Calculus

Problem 4901

Differentiate the equation x3+y2=24x^{3}+y^{2}=24 to find dydx\frac{d y}{d x}.

See Solution

Problem 4902

Find the derivative dydt\frac{d y}{d t} for the equation: 7x3+7y3=97 x^{3}+7 y^{3}=9.

See Solution

Problem 4903

Find the derivative dydt\frac{d y}{d t} for the equation: 5x3+y4=35 x^{3}+y^{4}=3.

See Solution

Problem 4904

Find the derivative dydx\frac{d y}{d x} for the equation: 8x4+2y=58 \sqrt[4]{x}+2 \sqrt{y}=5.

See Solution

Problem 4905

Find the slope of the tangent line to the curve x3+y2=24x^{3}+y^{2}=24 at the point (2,4)(2,-4).

See Solution

Problem 4906

Find the derivative dydx\frac{d y}{d x} for the equation: 6x2+4xy+4y3=56 x^{2}+4 x y+4 y^{3}=5.

See Solution

Problem 4907

Find dydt\frac{d y}{d t} for the equation 2x48y4=22 x^{4}-8 y^{4}=2.

See Solution

Problem 4908

Find dydt\frac{d y}{d t} for the equation 2x2+3xy6y3=82 x^{2}+3 x y-6 y^{3}=8.

See Solution

Problem 4909

Gegeben ist f(x)=ex+12xf(x)=e^{x}+\frac{1}{2} x und gc(x)=12xcg_{c}(x)=\frac{1}{2} x-c. Bestimmen Sie cc, sodass die Fläche zwischen ff und gcg_{c} von x=0x=0 bis x=1x=1 gleich 3 ist.

See Solution

Problem 4910

A 1962 ft pole leans against a wall. If its base moves away at 3ft/sec3 \mathrm{ft/sec}, how fast is the top descending when it's 1638 ft high?

See Solution

Problem 4911

Untersuchen Sie das Flussbettprofil f(x)=2x2exf(x)=-2 x^{2} e^{x} für x[7;0]x \in[-7; 0] und beantworten Sie Fragen zu Graphen, Tiefpunkt und Fließgeschwindigkeit.

See Solution

Problem 4912

Find the tangent line in slope-intercept form at x=5x=5 for y=f(x)y=f(x) where f(x)=(4x27)(x1)f(x)=(4x^{2}-7)(x-1).

See Solution

Problem 4913

Find the tangent line equation to the curve y=6xx+5y=\frac{6 x}{x+5} at x=3x=-3.

See Solution

Problem 4914

Find limx7f(x)g(x)+93\lim _{x \rightarrow 7} \sqrt[3]{f(x) g(x)+9} given limx7f(x)=9\lim _{x \rightarrow 7} f(x)=9 and limx7g(x)=2\lim _{x \rightarrow 7} g(x)=2.

See Solution

Problem 4915

Find the limit of 3f(x)3f(x) as xx approaches 1, given that f(x)=8f(x) = 8.

See Solution

Problem 4916

Find p(0)p(0) if limx0p(x)q(x)=3\lim _{x \rightarrow 0} \frac{p(x)}{q(x)}=3 and q(0)=5q(0)=5.

See Solution

Problem 4917

Find limx7f(x)g(x)h(x)\lim _{x \rightarrow 7} \frac{f(x)}{g(x)-h(x)} given limx7f(x)=22\lim _{x \rightarrow 7} f(x)=22, limx7g(x)=7\lim _{x \rightarrow 7} g(x)=7, limx7h(x)=5\lim _{x \rightarrow 7} h(x)=5.

See Solution

Problem 4918

Find h(6)h^{\prime}(6) for h(x)=f(x)g(x)h(x)=\frac{f(x)}{g(x)} given f(6)=2,f(6)=9,g(6)=5,g(6)=4f(6)=2, f^{\prime}(6)=9, g(6)=5, g^{\prime}(6)=4.

See Solution

Problem 4919

Find the limit: limx36x7x12\lim _{x \rightarrow 3} \frac{-6 x}{\sqrt{7 x-12}}

See Solution

Problem 4920

Find the slopes of the tangents for g(x)=x2f(x)g(x)=x^{2}f(x) and h(x)=f(x)x4h(x)=\frac{f(x)}{x-4} at x=3x=3.

See Solution

Problem 4921

Find the limit: limxb(xb)603x+3bxb\lim _{x \rightarrow b} \frac{(x-b)^{60}-3 x+3 b}{x-b}.

See Solution

Problem 4922

Find the limit: limx44(2x+1)2196x+4\lim _{x \rightarrow-4} \frac{4(2 x+1)^{2}-196}{x+4}.

See Solution

Problem 4923

Find the limit as xx approaches bb of (xb)603x+3bxb\frac{(x-b)^{60}-3x+3b}{x-b} or state if it doesn't exist.

See Solution

Problem 4924

Find the limit: limx64x8x64\lim _{x \rightarrow 64} \frac{\sqrt{x}-8}{x-64}.

See Solution

Problem 4925

Simplify the limit: limx64x8x64\lim _{x \rightarrow 64} \frac{\sqrt{x}-8}{x-64}.

See Solution

Problem 4926

Find the limit: limx64x8x64\lim _{x \rightarrow 64} \frac{\sqrt{x}-8}{x-64} or state if it doesn't exist.

See Solution

Problem 4927

Gegeben die Funktion fa:xex(xa)f_{a}: x \mapsto e^{x}(x-a), finde die Schnittpunkte mit den Achsen und das Verhalten für x+x \rightarrow+\infty.

See Solution

Problem 4928

Find the limit: limh0(9+h)281h\lim _{h \rightarrow 0} \frac{(9+h)^{2}-81}{h}.

See Solution

Problem 4929

Find the limit: limx1x12x+235\lim _{x \rightarrow 1} \frac{x-1}{\sqrt{2 x+23}-5}.

See Solution

Problem 4930

Find the general solution for the equation dxdt=1x21t2 \frac{d x}{d t}=\frac{\sqrt{1-x^{2}}}{\sqrt{1-t^{2}}} .

See Solution

Problem 4931

Evaluate the limit: limx9+x9\lim _{x \rightarrow 9^{+}} \sqrt{x-9}.

See Solution

Problem 4932

Find limx14E(x)\lim _{x \rightarrow 14} E(x) where E(x)=4.35xx2+0.01E(x)=\frac{4.35}{x \sqrt{x^{2}+0.01}}.

See Solution

Problem 4933

Find the limits of the piecewise function f(x)={x2+11,x<11x+11,x11f(x)=\left\{\begin{array}{ll}x^{2}+11, & x<-11 \\ \sqrt{x+11}, & x \geq-11\end{array}\right. at x11x \rightarrow -11.

See Solution

Problem 4934

Find the integrating factor for the equation t2dxdt=4tt5xt^{2} \frac{d x}{d t}=4 t-t^{5} x. Options include I(t)=e1/2t2I(t)=e^{1 / 2 t^{2}}, I(t)=et6/6I(t)=e^{-t^{6} / 6}, I(t)=et6/6I(t)=e^{t^{6} / 6}, I(t)=et4/4I(t)=e^{t^{4} / 4}, I(t)=e1/2t2I(t)=e^{-1 / 2 t^{2}}, I(t)=et4/4I(t)=e^{-t^{4} / 4}.

See Solution

Problem 4935

Find limx15E(x)\lim _{x \rightarrow 15} E(x) where E(x)=4.35xx2+0.01E(x)=\frac{4.35}{x \sqrt{x^{2}+0.01}}.

See Solution

Problem 4936

Find the limit using the squeeze theorem: limx0xsin(6x)\lim _{x \rightarrow 0} x \sin \left(\frac{6}{x}\right).

See Solution

Problem 4937

Calculate f(4)f^{\prime}(4) for the function f(x)=2x22xf(x)=\frac{2 x^{2}-2}{\sqrt{x}}.

See Solution

Problem 4938

Find the stationary points and their nature for the curve y=x3+5x28x+1y=x^{3}+5 x^{2}-8 x+1.

See Solution

Problem 4939

Find the limit limxax5a5xa\lim _{x \rightarrow a} \frac{x^{5}-a^{5}}{x-a} using the factorization xnan=(xa)(sum)x^{n}-a^{n}=(x-a)(\text{sum}).

See Solution

Problem 4940

Differentiate the function: f(t)=t41t4f(t)=\sqrt[4]{t}-\frac{1}{\sqrt[4]{t}}

See Solution

Problem 4941

Calculate the limit: limx981x29x\lim _{x \rightarrow 9^{-}} \frac{81-x^{2}}{|9-x|}.

See Solution

Problem 4942

Find the derivative of y=f(x)+1f(x)+xy=\frac{f(x)+1}{f(x)+x} at x=2x=2 given f(2)=3f(2)=-3 and f(2)=3f'(2)=3.

See Solution

Problem 4943

Find the derivative of y=f(x)+1f(x)+xy=\frac{f(x)+1}{f(x)+x} at x=2x=2, given f(2)=3f(2)=-3 and f(2)=3f^{\prime}(2)=3.

See Solution

Problem 4944

Find the limit: limx9+x2819x\lim _{x \rightarrow 9^{+}} \frac{x^{2}-81}{|9-x|}.

See Solution

Problem 4945

Find relative maxima and minima for the function f(x)=x33x2+1f(x)=x^{3}-3 x^{2}+1. Options: A, B, C, D.

See Solution

Problem 4946

A 25.0 kg trunk falls at 12.5 m/s. Find the height it fell from, assuming no air resistance. (7.96 m)

See Solution

Problem 4947

Berechnen Sie U4U_4, O4O_4, U8U_8 und O8O_8 für f(x)=2xf(x)=2-x über das Intervall I=[0;2]I=[0; 2].

See Solution

Problem 4948

Find the derivative of yy at x=5x=5 given f(5)=3f(5)=-3 and f(5)=3f^{\prime}(5)=3 where y=f(x)+1f(x)+xy=\frac{f(x)+1}{f(x)+x}.

See Solution

Problem 4949

Can Rolle's Theorem be applied to f(x)=x2/31f(x)=x^{2/3}-1 on [8,8][-8,8]? If yes, find cc where f(c)=0f'(c)=0. Enter NA if not applicable.

See Solution

Problem 4950

Find the limit as xx approaches 5 from the right: limx5+(x6)3(x+2)(x2+8)(x23x10)\lim _{x \rightarrow 5^{+}} \frac{(x-6)^{3}(x+2)}{(x^{2}+8)(x^{2}-3 x-10)}

See Solution

Problem 4951

A car (1850 kg) starts at 28 m, moving at 32 m/s. With a frictional force of 35,000 N over 25 m, find its height at 18.5 m/s. (14.5 m)

See Solution

Problem 4952

Can Rolle's Theorem be applied to f(x)=x23x10x+4f(x)=\frac{x^{2}-3 x-10}{x+4} on [2,5][-2,5]? If yes, find cc in (a,b)(a,b).

See Solution

Problem 4953

Berechnen Sie U4U_{4}, O4O_{4}, U8U_{8} und O8O_{8} für f(x)=12x2f(x)=\frac{1}{2} x^{2} im Intervall I=[0;1]I=[0; 1].

See Solution

Problem 4954

A girl on a swing is 3.2 m high at the top and has a speed of 4.2 m/s4.2 \mathrm{~m/s} at the bottom. What is her height at the bottom? (2.3 m)(2.3 \mathrm{~m})

See Solution

Problem 4955

Find the derivative of f(x)=23x3+3x2+4xf(x)=\frac{2}{3}x^{3}+3x^{2}+4x.

See Solution

Problem 4956

Find the average velocity of an object dropped from 200m in the first 2 seconds. Then use the Mean Value Theorem to find instantaneous velocity.

See Solution

Problem 4957

Can the Mean Value Theorem apply to f(x)=x+8xf(x)=\frac{x+8}{x} on [1,2][-1,2]? If yes, find cc where f(c)=f(2)f(1)3f^{\prime}(c)=\frac{f(2)-f(-1)}{3}.

See Solution

Problem 4958

Find the negative and positive values of xx where the horizontal tangents of f(x)=2x3+12x2126x+22f(x)=2 x^{3}+12 x^{2}-126 x+22 occur.

See Solution

Problem 4959

Berechne den Flächeninhalt zwischen dem Graphen von f\mathrm{f} und der X-Achse für die Intervalle: a) I=[1;2]I=[-1 ; 2], b) I=[3;2]I=[-3 ; 2], c) I=[3;2]I=[-3 ; 2], d) I=[1;3]I=[1 ; 3].

See Solution

Problem 4960

Find f(1)f^{\prime}(-1) given f(x)=x9h(x)f(x)=x^{9} h(x), h(1)=4h(-1)=4, and h(1)=7h^{\prime}(-1)=7.

See Solution

Problem 4961

Find the marginal revenue for the revenue function R(q)=6q2+200qR(q)=-6 q^{2}+200 q. Simplify your result. Answer: MR(q)=M R(q)=

See Solution

Problem 4962

Given the function f(x)=2x3+3x236xf(x)=2 x^{3}+3 x^{2}-36 x:
(a) Find the critical numbers of ff.
(b) Determine the intervals where ff is increasing or decreasing.
(c) Use the First Derivative Test to find relative extrema.

See Solution

Problem 4963

Find the derivative of 88x7+4x108 \sqrt{8 x^{7}+4 x^{10}} using the chain rule. Avoid fractional or negative exponents.

See Solution

Problem 4964

Analyze the limits of f(x)=x9f(x)=x^{9} as xx \rightarrow -\infty and xx \rightarrow \infty. What are the results?

See Solution

Problem 4965

Find the derivative of r=(secθ+tanθ)5r=(\sec \theta+\tan \theta)^{-5}.

See Solution

Problem 4966

Calculate the total amount and interest from a \3500investmentatacontinuousrateof3500 investment at a continuous rate of 7.5\%$ for 7 years.

See Solution

Problem 4967

How much should the corporation invest now to have \$1,000,000 in 6 years at a 4% continuous compounding rate?

See Solution

Problem 4968

Find the derivative of f(x)=e2x4xf(x) = e^{2x} - 4x.

See Solution

Problem 4969

Find the general solution to dxdt=1x21t2\frac{d x}{d t}=\frac{\sqrt{1-x^{2}}}{\sqrt{1-t^{2}}}. Options include x(t)=arcsin(sint+C)x(t)=\arcsin (\sin t+C), x(t)=sin(arcsint+C)x(t)=\sin (\arcsin t+C), x(t)=Ctx(t)=C t, x(t)=sinarcsin(t+C)x(t)=\sin \arcsin (t+C), x(t)=t+Cx(t)=t+C.

See Solution

Problem 4970

Finde den Punkt, an dem die Funktion h(x)=e2x4xh(x)=e^{2 \cdot x}-4 \cdot x eine waagerechte Tangente hat.

See Solution

Problem 4971

Find the correct integrating factor for the equation t2dxdt=4tt5xt^{2} \frac{d x}{d t}=4 t-t^{5} x. Options include I(t)=et6/6I(t)=e^{-t^{6} / 6}, I(t)=e1/2t2I(t)=e^{1 / 2 t^{2}}, I(t)=e1/2t2I(t)=e^{-1 / 2 t^{2}}, I(t)=et4/4I(t)=e^{-t^{4} / 4}, I(t)=et6/6I(t)=e^{t^{6} / 6}, I(t)=et4/4I(t)=e^{t^{4} / 4}.

See Solution

Problem 4972

Find the integral of x2ex/2x^{2} e^{x / 2} with respect to xx.

See Solution

Problem 4973

Evaluate the integral: ln(15x5)xdx\int \frac{\ln \left(15 x^{5}\right)}{x} d x

See Solution

Problem 4974

Find the limit: limt02+t2tt\lim _{t \rightarrow 0} \frac{\sqrt{2+t}-\sqrt{2-t}}{t}.

See Solution

Problem 4975

Find the limit as tt approaches 0 for the expression 2t2t2+t\frac{2}{t}-\frac{2}{t^{2}+t}.

See Solution

Problem 4976

Let y=(f(u)+6x)2y=(f(u)+6 x)^{2} with u=x32xu=x^{3}-2 x. Given f(4)=7f(4)=7 and dydx=19\frac{d y}{d x}=19 at x=2x=2, find f(4)f^{\prime}(4).

See Solution

Problem 4977

Find the derivative of y=x22y=x^{2}-2 at (2,2)(2,2) and the equation of the tangent line there.

See Solution

Problem 4978

Find the derivative of the function 2x1x+x+1\frac{2 x-1}{x+\sqrt{x}+1} with respect to xx.

See Solution

Problem 4979

Find the value of xx where the function f(x)=1(x2+1)(x2)f(x)=\frac{1}{(x^{2}+1)(x-2)} is discontinuous.

See Solution

Problem 4980

Find limx0f(x)\lim_{x \rightarrow 0} f(x) for the function f(x)=1f(x)=1 if x<0x<0 and f(x)=x+1f(x)=x+1 if x>0x>0.

See Solution

Problem 4981

Find the derivative of the function: ddx4x2+16\frac{d}{d x} \sqrt{4 x^{2}+16}.

See Solution

Problem 4982

Find dydx\frac{d y}{d x} for the equation y32xy+x2=5y^{3}-2 x y+x^{2}=5.

See Solution

Problem 4983

Find the derivative of the function (x2)(x32x+1)(\sqrt{x}-2)(x^{3}-2x+1).

See Solution

Problem 4984

Find the derivative of (x2)(x32x+1)(\sqrt{x}-2)(x^{3}-2x+1). Choices include various expressions involving derivatives.

See Solution

Problem 4985

Find the derivative of the function 2x1x+x+1\frac{2 x-1}{x+\sqrt{x}+1}. Choose the correct expression for the derivative.

See Solution

Problem 4986

Find the time for a spherical object to drop from h=6rh=6r to h=2rh=2r using the equation dhdt=αrh\frac{d h}{d t}=-\frac{\alpha}{r} h.

See Solution

Problem 4987

Find the general solution to dxdt=1x21t2\frac{d x}{d t}=\frac{\sqrt{1-x^{2}}}{\sqrt{1-t^{2}}}. Options include x(t)=Ctx(t)=C t, etc.

See Solution

Problem 4988

Find the integrating factor for the linear differential equation: t2dxdt=4tt5xt^{2} \frac{d x}{d t}=4 t-t^{5} x.

See Solution

Problem 4989

Let h(x)=x2sgn(x)h(x) = x^{2} \operatorname{sgn}(x).
(a) Sketch the graph of hh. (b) Is hh continuous at 0? Explain briefly. (c) Is hh differentiable at 0? Explain briefly. (d) Does hh have a second derivative at 0? Explain briefly.

See Solution

Problem 4990

Find the derivative dydt\frac{d y}{d t} for the function y=2t(3t25)4y=2 t(3 t^{2}-5)^{4}.

See Solution

Problem 4991

Determine which statements about the derivative C(t)C'(t) of COVID-19 cases in Ontario are true.

See Solution

Problem 4992

Find the derivative of y=(5x+2)4(3x+2)2y=(5x+2)^{4}(3x+2)^{-2}.

See Solution

Problem 4993

Find the derivative of the function y=x+xy=\sqrt{x+\sqrt{x}}.

See Solution

Problem 4994

Find h(5)h^{\prime}(5) given that h(x)=f(x)g(x)h(x)=f(x) \cdot g(x) and use the values from the chart.

See Solution

Problem 4995

Find h(5)h^{\prime}(5) if h(x)=f(x)g(x)h(x)=f(x)-g(x) and f(5)=1f^{\prime}(5)=-1, g(5)=8g^{\prime}(5)=8.

See Solution

Problem 4996

Differentiate h(s)=(4s2s+1)4h(s)=\left(\frac{4 s^{2}}{s+1}\right)^{4} with respect to ss.

See Solution

Problem 4997

Find the amount of carbon-14 left after 7246 years using the model A=16e0.000121tA=16 e^{-0.000121 t}.

See Solution

Problem 4998

Find the tangent line to the curve y=x2x+2y=\sqrt{x^{2}-x+2} at the point where x=2x=2.

See Solution

Problem 4999

Find the tangent line to the curve y=x2x+2y=\sqrt{x^{2}-x+2} at the point where x=2x=2.

See Solution

Problem 5000

Find the derivative of the function y=2x2cosxy=2 x^{2} \cos x, i.e., compute dydx\frac{d y}{d x}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord