Calculus

Problem 21401

Find the growth rate dLdt\frac{d L}{d t} at t=10,20,25t=10, 20, 25 weeks for L=37.41+3.66t6.32×104t3L=-37.41+3.66 t-6.32 \times 10^{-4} t^{3}. What happens as tt increases?

See Solution

Problem 21402

(a) What does dHdx\frac{d H}{d x} mean? (b) Prove that dHdx\frac{d H}{d x} is a constant for the formula H(x)=2050.65xH(x)=205-0.65 x.

See Solution

Problem 21403

Find points on the curve y=x3+2x+9y=x^{3}+2x+9 where the tangent line is parallel to 7xy=57x-y=-5. Are there multiple points?

See Solution

Problem 21404

Find the tangent line to f(x)=ax2f(x)=a x^{2} at x=2x=-2, where aa is a positive constant.

See Solution

Problem 21405

Find critical numbers of f(x)=x6x4+5x34xf(x)=x^{6}-x^{4}+5 x^{3}-4 x using Newton's method, correct to six decimal places. Also, find the absolute minimum value of ff, correct to four decimal places.

See Solution

Problem 21406

Evaluate the integral: 1xexdx\int_{1}^{\infty} x e^{-x} \, dx

See Solution

Problem 21407

Differentiate R(T)=3π516k2c6h7T5R(T)=\frac{3 \pi^{5}}{16} \frac{k^{2}}{c^{6} h^{7}} T^{5} with respect to TT. Constants: k,c,h>0k, c, h > 0.

See Solution

Problem 21408

Differentiate f(x)=ax20f(x)=a x^{20} with respect to xx, where aa is a constant.

See Solution

Problem 21409

Differentiate the function f(s)=s4e5+6ef(s)=s^{4} e^{5}+6 e with respect to ss.

See Solution

Problem 21410

Berechnen Sie die Steigung von ff bei A(2f(2))A(2 \mid f(2)) für f(x)=32x2f(x)=\frac{3}{2} x^{2}.

See Solution

Problem 21411

Differentiate g(N)=rN(1NK)g(N)=r N(1-\frac{N}{K}) with respect to NN, where KK and rr are positive constants.

See Solution

Problem 21412

Differentiate the function h(t)=112t22t+8h(t)=\frac{11}{2} t^{2}-2 t+8. Find h(t)=h^{\prime}(t)=\square.

See Solution

Problem 21413

Bestimmen Sie die Ableitungen von den Funktionen: a) f(x)=x3f(x)=x^{3}, b) f(x)=x5f(x)=x^{5}, c) f(x)=x2nf(x)=x^{2 n}, d) f(x)=xf(x)=x, e) f(x)=xn+4f(x)=x^{n+4}, f) f(x)=x2016f(x)=x^{2016}.

See Solution

Problem 21414

Bestimmen Sie den Grad von ff^{\prime} und ff^{\prime \prime}. Leiten Sie f(t)=t483t3t24t+16f(t)=t^{4}-\frac{8}{3} t^{3}-t^{2}-4 t+16 zweimal ab.

See Solution

Problem 21415

Formen Sie f(x)=x(x4+4x7)f(x)=x \cdot\left(x^{4}+4 x-7\right) um und leiten Sie die Funktion ab.

See Solution

Problem 21416

Calculate the integral from -\infty to \infty of 11+x2\frac{1}{1+x^{2}} dx.

See Solution

Problem 21417

A rancher has 600 feet of fencing for a rectangular field divided into 2 plots. Find dimensions for maximum area.

See Solution

Problem 21418

Explain why dxdt=k([A]0x)([B]0x)\frac{d x}{d t}=k([A]_0-x)([B]_0-x) for the reaction A+BABA+B \rightarrow A B.

See Solution

Problem 21419

Bestimme die Stellen, an denen f(x)=5f'(x)=5 für f(x)=4x27x+6f(x)=4 x^{2}-7 x+6. Berechne f(5)f'(5).

See Solution

Problem 21420

Beweisen Sie die Potenzregel für n=5n=5 und für beliebiges nNn \in \mathbb{N}, basierend auf dem Beweis für n=4n=4.

See Solution

Problem 21421

Given the population size N(t)\mathrm{N}(t) satisfies dNdt=rN\frac{dN}{dt}=rN:
(a) What is the per capita growth rate? (b) If r<0\mathrm{r}<0 and N(0)=20\mathrm{N}(0)=20, is N(1)\mathrm{N}(1) greater or less than 20? Explain.

See Solution

Problem 21422

Bestimme die Punkte, an denen der Graph von f(x)=18x44x+3f(x)=\frac{1}{8} x^{4}-4 x+3 eine waagerechte Tangente hat.

See Solution

Problem 21423

Bestimme die Punkte, an denen der Graph von f(x)=18x44x+3f(x)=\frac{1}{8} x^{4}-4 x+3 eine waagerechte Tangente hat.

See Solution

Problem 21424

Given the equation dNdt=rN\frac{dN}{dt}=rN, find the per capita growth rate rr. If r<0\mathrm{r}<0 and N(0)=20\mathrm{N}(0)=20, is N(1)\mathrm{N}(1) > 20 or < 20? Explain.

See Solution

Problem 21425

Find the derivative: ddxπ2x212cos(u)du=?\frac{d}{d x} \int_{\frac{\pi}{2}}^{x^{2}} -\frac{1}{2} \cos (u) du = ? a) xcos(x2)x \cos \left(x^{2}\right) b) xcos(x2)-x \cos \left(x^{2}\right) c) 2xsin(x2)-2 x \sin \left(x^{2}\right) d) 2xsin(x2)2 x \sin \left(x^{2}\right) e) None of the above

See Solution

Problem 21426

Find 44f(x)dx\int_{-4}^{4} f(x) dx for the piecewise function: f(x)=3x2f(x)=3x^2 for 4x<0-4 \leq x<0 and f(x)=4x3f(x)=4x^3 for 0x40 \leq x \leq 4.

See Solution

Problem 21427

Bestimmen Sie die positive Zahl z für: a) 0zxdx=18\int_{0}^{z} x \, dx=18, b) 1z4xdx=30\int_{1}^{z} 4x \, dx=30.

See Solution

Problem 21428

Evaluate the integral 101x5dx\int_{-1}^{0} \frac{1}{x^{5}} dx.

See Solution

Problem 21429

Find all antiderivatives of f(x)=ex+1x2+cos(x)f(x)=e^{x}+\frac{1}{x^{2}}+\cos (x).

See Solution

Problem 21430

Calculate the integral 44f(x)dx\int_{-4}^{4} f(x) dx where f(x)={3x2if 4x<04x3if 0x4f(x)=\begin{cases}3x^2 & \text{if } -4 \leq x < 0 \\ 4x^3 & \text{if } 0 \leq x \leq 4\end{cases}$. Choose a) 8, b) 31, c) 320, d) 768, or e) None.

See Solution

Problem 21431

Bestimme die Tangentengleichung der Funktion f(x)=2x36xf(x)=2x^3-6x bei x0=1x_0=-1.

See Solution

Problem 21432

Is it true that 58f(x)dx=530f(x)dx830f(x)dx\int_{5}^{8} f(x) dx = \int_{5}^{30} f(x) dx - \int_{8}^{30} f(x) dx for ff on (5,30](5,30]? a) True b) False

See Solution

Problem 21433

Berechne die Integrale: a) 04xdx\int_{0}^{4}-x \, dx, b) 112xdx\int_{-1}^{1}-2x \, dx, c) 22x2dx\int_{-2}^{2}-x^{2} \, dx.

See Solution

Problem 21434

Determine if the series converges: k=15k5+k7k56\sum_{k=1}^{\infty} \frac{5 k^{5}+k}{7 k^{5}-6} Justify your answer.

See Solution

Problem 21435

Zwei der folgenden vier Aussagen über Ableitungen sind falsch. Welche sind es? (1) f(x)=x3f(x)=3x2f(x)=x^{3} \Rightarrow f^{\prime}(x)=3 \cdot x^{2} (2) f(x)=xxf(x)=xxx1f(x)=x^{x} \Rightarrow f^{\prime}(x)=x \cdot x^{x-1} (3) f(x)=x2af(x)=2xaf(x)=x^{2 a} \Rightarrow f^{\prime}(x)=2 \cdot x^{a} (4) f(x)=xa+1f(x)=(a+1)xaf(x)=x^{a+1} \Rightarrow f^{\prime}(x)=(a+1) \cdot x^{a}

See Solution

Problem 21436

Calculate the total energy requirements (in kJ/W0.67\mathrm{kJ} / \mathrm{W}^{0.67}) for a female Collie from age 730 to 1460 days using E(t)=5t0.2E(t)=5 t^{-0.2}. Options: a) 904.515 b) 1000 c) 1085.418 d) 723.612

See Solution

Problem 21437

Calculate the integral from 0 to infinity of exdxe^{-x} \, dx.

See Solution

Problem 21438

Determine if the series k=15kk!+4\sum_{k=1}^{\infty} \frac{5^{k}}{k !+4} converges. Justify your answer.

See Solution

Problem 21439

Determine if the series k=1(14)kk!\sum_{k=1}^{\infty} \frac{(-14)^{k}}{k !} converges. Justify your answer.

See Solution

Problem 21440

Analysez la fonction f(x)f(x) : croissance, décroissance, minimums, maximums, concavité, points d'inflexion, asymptotes.

See Solution

Problem 21441

Find local extrema of f(x)=xc/3(x3)2f(x)=x^{c / 3}(x-3)^{2} using the first derivative test. Choose the correct option.

See Solution

Problem 21442

Determine if the series k=1(1+ak)13k\sum_{k=1}^{\infty}\left(1+\frac{a}{k}\right)^{13 k} converges. Justify your answer.

See Solution

Problem 21443

Berechnen Sie die Integrale a) 042xdx\int_{0}^{4} 2 x d x und b) 1312x2dx\int_{-1}^{3} \frac{1}{2} x^{2} d x mit dem Hauptsatz.

See Solution

Problem 21444

Find local extrema of f(x)=x2/3(x3)2f(x)=x^{2/3}(x-3)^{2} using the first derivative test. Choose the correct option.

See Solution

Problem 21445

Determine if the series k=15k5+k7k56\sum_{k=1}^{\infty} \frac{5 k^{5}+k}{7 k^{5}-6} converges and justify your answer.

See Solution

Problem 21446

Evaluate the series k=1(k)55k5+3\sum_{k=1}^{\infty} \frac{(-k)^{5}}{5 k^{5}+3} and select the correct choice regarding its convergence.

See Solution

Problem 21447

Bestimme die Steigung von f(x)=x2+2xf(x) = x^{2} + 2x an der Stelle x0=3x_{0} = 3.

See Solution

Problem 21448

Determine if the series k=11kek\sum_{k=1}^{\infty} \frac{1}{\sqrt{k} e^{\sqrt{k}}} converges and justify your answer.

See Solution

Problem 21449

Determine if the series k=19(4k)!(k!)4\sum_{k=1}^{\infty} \frac{9(4 k) !}{(k !)^{4}} converges and justify your answer.

See Solution

Problem 21450

Find values of pp such that the integral 011xpdx\int_{0}^{1} \frac{1}{x^{p}} d x converges.

See Solution

Problem 21451

Find the absolute extrema of f(x)=x42x2+5f(x)=x^{4}-2x^{2}+5 on [2,1][-2, 1]. Choose: a) min at 1, max at -1; b) no max/min; c) min at -2, max at 0; d) min at 1 and -1, max at -2.

See Solution

Problem 21452

Find the absolute extrema of f(x)=x42x2+5f(x)=x^{4}-2x^{2}+5 for 2x1-2 \leq x \leq 1. Options: a) min at 1, max at -1; b) no max/min; c) min at -2, max at 0; d) min at 1 and -1, max at -2.

See Solution

Problem 21453

Berechnen Sie die lokale Änderungsrate von ff an x0x_0 durch Grenzwertrechnung: a) f(x)=0,5x2,x0=2f(x)=0,5 x^{2}, x_{0}=2 b) f(x)=1x2,x0=2f(x)=1-x^{2}, x_{0}=2 c) f(x)=2x+1;x0=3f(x)=2 x+1 ; x_{0}=3

See Solution

Problem 21454

Determine if the series k=1k!kk+20\sum_{k=1}^{\infty} \frac{k !}{k^{k}+20} converges or diverges. Justify your answer.

See Solution

Problem 21455

Find the value of 2g(x)dx\int_{2}^{\infty} g^{\prime}(x) \, dx given g(2)=1g(2)=1 and limxg(x)=8\lim_{x \to \infty} g(x)=8.

See Solution

Problem 21456

Find the domain and local minimum points of P(x)=x6+6x49x2+4 P(x)=-x^{6}+6x^{4}-9x^{2}+4 . Domain: (,)(-\infty, \infty). Local min: \square, absolute min: \square.

See Solution

Problem 21457

Determine if the series k=1(10k)k\sum_{k=1}^{\infty}\left(-\frac{10}{k}\right)^{k} converges and justify your answer.

See Solution

Problem 21458

Snowboarder auf Hang:
a) Berechne s(1)s(1) und s(5)s(5) für s(t)=1,5t2\mathrm{s}(\mathrm{t})=1,5 \mathrm{t}^{2}. b) Finde die mittlere Geschwindigkeit in 5 Sek. c) Bestimme die Momentangeschwindigkeit nach 5 Sek.

See Solution

Problem 21459

Determine if the series converges: k=03kk5+55\sum_{k=0}^{\infty} \frac{3 k}{\sqrt[5]{k^{5}+5}}. Justify your answer.

See Solution

Problem 21460

Determine if the series k=1(1k7+1k8)\sum_{k=1}^{\infty}\left(\frac{1}{k^{7}}+\frac{1}{k^{8}}\right) converges. Justify your answer.

See Solution

Problem 21461

Find intervals of xx where f(x)=x2+1x2f(x)=x^{2}+\frac{1}{x^{2}} is concave up or down.

See Solution

Problem 21462

Determine if the series k=1(2k3k+1)k\sum_{k=1}^{\infty}\left(\frac{2 k}{3 k+1}\right)^{k} converges using a convergence test.

See Solution

Problem 21463

Determine if f(x)=secxf(x)=\sec x is concave up or down at x=21π4x=\frac{21 \pi}{4}. Options: a) up b) down c) neither d) unknown.

See Solution

Problem 21464

Determine if the series k=1(1)k(7k6k+3)k\sum_{k=1}^{\infty}(-1)^{k}\left(\frac{7 k}{6 k+3}\right)^{k} converges. Justify your answer.

See Solution

Problem 21465

Find the area of the region RR between the curve y=x(1+x2)2y=\frac{x}{(1+x^{2})^{2}} and the xx-axis for x0x \geq 0.

See Solution

Problem 21466

Determine if the series k=13+(1)k2k\sum_{k=1}^{\infty} \frac{3+(-1)^{k}}{2^{k}} converges or diverges. Justify your answer.

See Solution

Problem 21467

Determine if the series k=16k7k6k\sum_{k=1}^{\infty} \frac{6^{k}}{7^{k}-6^{k}} converges or diverges. Justify your answer.

See Solution

Problem 21468

Graph the function P(x)=x6+6x49x2+4P(x)=-x^{6}+6 x^{4}-9 x^{2}+4 and find local/absolute max points and the range.

See Solution

Problem 21469

Graph f(x)=x32xf(x)=x^{3}-2x and the secant line through (2,4)(-2,-4) and (2,4)(2,4). Estimate where the tangent is parallel to the secant. Find cc for the mean value theorem on [2,2][-2,2].

See Solution

Problem 21470

What values of pp make 11x7p3dx\int_{1}^{\infty} \frac{1}{x^{7p-3}} dx converge?

See Solution

Problem 21471

Find the critical numbers of the function f(x)=x3+3x245xf(x) = x^{3} + 3x^{2} - 45x.

See Solution

Problem 21472

Find the mean slope of f(x)=43x2f(x)=4-3 x^{2} on [2,6][-2,6] and the value of cc where f(c)f'(c) equals this slope.

See Solution

Problem 21473

Find the average slope of f(x)=1xf(x)=\frac{1}{x} on [1,6][1,6] and values of cc where f(c)f'(c) equals this slope.

See Solution

Problem 21474

Find all values of pp for which the integral 011xpdx\int_{0}^{1} \frac{1}{x^{p}} dx converges.

See Solution

Problem 21475

Find the critical number(s) of the function h(p)=p2p2+2h(p)=\frac{p-2}{p^{2}+2}.

See Solution

Problem 21476

Find critical points of ff from f(x)=x2(x5)x+8f^{\prime}(x)=\frac{x^{2}(x-5)}{x+8}, and determine intervals of increase/decrease.

See Solution

Problem 21477

Rewrite the integral I=03x21dxI=\int_{0}^{3}\left|x^{2}-1\right| d x as a sum of integrals and evaluate it.

See Solution

Problem 21478

Find the critical numbers of the function g(y)=y1y23y+3g(y)=\frac{y-1}{y^{2}-3y+3}.

See Solution

Problem 21479

Find the critical points of ff for f(x)=(8sinx8)(2cosx+1)f^{\prime}(x)=(8 \sin x-8)(\sqrt{2} \cos x+1) on 0x2π0 \leq x \leq 2 \pi.

See Solution

Problem 21480

Find the derivative of 5e(7x33x9)5 e^{\wedge}(7 x^{3}-3 x^{9}) using the chain rule.

See Solution

Problem 21481

Sketch the curve x=tcost,y=tsintx=t \cos t, y=t \sin t for 0t4π0 \leq t \leq 4\pi. At t=4t=4, is the particle moving down \quad \vee right? Estimate speed at t=4t=4 using positions t=4t=4 and t=4.01t=4.01. Calculate speed using derivatives: speed=(cos44sin4)2+(sin4+4cos4)2\text{speed}=\sqrt{(\cos 4-4 \sin 4)^{2}+(\sin 4+4 \cos 4)^{2}}.

See Solution

Problem 21482

Calculate the derivative of 5x5^{x}. Use ln(x)\ln(x) for the natural logarithm.

See Solution

Problem 21483

Analyze the function with derivative f(x)=(8sinx8)(2cosx+1),0x2πf^{\prime}(x)=(8 \sin x-8)(\sqrt{2} \cos x+1), 0 \leq x \leq 2 \pi for critical points, intervals of increase/decrease, and local extrema.

See Solution

Problem 21484

Given the function f(x)=8x6ln(x)f(x)=8 x-6 \ln (x) for x>0x>0, find critical numbers, intervals of increase/decrease, local maxima/minima, concavity, and inflection points.

See Solution

Problem 21485

Find the absolute max and min of f(x)=2x36x218x+3f(x)=2 x^{3}-6 x^{2}-18 x+3 on the interval [2,4][-2,4].

See Solution

Problem 21486

Given f(x)=(112x)exf(x)=(11-2 x) e^{x}, find critical values, intervals of increase/decrease, local max/min, concavity, and inflection points.

See Solution

Problem 21487

Calculate the arc length of the curve given by x=cos(t)x=\cos(\sqrt{t}), y=sin(t)y=\sin(\sqrt{t}) for 0t1.0 \leq t \leq 1.

See Solution

Problem 21488

Evaluate the integral: bax14dx=\int_{b}^{a} x^{14} d x = in terms of constants.

See Solution

Problem 21489

Find the limit as xx approaches -7 from the left for the expression 5xx+7\frac{-5 x}{x+7}.

See Solution

Problem 21490

Polonium-210 has a half-life of 138 days.
(a) Find the equation P(d)P(d) for the percent left after dd days.
(b) Estimate the percent left after 310 days (round to one decimal place).

See Solution

Problem 21491

Find the limit as xx approaches -2 from the right: limx2+4xx+2\lim _{x \rightarrow-2^{+}} \frac{-4 x}{x+2}.

See Solution

Problem 21492

Find the inflection points of f(x)f(x) given f(x)=(x+7)(11x)(x15)f'(x)=(x+7)(11-x)(x-15), with local extrema at x=7x=-7, x=11x=11, x=15x=15.

See Solution

Problem 21493

Find the inflection points of f(x)f(x) given f(x)=(x+7)(11x)(x15)f'(x)=(x+7)(11-x)(x-15). Local extrema occur at x=7,11,15x=-7, 11, 15.

See Solution

Problem 21494

Find the average rate of change of g(x)=2x1g(x)=2^{x}-1 from x=3x=3 to x=7x=7.

See Solution

Problem 21495

Find the value(s) of AA that make the function f(x)f(x) continuous at x=10x=10 using limits. Define f(x)f(x) as: f(x)={x260, if x<10Ax, if x10 f(x)=\left\{\begin{array}{ll} x^{2}-60, & \text { if } x<10 \\ A x, & \text { if } x \geq 10 \end{array}\right.

See Solution

Problem 21496

Find critical points, intervals of increase/decrease, and local extrema for f(x)=(8sinx8)(2cosx+1)f^{\prime}(x)=(8 \sin x-8)(\sqrt{2} \cos x+1), 0x2π0 \leq x \leq 2 \pi.

See Solution

Problem 21497

Find the derivative f(x)f'(x) of f(x)=5x3lnxf(x)=-5 x^{3} \ln x and evaluate f(e3)f'(e^{3}).

See Solution

Problem 21498

A train's position is s(t)=60ts(t)=\frac{60}{t} for 3t93 \leq t \leq 9. Find its average velocity over this interval.

See Solution

Problem 21499

A stone is dropped from a 45.1 m45.1 \mathrm{~m} cliff. Find its velocity just before hitting the ground.

See Solution

Problem 21500

A pumpkin falls from 3,351 m3,351 \mathrm{~m}. With gravity at 9.81m/s29.81 \mathrm{m/s^2}, how long until it hits the ground?

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord