Solution

Problem 26771

Bestimme die Ableitung von f(x)=x5f(x)=x^{-5}. Finde f(x)f^{\prime}(x).

See Solution

Problem 26772

Bestimme die Steigung der Funktion f(x)=x6f(x)=x^{-6} an der Stelle x=2x=2.
A m= m=\square

See Solution

Problem 26773

A yo-yo's height is h(t)=t36t2+5t+30h(t)=t^{3}-6 t^{2}+5 t+30. Answer these: a. Is height increasing/decreasing at t=2t=2? b. Average rate of change from t=0t=0 to t=4t=4? c. When is there no acceleration? d. Displacement in first 4 seconds? When is the tangent of f(x)=2x6f(x)=2^{x}-6 parallel to y=7+3xy=7+3x?

See Solution

Problem 26774

Gegeben ist die Funktion f(x)=x6f(x)=x^{-6}. Finde die Steigung des Graphen bei x=3x=-3. A: m=1m=1

See Solution

Problem 26775

Evaluate the series: n=15n1n2+3n+1\sum_{n=1}^{\infty} \frac{5 \sqrt{n}-1}{n^{2}+3 n+1}.

See Solution

Problem 26776

Bestimme die Ableitung von f(x)=(x4)3f(x)=(x^{-4})^{3} nach Vereinfachung der Potenz. A: f(x)=f(x)=\square, f(x)=f'(x)=\square

See Solution

Problem 26777

Bestimme die Tangentengleichung von f(x)=x4f(x)=x^{-4} bei x0=1x_{0}=1.

See Solution

Problem 26778

Bei welcher xx-Stelle hat die Funktion f(x)=x6f(x)=x^{-6} eine Steigung von 6? A: Bei x=x=\square.

See Solution

Problem 26779

Bestimme die Ableitungsfunktion von f(x)=4x+3x6f(x)=-\frac{4}{x}+3 x^{6} mit Faktor- und Summenregel.

See Solution

Problem 26780

Brownville's population grows at 2.2%2.2\% per year. If it's 720,000 now, how long until it reaches 1,000,000?

See Solution

Problem 26781

Bestimme die Ableitungsfunktion von f(x)=(x5)3f(x)=(x^{-5})^{3}. Fasse zuerst zu einer Potenz zusammen und leite ab.

See Solution

Problem 26782

Find the first 5 non-zero terms of the Taylor series for 11+x\frac{1}{\sqrt{1+x}} and $\frac{1}{\sqrt{1-x^{2}}$, then use it to approximate $\arcsin x$.

See Solution

Problem 26783

Bestimme die Ableitungsfunktion von f(x)=4x4sin(x)f(x)=-\frac{4}{x}-4 \cdot \sin (x) mit Faktor- und Summenregel.

See Solution

Problem 26784

Bestimme die Ableitungsfunktion von f(x)=6cos(x)4xf(x)=-6 \cdot \cos (x)-4 \sqrt{x} mithilfe der Regeln.

See Solution

Problem 26785

What does the slope of a position vs. time graph represent: Mass, Force, Velocity, or Acceleration?

See Solution

Problem 26786

Find the local maximum and minimum points of the function f(x)=2x354xf(x)=2 x^{3}-54 x using the first derivative test.

See Solution

Problem 26787

Find the average rate of change of the function h(x)=x2+6x+11h(x)=-x^{2}+6 x+11 from x=3x=-3 to x=6x=6.

See Solution

Problem 26788

Find dydt\frac{d y}{d t} given z=xy2z=\frac{x y}{2}, dzdt=12\frac{d z}{d t}=-12, dxdt=3\frac{d x}{d t}=3, z=4z=4, y=6y=6.

See Solution

Problem 26789

Find the limit: limx23f(x)15x2 \lim _{x \rightarrow 2} \frac{3 f(x)-15}{x-2} given that f(2)=5 f(2)=5 .

See Solution

Problem 26790

Find the local maximum and minimum points of the function f(x)=2x324xf(x)=2 x^{3}-24 x using the first derivative test.

See Solution

Problem 26791

Find the relative maximum and minimum points of the function f(x)=x3+6x2+1f(x)=-x^{3}+6x^{2}+1 using the first derivative.

See Solution

Problem 26792

Find the relative maximum and minimum points of the function f(x)=x3+12x245x+1f(x)=-x^{3}+12 x^{2}-45 x+1 using the first derivative test.

See Solution

Problem 26793

Find the relative maximum and minimum points of f(x)=x312x2+2f(x)=-x^{3}-12 x^{2}+2 using the first-derivative test.

See Solution

Problem 26794

Find the local linear approximation to f(x)=1/232x21sinπθθdθf(x)=\int_{1/2}^{\frac{3}{2} x^{2}-1} \frac{\sin \pi \theta}{\theta} d\theta at x=1x=1.

See Solution

Problem 26795

Find the relative maximum and minimum points of the function f(x)=x36x2+3f(x)=-x^{3}-6 x^{2}+3 using the first-derivative test.

See Solution

Problem 26796

Find the limit as xx approaches 0 from the right of (sin(x))x(\sin(x))^x.

See Solution

Problem 26797

Find the average rate of change of f(x)=3x2+4x+1f(x)=3 x^{2}+4 x+1 on the interval [1,3][1,3].

See Solution

Problem 26798

Find the interval(s) where the function f(x)=x25x6f(x)=x^{2}-5x-6 has a negative rate of change.

See Solution

Problem 26799

Evaluate the integral 11x3xdx\int_{-1}^{1}\left|x^{3}-x\right| d x. What is the result?

See Solution

Problem 26800

Which definite integrals equal limnk=1n(1+4kn)24n\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(-1+\frac{4 k}{n}\right)^{2} \frac{4}{n}? Options: I. 13x2dx\int_{-1}^{3} x^{2} dx II. 04(1+x)2dx\int_{0}^{4}(-1+x)^{2} dx III. 014(1+4x)2dx\int_{0}^{1} 4(-1+4 x)^{2} dx (A) I only (B) II only (C) III only (D) I and II only (E) I, II, and III only

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord