Calculus

Problem 19401

Show that the series k=1(1)k+1k2k+1\sum_{k=1}^{\infty}(-1)^{k+1} \frac{k}{2 k+1} diverges. Which Alternating Series Test condition fails? Identify aka_{k}.

See Solution

Problem 19402

Evaluate the integral: dxx(ln(x))7\int \frac{d x}{x(\ln (x))^{7}}.

See Solution

Problem 19403

Find the integral: x8sin(x9+5)dx\int x^{8} \sin \left(x^{9}+5\right) d x

See Solution

Problem 19404

Find the volume of the solid formed by revolving f(x)=(x1)1/2f(x)=(x-1)^{1/2} around the xx-axis from x=1x=1 to x=3x=3. Round to hundredths.

See Solution

Problem 19405

Find the limit: limx03x+12x3×x+1+2x+1+2\varliminf_{x_{0} \rightarrow 3} \frac{\sqrt{x+1}-2}{x-3} \times \frac{\sqrt{x+1}+2}{\sqrt{x+1}+2}.

See Solution

Problem 19406

Compute the integral 21[14x1x]dx\int_{-2}^{-1} \left[\frac{1}{4x} - \frac{1}{x}\right] dx.

See Solution

Problem 19407

Find the derivative f(x)f^{\prime}(x) of f(x)=(x4)(3x24x4)f(x)=(-x-4)(-3 x^{2}-4 x-4). Choose from the options: (a) 9x2+32x+209 x^{2}+32 x+20 (b) 9x2+32x+12-9 x^{2}+32 x+12 (c) 9x216x+209 x^{2}-16 x+20 (d) 9x216x+12-9 x^{2}-16 x+12

See Solution

Problem 19408

Evaluate the integral: ex(ex+1)18dx\int \frac{e^{x}}{\left(e^{x}+1\right)^{18}} d x

See Solution

Problem 19409

Find the critical values of the function f(x)=5x2ln(x)f(x)=5 x^{2} \ln (x) for x>0x>0. If none, write 'NONE'.

See Solution

Problem 19410

Calculate the integral 10[14xx]dx\int_{-1}^{0}[\frac{1}{4}x - x] dx.

See Solution

Problem 19411

Evaluate the integral 12x(x2+8)3dx\int_{1}^{2} \frac{x}{(x^{2}+8)^{3}} \, dx.

See Solution

Problem 19412

Calculate the integral 01(x14x)dx\int_{0}^{1}(x-\frac{1}{4}x) dx.

See Solution

Problem 19413

Calculate the integral of f(x)h(x)f(x) - h(x) from 0 to 1, where f(x)=xf(x) = x and h(x)=14xh(x) = \frac{1}{4}x:
01[f(x)h(x)]dx\int_{0}^{1}[f(x)-h(x)] dx

See Solution

Problem 19414

Calculate the integral 12[g(x)h(x)]dx\int_{1}^{2}[g(x)-h(x)] dx for g(x)=1xg(x)= \frac{1}{x} and h(x)=14xh(x)= \frac{1}{4x}.

See Solution

Problem 19415

Given the function f(x)=5x2ln(x)f(x)=5 x^{2} \ln (x) for x>0x>0, find critical values, intervals of increase/decrease, local maxima/minima, concavity, and inflection points.

See Solution

Problem 19416

Find the area between the line y=xy=x and the parabola y=x22y=x^2-2.

See Solution

Problem 19417

Find the derivative of the function y=extanxy=e^{x} \tan x. What is dydx\frac{d y}{d x}?

See Solution

Problem 19418

Evaluate the integral 1/202x2(x)dx\int_{-1/2}^{0} 2x^{2}(-x) \, dx.

See Solution

Problem 19419

A plane flies south at 800 km/h800 \mathrm{~km/h} and another flies east at 900 km/h900 \mathrm{~km/h}. At 5 pm, the east plane is 1600 km1600 \mathrm{~km} from the airport. Find the rate of change of distance between the planes. Round to one decimal place.

See Solution

Problem 19420

Find the volume change rate VV of a sphere with radius increasing at 6 cm/s6 \mathrm{~cm/s} when radius is 5 cm5 \mathrm{~cm}.

See Solution

Problem 19421

Find the rate of radius increase of a balloon inflating at 4.3ft3/min4.3 \mathrm{ft}^3/\mathrm{min} when the radius is 1.5ft1.5 \mathrm{ft}.

See Solution

Problem 19422

Calculate the integral 01/2(12x2x)dx\int_{0}^{1/2} (1 - 2x^{2} - x) \, dx.

See Solution

Problem 19423

Find the limit: limΔx042(1+Δx)24Δx\lim _{\Delta x \rightarrow 0} \frac{\frac{4}{2-(-1+\Delta x)^{2}}-4}{\Delta x}.

See Solution

Problem 19424

Calculate the integral 21[h(x)g(x)]dx\int_{-2}^{-1}[h(x)-g(x)] dx with h(x)=14xh(x)= \frac{1}{4x} and g(x)=1xg(x)= \frac{1}{x}.

See Solution

Problem 19425

How fast is a rock falling after 4.1 seconds if it accelerates at 9.81 m/s29.81 \mathrm{~m} / \mathrm{s}^{2}?

See Solution

Problem 19426

Find the function f(x)f(x) and the number cc such that limΔx042(1+Δx)24Δx=f(c)\lim _{\Delta x \rightarrow 0} \frac{\frac{4}{2-(-1+\Delta x)^{2}}-4}{\Delta x} = f^{\prime}(c).

See Solution

Problem 19427

Estimate the area under f(x)=17x2f(x)=17-x^{2} on [0,4][0,4] using 4 equal subintervals and right endpoints.

See Solution

Problem 19428

Estimate the area under f(x)=21x2f(x)=21-x^{2} on [0,4][0,4] using 4 subintervals and right endpoints.

See Solution

Problem 19429

Find the area using the limit: area = limni=1nπ2nsin(iπ2n)\lim_{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\pi}{2 n} \sin\left(\frac{i \pi}{2 n}\right) without evaluating it.

See Solution

Problem 19430

Plot f(x)=x46x3f(x)=x^{4}-6 x^{3}. How many inflection points does it have? Choices: 0, 1, 2, 3.

See Solution

Problem 19431

Find how many values of xx in [10,10][-10,10] give a horizontal tangent for f(x)=x3+3x2+1x2+2f(x)=\frac{x^{3}+3 x^{2}+1}{x^{2}+2}.

See Solution

Problem 19432

Determine the extrema of the function f(x)=x54x3+x1f(x)=x^{5}-4 x^{3}+x-1. Choose from: A. I and II B. III and IV C. II and IV D. I, II, III, and IV.

See Solution

Problem 19433

Find the height hh and radius rr of a can with volume 550 cm³ that minimizes cost. Minimum cost in cents?

See Solution

Problem 19434

Find the slope of the tangent line for f(x)=2xsinxf(x)=2 x \sin x at x=π2x=\frac{\pi}{2}.

See Solution

Problem 19435

Find the derivative yy^{\prime} of y=xln(x)y=x^{\ln (x)} at x=4x=4 and round to four decimal places.

See Solution

Problem 19436

Determine if the series k=41(k3)4\sum_{k=4}^{\infty} \frac{1}{(k-3)^{4}} converges or diverges and justify your answer.

See Solution

Problem 19437

How fast is a rock falling after 4.1 seconds if it accelerates at 9.81 m/s29.81 \mathrm{~m} / \mathrm{s}^{2}?

See Solution

Problem 19438

Evaluate the integral I = ∫(1/cos²(θ) + 2sin(θ)) dθ from 0 to π/3.

See Solution

Problem 19439

Identify the region with area given by area=limni=1nπ2ntan(iπ2n)\text{area}=\lim_{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\pi}{2 n} \tan\left(\frac{i \pi}{2 n}\right) without calculating the limit.

See Solution

Problem 19440

Evaluate the integral I=01f(x)dxI=\int_{0}^{1} f(x) d x for a linear function ff with slope mm and intercept bb.

See Solution

Problem 19441

Find f(1)f^{\prime}(-1) given 36+3f(x)+x2(f(x))3=036 + 3f(x) + x^2(f(x))^3 = 0 and f(1)=3f(-1) = -3.

See Solution

Problem 19442

Find the radius and height of a right circular cone with slant height 33 that maximizes its volume.

See Solution

Problem 19443

Find the limit as hh approaches 0 for sec(x+h)secxh\frac{\sec (x+h)-\sec x}{h}.

See Solution

Problem 19444

a. With 100 m of fencing, find dimensions to maximize area of a pen against a barn. b. For 4 identical pens of area 100 m² each, find dimensions to minimize fencing used.

See Solution

Problem 19445

Evaluate the limit: limnxnn48n+1xnn48n\lim _{n \rightarrow \infty}\left|\frac{\frac{x^{n}}{n^{4} 8^{n}}+1}{\frac{x^{n}}{n^{4} 8^{n}}}\right|

See Solution

Problem 19446

Identify the extrema of the function f(x)=x2+6x+4f(x)=x^{2}+6 x+4: I. absolute max II. absolute min III. local max IV. local min. Options: A. III B. IV C. II D. II and IV.

See Solution

Problem 19447

Find the volume of the solid formed by rotating region RR (bounded by f(x)=3f(x)=3 and g(x)=x+1g(x)=x+1 from x=0x=0 to x=1x=1) around the xx-axis.

See Solution

Problem 19448

Gravel is dumped at 40 ft³/min into a cone with base diameter = height. Find the height's rate of increase when it's 23 ft.

See Solution

Problem 19449

Find the tangent line equation to y=8ln(x326)y=8 \ln \left(x^{3}-26\right) at (3,0). y=y=

See Solution

Problem 19450

Identify the region with area given by the limit  area =limni=1nπ4nsin(iπ4n)\text { area }=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\pi}{4 n} \sin \left(\frac{i \pi}{4 n}\right) without calculating it.

See Solution

Problem 19451

Find the correct expression for the derivative of f(x)=2xx2+1f(x)=\frac{2 x}{x^{2}+1}. Options are given.

See Solution

Problem 19452

Calculate ln3\ln 3 to four decimal places. What is ln3\ln 3?

See Solution

Problem 19453

A pork roast cools from 180F180^{\circ} \mathrm{F} to 170F170^{\circ} \mathrm{F} in 20 min. Find T(t)T(t) and time to reach 140F140^{\circ} \mathrm{F}.

See Solution

Problem 19454

Trouver la dérivée seconde de f(x)=2x2x21f(x)=\frac{2x^2}{x^2-1}.

See Solution

Problem 19455

Calculate the integral I=0π/32sin(3t)dtI=\int_{0}^{\pi / 3} 2 \sin (3 t) d t.

See Solution

Problem 19456

Find the tangent line equation at x=2x=2 given f(2)=1f(2)=-1 and f(2)=3f'(2)=3. Choose from the options.

See Solution

Problem 19457

Find the volume of the solid formed by revolving the area between y=3xy=3x, y=0y=0, and x=2x=2 around the xx-axis.

See Solution

Problem 19458

Evaluate the integral (x+1)82xdx=()du\int \frac{(\sqrt{x}+1)^{8}}{2 \sqrt{x}} d x=\int(\square) d u.

See Solution

Problem 19459

How long will it take for a material decaying at 0.099%0.099\% per year to reduce to 30%30\% of its original amount?

See Solution

Problem 19460

Calculate the volume of the solid formed by revolving the area between y=2xy=2x, y=0y=0, and x=4x=4 around the xx-axis. The volume is \square cubic units.

See Solution

Problem 19461

A photographer is 5 m from a stunt. The stunt moves at 2.5m/s2.5 \, \text{m/s} when 1 m away. Can he take a clear picture if speed must be 1m/s\leq 1 \, \text{m/s}?

See Solution

Problem 19462

How long will it take for a town's population to double if it grows at a constant rate of 12%12\%?

See Solution

Problem 19463

Find the derivative f(θ)f'(\theta) if f(θ)=2θ+3sinθf(\theta)=2 \sqrt{\theta}+3 \sin \theta. Choose from the options given.

See Solution

Problem 19464

Find the volume of a solid with base y=26cosxy=26 \sqrt{\cos x} on [π2,π2][-\frac{\pi}{2}, \frac{\pi}{2}] and isosceles right triangle cross sections.

See Solution

Problem 19465

Identify the region with area given by area=limni=1nπ5nsin(iπ5n)\text{area}=\lim_{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\pi}{5 n} \sin\left(\frac{i \pi}{5 n}\right) without solving the limit.

See Solution

Problem 19466

Determine the horizontal asymptote for the function h(x)=3x24xh(x)=\frac{3}{x^{2}-4x}.

See Solution

Problem 19467

Find the volume of the solid formed by revolving the region bounded by y=34xy=3-4x, y=0y=0, and x=0x=0 around the xx-axis.

See Solution

Problem 19468

Determine the end behavior asymptote of the function h(x)=3x24x h(x) = \frac{3}{x^2 - 4x} with the denominator factored as (x0)(x4)(x - 0)(x - 4).

See Solution

Problem 19469

Find the volume of the solid formed by revolving the area between y=2xy=2x and y=8xy=8\sqrt{x} around the xx-axis.

See Solution

Problem 19470

Find the volume of the solid formed by revolving the region bounded by y=33xy=3-3x, y=0y=0, and x=0x=0 around the xx-axis.

See Solution

Problem 19471

Calculate the volume of the solid formed by revolving the area between y=4xy=4x and y=12xy=12\sqrt{x} around the xx-axis.

See Solution

Problem 19472

Calculate the integral: eu(1eu)2dx\int \frac{e^{u}}{\left(1-e^{u}\right)^{2}} dx

See Solution

Problem 19473

Find the volume of the solid formed by revolving the region RR (bounded by y=xy=x, y=2xy=2x, and y=8y=8) around the yy-axis.

See Solution

Problem 19474

Find the value(s) of aa for which the slope of g(x)=ax+4xg(x)=a \sqrt{x}+4 x is 3 at x=4x=4.

See Solution

Problem 19475

Calculer dydx\frac{d y}{d x} pour la courbe y4y2+(x+12)2=x+12y^{4}-y^{2}+\left(x+\frac{1}{2}\right)^{2}=x+\frac{1}{2}.

See Solution

Problem 19476

Calculate the integral: x3(x2+1)2023dx\int x^{3}(x^{2}+1)^{2023} \, dx

See Solution

Problem 19477

Find the differential dyd y for y=tan(5x+5)y=\tan(5x+5) at x=4x=4 for dx=0.1d x=0.1 and dx=0.2d x=0.2.

See Solution

Problem 19478

Encuentra la derivada de y=(34)xy=\left(\frac{3}{4}\right)^{x}. ¿Cuál es yy^{\prime}?

See Solution

Problem 19479

Encuentra la derivada de la función y=lnxxy=\frac{\ln x}{\sqrt{x}}.

See Solution

Problem 19480

Encuentra la derivada de y=xexy=\sqrt{x} \cdot e^{x}.

See Solution

Problem 19481

Find the area enclosed by the cardioid r=1+cosθr=1+\cos \theta using a double integral. (20 points)

See Solution

Problem 19482

Halla la derivada de la función y=(34)xy=\left(\frac{3}{4}\right)^{x}.

See Solution

Problem 19483

Find dyd y for y=tan(5x+5)y=\tan(5x+5) at x=4x=4 for dx=0.1d x=0.1 and dx=0.2d x=0.2.

See Solution

Problem 19484

Calculate e2.72e^{2.72} and round to four decimal places.

See Solution

Problem 19485

Find the indefinite integral x+2(4x5)2dx\int \frac{x+2}{(4 x-5)^{2}} d x using the substitution u=4x5u=4 x-5.

See Solution

Problem 19486

Find dyd y for y=tan(5x+5)y=\tan(5x+5) at x=4x=4 for dx=0.1d x=0.1 and dx=0.2d x=0.2.

See Solution

Problem 19487

Determina la mínima utilidad usando I=8qI=8q y C=5q223q320C=5q^{2}-\frac{2}{3}q^{3}-20 para qq en miles.

See Solution

Problem 19488

Evaluate the integral x(x5x2)dx\int \sqrt{x}(\sqrt[5]{x}-x^{2}) \, dx.

See Solution

Problem 19489

Encuentra el número de unidades xx que maximiza la utilidad, dado que el costo total es C(x)=x2+20x+700C(x)=x^{2}+20x+700 y el precio es \$100 por unidad.

See Solution

Problem 19490

Given s(x)=f(x)g(x)s(x) = f(x) - g(x), find s(2)s^{\prime}(2) using f(2)f^{\prime}(2) and g(2)g^{\prime}(2).

See Solution

Problem 19491

Find h(1)h^{\prime}(1) for h(x)=f(x)g(x)h(x) = f(x) g(x), where f(x)=4f(x) = -4 and g(x)=2g(x) = 2.

See Solution

Problem 19492

Evaluate the integral using the substitution u=9+x4u=9+x^{4}: x3(9+x4)5dx.\int x^{3}(9+x^{4})^{5} dx.

See Solution

Problem 19493

Evaluate the integrals given:
1. 02(f(x)+g(x))dx=\int_{0}^{2}(f(x)+g(x)) dx=
2. 03(f(x)g(x))dx=\int_{0}^{3}(f(x)-g(x)) dx=
3. 23(3f(x)+2g(x))dx=\int_{2}^{3}(3 f(x)+2 g(x)) dx=

Find aa such that 03(af(x)+g(x))dx=0\int_{0}^{3}(a f(x)+g(x)) dx=0: a= a=

See Solution

Problem 19494

Find the three critical numbers of the function F(x)=x4/5(5x20)2F(x)=x^{4/5}(5x-20)^{2} in increasing order.

See Solution

Problem 19495

Evaluate the integral 0ln(5)xex2dx\int_{0}^{\sqrt{\ln (5)}} x e^{x^{2}} d x and find the result.

See Solution

Problem 19496

Find g(2)g^{\prime}(2) for g(x)=x243tdtg(x)=\int_{x^{2}}^{4} 3 t \, dt. Your answer should be a number.

See Solution

Problem 19497

Calculate the integral 52f(x)dx\int_{5}^{2} f^{\prime}(x) \, dx using the provided values of ff and ff^{\prime}.

See Solution

Problem 19498

A package dropped from a hot-air balloon at 80 ft, ascending at 12 ft/sec, takes how long to hit the ground? Use dvdt=32ft/s2 \frac{d v}{d t}=-32 \mathrm{ft/s^2} .

See Solution

Problem 19499

Evaluate the integral ππf(x)dx\int_{-\pi}^{\pi} f(x) \, dx where f(x)=2x4f(x) = 2x^4 for πx<0-\pi \leq x < 0 and f(x)=5sin(x)f(x) = 5\sin(x) for 0xπ0 \leq x \leq \pi.

See Solution

Problem 19500

Find g(x)g^{\prime}(x) for g(x)=2xsin(t)etdtg(x)=\int_{2}^{x} \sin (t) e^{t} dt. Which option is correct?

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord