Calculus

Problem 32501

Find the average rate of change (ARC) for y=16t2y=16t^{2} over the interval [1,1.1][1, 1.1]. Use ΔyΔt\frac{\Delta y}{\Delta t}.

See Solution

Problem 32502

Identify which functions are valid in quantum mechanics: x2x^{2} or ex2e^{-x^{2}}. Normalize the valid ones and plot them.

See Solution

Problem 32503

Find the secant line's equation using yy1=m(xx1)y - y_{1} = m(x - x_{1}) and slope mm. Also, find IRC for y=16t2y = 16t^2 at t0=1t_0 = 1.

See Solution

Problem 32504

Find the limit: limx31x13x3\lim _{x \rightarrow 3} \frac{\frac{1}{x}-\frac{1}{3}}{x-3}.

See Solution

Problem 32505

Evaluate the limit: limt2(6t5at+2a)=\lim _{t \rightarrow-2}(6 t-5 a t+2 a)=

See Solution

Problem 32506

Find the average rate of change of R(θ)=3θ+1R(\theta)=\sqrt{3\theta+1} over the interval [0,8][0,8]. Simplify ΔRΔθ=\frac{\Delta R}{\Delta \theta}=\square.

See Solution

Problem 32507

Find the slope of the curve y=x3+2y=x^{3}+2 at P(2,6)P(-2,-6) and the equation of the tangent line at that point.

See Solution

Problem 32508

Find the slope of the curve y=x3+2y=x^{3}+2 at point P(2,10)P(2,10) and the equation of the tangent line there.

See Solution

Problem 32509

Find the slope of the curve y=35x2y=-3-5x^{2} at point P(2,23)P(-2,-23) and the equation of the tangent line at PP.

See Solution

Problem 32510

Find the slope of the curve y=x3+2y=x^{3}+2 at P(2,6)P(-2,-6) using secant lines, then find the tangent line equation at PP.

See Solution

Problem 32511

Solve the differential equation dydx=3x2e2y\frac{d y}{d x}=\frac{3 x^{2}}{e^{2 y}} with the condition f(0)=12f(0)=\frac{1}{2}.

See Solution

Problem 32512

Find the slope and equation of the tangent line at point P(2,2)P(2,2) for the curve y=4xy=\frac{4}{x}.

See Solution

Problem 32513

Determine if the series n=1(n+an+b)n2\sum_{n=1}^{\infty}\left(\frac{n+a}{n+b}\right)^{n^{2}} converges or diverges for b<ab<a.

See Solution

Problem 32514

Find values of aa where limits limxaf(x)\lim _{x \rightarrow a} f(x) exist for these piecewise functions.

See Solution

Problem 32515

Estimate f(7)f^{\prime}(7), evaluate 213(2f(x))dx\int_{2}^{13}(2-f^{\prime}(x))dx, and approximate 213f(x)dx\int_{2}^{13}f(x)dx. Show all work. Also, prove f(7)4f(7) \leq 4 using the tangent at x=5x=5.

See Solution

Problem 32516

Find the limits of f(x)=x2+1x210x+25f(x)=\frac{x^{2}+1}{x^{2}-10 x+25} as xx approaches 5 from the left, right, and both.

See Solution

Problem 32517

Find values of aa and bb for which limx2f(x)\lim _{x \rightarrow 2} f(x) and limx3f(x)\lim _{x \rightarrow 3} f(x) exist.

See Solution

Problem 32518

Calculate the integral I=2x(ln(x))2dxI=\int 2 x(\ln (x))^{2} d x.

See Solution

Problem 32519

What is the limit of f(x)f(x) as xx approaches 2 if f(2)=3f(2)=-3 and f(x)f(x) is continuous at x=2x=2? Options: 3-3, 2, 2-2, 3

See Solution

Problem 32520

Calculate the integral I=013e7xdxI=\int_{0}^{1} 3 e^{7 \sqrt{x}} dx.

See Solution

Problem 32521

Calculate the integral I=0πexcosxdxI=\int_{0}^{\pi} e^{x} \cos x \, dx.

See Solution

Problem 32522

Evaluate the integral: u273u2du\int \frac{u}{27-3 u^{2}} d u

See Solution

Problem 32523

Calculate the integral I=e8ln(x)x2dxI=\int_{e}^{8} \frac{\ln (x)}{x^{2}} d x.

See Solution

Problem 32524

How long will it take to double \2,000investedata 2,000 invested at a 5.75\%$ annual interest rate, compounded continuously? Round up.

See Solution

Problem 32525

Calculate the integral I=0π/4(4x5)cos2xdxI=\int_{0}^{\pi / 4}(4 x-5) \cos 2 x \, dx.

See Solution

Problem 32526

Find the left endpoint Riemann sum for f(x)=x211f(x)=\frac{x^{2}}{11} on [2,6][2,6] using 8 rectangles. What is the sum?

See Solution

Problem 32527

Explain why the function f(x)f(x) is discontinuous at x=1x=1:
f(x)={1x1 if x12 if x=1 f(x)=\left\{\begin{array}{ll} \frac{1}{x-1} & \text { if } x \neq 1 \\ 2 & \text { if } x=1 \end{array}\right.
Options: (a) f(1)f(1) does not exist. (b) limx1f(x)\lim _{x \rightarrow 1} f(x) does not exist. (c) Both (a) and (b). (d) They exist but are not equal.

See Solution

Problem 32528

Differentiate 6xy+y+185=06xy + y + 185 = 0 to find yy' and evaluate it at (6,5)(6, -5). Simplify your answer.

See Solution

Problem 32529

Find yy^{\prime} using implicit differentiation for 9xy+y+210=09xy + y + 210 = 0 and evaluate at (4,6)(-4, 6).

See Solution

Problem 32530

Find yy^{\prime} using implicit differentiation for x2y3x24=0x^{2} y - 3 x^{2} - 4 = 0 and evaluate it at (2,4)(2,4).

See Solution

Problem 32531

Find yy^{\prime} using implicit differentiation for 32ey=x5+y3-32 e^{y}=x^{5}+y^{3} and evaluate at (2,0)(-2,0).

See Solution

Problem 32532

Find yy^{\prime} using implicit differentiation for x3+y5=lnyx^{3}+y^{5}=\ln y and evaluate it at (1,1)(-1,1).

See Solution

Problem 32533

Identify acceptable quantum mechanics functions: x2x^{2} and ex2e^{-x^{2}}. Plot and normalize if acceptable.

See Solution

Problem 32534

Differentiate x38y5=lnyx^{3}-8 y^{5}=\ln y implicitly to find yy^{\prime}, then evaluate at (2,1)(2,1).

See Solution

Problem 32535

Find xx^{\prime} for x(t)x(t) from x4+t4x+t39=0x^{4}+t^{4} x+t^{3}-9=0 and evaluate at (2,1)(-2,1). Simplify your answer.

See Solution

Problem 32536

Analyze an object's motion based on graphs and answer:
1. Change in velocity?
2. Gaining or losing velocity?
3. Distance traveled in 8s?
4. Acceleration?
5. Position at 10 s10 \mathrm{~s}?
6. Why negative acceleration if gaining velocity?

See Solution

Problem 32537

Provide examples of functions f(x)f(x) and g(x)g(x) to show these statements are false: (a) limx0f(x)+g(x)\lim_{x \to 0} f(x)+g(x) exists \Rightarrow both limx0f(x)\lim_{x \to 0} f(x) and limx0g(x)\lim_{x \to 0} g(x) exist. (b) limx0f(x)g(x)\lim_{x \to 0} f(x)g(x) exists \Rightarrow both limx0f(x)\lim_{x \to 0} f(x) and limxag(x)\lim_{x \to a} g(x) exist.

See Solution

Problem 32538

Find the limit: limx5x+5x3+125\lim _{x \rightarrow-5} \frac{x+5}{x^{3}+125}. If it doesn't exist, write DNE.

See Solution

Problem 32539

Find the derivative h(t)h^{\prime}(t) for the function h(t)=2t1/39t3/7h(t)=\frac{2}{t^{1/3}}-\frac{9}{t^{3/7}}.

See Solution

Problem 32540

Find yy^{\prime} and the slope of the tangent line to (2x3y)5=3y22(2x - 3y)^5 = 3y^2 - 2 at point (2,1)(2,1).

See Solution

Problem 32541

Find the limits and function value for the piecewise function f(x)f(x) given below:
f(x)={x6,x1x2+3,1<x423x,x>4 f(x)=\left\{\begin{array}{ll} x-6, & x \leq-1 \\ x^{2}+3, & -1<x \leq 4 \\ 23-x, & x>4 \end{array}\right.
a) limx1f(x)\lim _{x \rightarrow-1^{-}} f(x) b) limx1+f(x)\lim _{x \rightarrow-1^{+}} f(x) c) limx1f(x)\lim _{x \rightarrow-1} f(x) d) limx4f(x)\lim _{x \rightarrow 4^{-}} f(x) e) limx4+f(x)\lim _{x \rightarrow 4^{+}} f(x) f) limx4f(x)\lim _{x \rightarrow 4} f(x) g) f(1)f(-1)

See Solution

Problem 32542

Find yy^{\prime} and the slope of the tangent line to (3x5y)5=2y29(3x - 5y)^5 = 2y^2 - 9 at point (3,2)(3,2).

See Solution

Problem 32543

A ball drops for 3 s3 \mathrm{~s}. Find the roof height in meters, ignoring air resistance.

See Solution

Problem 32544

Evaluate these limits: (a) limx5x26x+5x5\lim _{x \rightarrow 5} \frac{x^{2}-6 x+5}{x-5}, (b) limh0(2+h)38h\lim _{h \rightarrow 0} \frac{(2+h)^{3}-8}{h}, (c) limx31x13x3\lim _{x \rightarrow 3} \frac{\frac{1}{x}-\frac{1}{3}}{x-3}, (d) limt01+t1tt\lim _{t \rightarrow-0} \frac{\sqrt{1+t}-\sqrt{1-t}}{t}, (e) limx0xsin(1x)\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right).

See Solution

Problem 32545

Find the slope of secant line PQPQ for P(3,0)P(-3,0) and Q(x,sin(3πx))Q(x, \sin(3 \pi x)) at specified xx values. Then estimate the tangent slope and find the tangent line's equation.

See Solution

Problem 32546

Find the slope of secant line PQPQ for P(3,0)P(-3,0) and Q(x,sin(3πx))Q(x, \sin(3\pi x)) at given xx values. Then, guess the tangent slope and find the tangent line equation at PP.

See Solution

Problem 32547

Find yy^{\prime} and the slope at (3,3)(3,3) for the equation 72+y2x3+18=0\sqrt{72+y^{2}}-x^{3}+18=0.

See Solution

Problem 32548

Find yy^{\prime} and the slope at (3,3) for 40+y2x3+20=0\sqrt{40+y^{2}}-x^{3}+20=0.

See Solution

Problem 32549

Find the following limits and value for the piecewise function f(x)f(x):
a) limx0f(x)\lim _{x \rightarrow 0^{-}} f(x) b) limx0+f(x)\lim _{x \rightarrow 0^{+}} f(x) c) limx0f(x)\lim _{x \rightarrow 0} f(x) d) limxπf(x)\lim _{x \rightarrow \pi^{-}} f(x) e) limxπ+f(x)\lim _{x \rightarrow \pi^{+}} f(x) f) limxπf(x)\lim _{x \rightarrow \pi} f(x) g) f(π)f(\pi)

See Solution

Problem 32550

Find the derivative dydx\frac{\mathrm{dy}}{\mathrm{dx}} for y=5lnx+4log5xy=5 \ln x+4 \log _{5} x. Type an exact answer.

See Solution

Problem 32551

Find the limits and value for the piecewise function f(x)f(x) at x=1x=-1 and classify the discontinuity type.

See Solution

Problem 32552

Find the limit using L'Hôpital's Rule: limx0+11xlnx=\lim _{x \rightarrow 0^{+}} 11 x \ln x=\square. Enter INF, -INF, or DNE.

See Solution

Problem 32553

Evaluate the limit using continuity: limx3π2sin(x+sin(x))\lim _{x \rightarrow \frac{3 \pi}{2}} \sin (x+\sin (x)).

See Solution

Problem 32554

Find yy^{\prime} and the slope at the point (1,1) for the equation 13ln(xy)=y2113 \ln (x y)=y^{2}-1.

See Solution

Problem 32555

Calculate the limit: limx155x1x\lim _{x \rightarrow 1} \frac{5-5 x}{1-\sqrt{x}}.

See Solution

Problem 32556

Find the limit: limx02x+tan(4x)3xtan(4x)\lim _{x \rightarrow 0} \frac{2 x+\tan (4 x)}{3 x-\tan (4 x)}. Enter -Inf, Inf, or DNE for your answer.

See Solution

Problem 32557

Evaluate the limit using L'Hôpital's Rule: limx1x2+4x5lnx=\lim _{x \rightarrow 1} \frac{x^{2}+4 x-5}{\ln x}=\square

See Solution

Problem 32558

Find yy^{\prime} and the slope at the point (1,1) for the equation 9ln(xy)=y219 \ln (x y)=y^{2}-1.

See Solution

Problem 32559

Evaluate the limit using continuity: limxπcos(x+cos(x))\lim _{x \rightarrow \pi} \cos (x+\cos (x)).

See Solution

Problem 32560

Find the smallest interval where f(x)f(x) has a root using the Intermediate Value Theorem from the values of ff given.

See Solution

Problem 32561

Find the initial population of arctic flounder modeled by P(t)=12t+2400.7t2+4P(t)=\frac{12 t+240}{0.7 t^{2}+4} and calculate P(8)P^{\prime}(8).

See Solution

Problem 32562

Find the limits: limx8f(x)\lim_{x \rightarrow 8^{-}} f(x), limx8+f(x)\lim_{x \rightarrow 8^{+}} f(x), limx8f(x)\lim_{x \rightarrow -8^{-}} f(x), and limx8+f(x)\lim_{x \rightarrow -8^{+}} f(x) for the piecewise function f(x)f(x).

See Solution

Problem 32563

Given the piecewise function
f(x)={x3, if x<5x216, if x>518, if x=5 f(x)=\left\{\begin{array}{ll} -x-3, & \text { if } x<5 \\ x^{2}-16, & \text { if } x>5 \\ -18, & \text { if } x=5 \end{array}\right.
find: a) limx5f(x)\lim _{x \rightarrow 5^{-}} f(x) b) limx5+f(x)\lim _{x \rightarrow 5^{+}} f(x) c) f(5)f(5) d) classify the discontinuity at x=5x=5.

See Solution

Problem 32564

Find the limits of the following indeterminate forms (0/0). Enter "D" if the limit does not exist:
limx0sinxx=,limx0exx1xx2=, \lim _{x \rightarrow 0} \frac{\sin x}{x}=\square, \quad \lim _{x \rightarrow 0} \frac{e^{x^{x}}-1-x}{x^{2}}=\square, limx0exexsin(x)=,limx2x2+5x+6x2=, \lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}}{\sin (x)}=\square, \quad \lim _{x \rightarrow-2} \frac{x^{2}+5 x+6}{x-2}=\square, limx2x2+5x+6x2=. \lim _{x \rightarrow 2} \frac{x^{2}+5 x+6}{x-2}=\square.

See Solution

Problem 32565

Evaluate the limit: limt0t3cos(3t)4t3\lim _{t \rightarrow 0} \frac{t^{3} \cos (3 t)}{4 t-3}. If it doesn't exist, enter DNE.

See Solution

Problem 32566

Find the rate of change of price pp with respect to demand xx for x=10,000p43x=\sqrt[3]{10,000-p^{4}} by implicit differentiation.

See Solution

Problem 32567

Calculate the limit using L'Hospital's Rule if needed: limx9x9x215x+54=\lim _{x \rightarrow 9} \frac{x-9}{x^{2}-15 x+54}=\square

See Solution

Problem 32568

Find the limit as xx approaches negative infinity: limx3x2+1x2+5=\lim _{x \rightarrow-\infty} \frac{3 x^{2}+1}{x^{2}+5}=\square

See Solution

Problem 32569

Evaluate the limit: limxx43x2+2x5+4x3\lim _{x \rightarrow \infty} \frac{x^{4}-3 x^{2}+2}{x^{5}+4 x^{3}}

See Solution

Problem 32570

Find the limit as xx approaches infinity: limxx21x+5.\lim _{x \rightarrow \infty} \frac{x^{2}-1}{x+5}.

See Solution

Problem 32571

Find the limit: limx9x9x3\lim _{x \rightarrow 9} \frac{x-9}{\sqrt{x}-3}. If it doesn't exist, write DNE.

See Solution

Problem 32572

Given the piecewise function f(x)f(x), find the limits as xx approaches 2 from the right and left, and values of mm for equality of these limits.

See Solution

Problem 32573

Evaluate the limit using L'Hôpital's Rule: limx7x62x6=\lim _{x \rightarrow \infty} \frac{-7 x-6}{-2 x-6}=\square

See Solution

Problem 32574

Find g(t)g^{\prime}(t) using the Chain Rule for g(t)=f(x(t),y(t))g(t)=f(x(t), y(t)), where f(x,y)=x2ysinyf(x, y)=x^{2} y-\sin y, x(t)=t2+1x(t)=\sqrt{t^{2}+1}, y(t)=ety(t)=e^{t}.

See Solution

Problem 32575

Find the limit: limx7x25x3x4x27=\lim _{x \rightarrow \infty} \frac{7 x^{2}-5 x-3}{x-4 x^{2}-7}=\square

See Solution

Problem 32576

Evaluate the limit: limx0(x3cos(3x1000))\lim _{x \rightarrow 0}\left(x^{3}-\cos \left(\frac{3 x}{1000}\right)\right). If it doesn't exist, enter DNE.

See Solution

Problem 32577

Given the function f(x)f(x), find the limits as xx approaches 2 from the right and left, and determine values of mm for continuity.

See Solution

Problem 32578

Find the limit as xx approaches infinity: limx2x25x33x33x7=\lim _{x \rightarrow \infty} \frac{2 x^{2}-5 x-3}{3 x^{3}-3 x-7}=\square

See Solution

Problem 32579

Evaluate the limit as xx approaches infinity: limx2x4+611x2+3\lim _{x \rightarrow \infty} \frac{2 x^{4}+6}{11 x^{2}+3}. Limit =

See Solution

Problem 32580

Find the initial population of arctic flounder modeled by P(t)=12t+2400.7t2+4P(t)=\frac{12 t+240}{0.7 t^{2}+4} and calculate P(8)P^{\prime}(8).

See Solution

Problem 32581

Evaluate the limit as xx approaches negative infinity:
limx12x7+3x2x34x2 \lim _{x \rightarrow-\infty} \frac{12 x^{7}+3 x}{2 x^{3}-4 x^{2}}

See Solution

Problem 32582

Evaluate the limit as xx approaches infinity: limx38x45+8x4\lim _{x \rightarrow \infty} \frac{3-8 x^{4}}{5+8 x^{4}}. Limit =

See Solution

Problem 32583

A stone is thrown down at 1.84m/s1.84 \, \mathrm{m/s} from a 51.0m51.0 \, \mathrm{m} cliff.
(a) When do both stones hit the water?
(b) What speed must the second stone have to hit simultaneously?
(c) What is the speed of each stone upon impact?

See Solution

Problem 32584

Find the slope of the secant line from P(52,0)P\left(\frac{5}{2}, 0\right) to Q(x,cos(3πx))Q(x, \cos(3\pi x)) for x=0,2.4,2.49,2.499,3,2.6,2.51,2.501x = 0, 2.4, 2.49, 2.499, 3, 2.6, 2.51, 2.501. Then, estimate the tangent slope at PP and find the tangent line equation.

See Solution

Problem 32585

Determine if the series n=16(2n1)(2n+1)\sum_{n=1}^{\infty} \frac{6}{(2 n-1)(2 n+1)} converges or diverges and find its sum.

See Solution

Problem 32586

Evaluate the series n=1lnnn+1\sum_{n=1}^{\infty} \ln \frac{n}{n+1}. Which statement is true about its convergence?

See Solution

Problem 32587

Differentiate 7x32y13=07 x^{3}-2 y-13=0 implicitly to find yy^{\prime}, then solve for yy and differentiate directly.

See Solution

Problem 32588

Determine if the series n=11n2+1\sum_{n=1}^{\infty} \frac{1}{n^{2}+1} converges or diverges using the Integral Test.

See Solution

Problem 32589

Find the derivative of f(x)=x6cosxf(x)=x^{6} \cos x.

See Solution

Problem 32590

Determine the convergence of the series n=2lnn2n\sum_{n=2}^{\infty} \frac{\ln n^{2}}{n}. Choose: a. Diverges by Integral Test b. Diverges by nth term test c. Converges by Integral Test d. Converges to (ln2)2(\ln 2)^{2} by Integral Test.

See Solution

Problem 32591

Determine if the series n=1(ln2)n\sum_{n=1}^{\infty}(\ln 2)^{n} is convergent or divergent and find its sum.

See Solution

Problem 32592

Find the limit: limx4x364x4\lim _{x \rightarrow 4} \frac{x^{3}-64}{x-4}.

See Solution

Problem 32593

Find the limit as tt approaches 0 for the expression sin3t2t\frac{\sin 3 t}{2 t}.

See Solution

Problem 32594

Find the limit as x x approaches 0 for the expression sinx8x \frac{\sin x}{8 x} .

See Solution

Problem 32595

Find the derivative of the function f(x)=44x+4f(x)=\frac{4}{4x+4}.

See Solution

Problem 32596

Find the limit: limx8x+13x8\lim _{x \rightarrow 8} \frac{\sqrt{x+1}-3}{x-8}.

See Solution

Problem 32597

Find the limits: (a) limx5+4x87x=\lim _{x \rightarrow \infty} \frac{5+4 x}{8-7 x}= and (b) limx5+4x87x=\lim _{x \rightarrow-\infty} \frac{5+4 x}{8-7 x}=.

See Solution

Problem 32598

Find the value of the integral 14exxdx\int_{1}^{4} \frac{e^{\sqrt{x}}}{\sqrt{x}} d x using the substitution u=xu=\sqrt{x}.

See Solution

Problem 32599

Find the limit as xx approaches 0 for x2+5xx\frac{x^{2}+5x}{x}. Create a simpler function g(x)g(x) that matches it everywhere except one point. Use a graphing tool to verify.

See Solution

Problem 32600

Find the derivative of the function f(x)=(3x5x3)(6+x)f(x)=(3x-5x^{3})(6+\sqrt{x}). What is f(x)f^{\prime}(x)?

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord