Calculus

Problem 801

Find the tangent line to f(x)=x2+5f(x)=-x^{2}+5 at x=5x=5 and use it to estimate f(5.1)f(5.1).

See Solution

Problem 802

Find points (x,y)(x, y) where f(x,y)=(0,0)\nabla f(x, y)=(0,0) for f(x,y)=x33y33+3xyf(x, y)=\frac{x^{3}}{3}-\frac{y^{3}}{3}+3xy and classify them.

See Solution

Problem 803

Evaluate the following limits as x x approaches 0:
1. limx0(1+x)sinxxcosxx2 \lim _{x \rightarrow 0} \frac{(1+x) \sin x-x \cos x}{x^{2}}
2. limx0ex2cosxxsinx \lim _{x \rightarrow 0} \frac{e^{x^{2}}-\cos x}{x \sin x}
3. limx0sinxxex+x2x(cosx1) \lim _{x \rightarrow 0} \frac{\sin x-x e^{x}+x^{2}}{x(\cos x-1)}
4. limx0{1sin2x1x2} \lim _{x \rightarrow 0}\left\{\frac{1}{\sin ^{2} x}-\frac{1}{x^{2}}\right\}

See Solution

Problem 804

Find the second derivative d2ydx2\frac{d^{2} y}{d x^{2}} for the equation y+xy=5\sqrt{y}+x y=5.

See Solution

Problem 805

Integrate: 2x+54x220x+29dx\int \frac{2 x+5}{\sqrt{4 x^{2}-20 x+29}} d x (15 pts, 1a: 5 pts)

See Solution

Problem 806

Find the salt concentration in a 100-gallon tank after 30 mins, starting with 10 lbs salt and adding brine at 4gal/min4 \mathrm{gal/min}.

See Solution

Problem 807

Calculate the surface area from revolving x=13(y2+2)3/2x=\frac{1}{3}(y^{2}+2)^{3/2} around the x-axis for 1y21 \leq y \leq 2.

See Solution

Problem 808

Evaluate the integral 1kx5dx\int_{1}^{\infty} k x^{-5} \, dx.

See Solution

Problem 809

13. Solve [xsin2(yx)y]dx+xdy=0\left[x \sin ^{2}\left(\frac{y}{x}\right)-y\right] dx + x dy = 0 for y=π4y=\frac{\pi}{4} at x=1x=1.
14. Find dydxyx+cosec(yx)=0\frac{dy}{dx}-\frac{y}{x}+\operatorname{cosec}\left(\frac{y}{x}\right)=0 for y=0y=0 at x=1x=1.

See Solution

Problem 810

Calculate the integral: (1+3x)x2dx\int(1+3 x) x^{2} d x

See Solution

Problem 811

Calculate the integral 4x(x22)2dx\int 4 x\left(x^{2}-2\right)^{2} d x.

See Solution

Problem 812

Calculate the average rate of change of f(x)=2x43xf(x)=2 x^{4}-3 x from x=1x=-1 to x=2x=2.

See Solution

Problem 813

Find dydx\frac{d y}{d x} in terms of xx given that x=sec3yx=\sec 3 y.

See Solution

Problem 814

Find dydx\frac{d y}{d x} in terms of tt for x=sin(t)x=\sin(t) and y=cos2(t)y=\cos^2(t). Simplify your expression.

See Solution

Problem 815

Find dydx\frac{d y}{d x} in terms of tt for the equations x=sin3tx=\sin^3 t and y=cos4ty=\cos^4 t.

See Solution

Problem 816

Find and simplify dydx\frac{d y}{d x} using the parametric equations x=sin(t)x=\sin(t) and y=cos2(t)y=\cos^2(t).

See Solution

Problem 817

Find dydx\frac{d y}{d x} in terms of tt for the equations x=sin(t)x=\sin(t), y=cos2(t)y=\cos^2(t).

See Solution

Problem 818

Find the rate of change of sales S(t)=10,000+2000t200t2S(t) = 10,000 + 2000t - 200t^2 at t=0t=0, t=4t=4, and t=8t=8 weeks.

See Solution

Problem 819

Evaluate the integral: 3axb2+c2x2dx\int \frac{3 a x}{b^{2}+c^{2} x^{2}} \, dx

See Solution

Problem 820

Upton Chuck free falls for 2.60 seconds. Calculate his final velocity and the distance fallen. Use v=gtv = gt and d=12gt2d = \frac{1}{2}gt^2.

See Solution

Problem 821

Find the integral tan8xsec4xdx\int \tan^{8} x \sec^{4} x \, dx.

See Solution

Problem 822

Calculate the double integrals: 1) x2+y21cos(x2+y2)dxdy\iint_{x^{2}+y^{2} \leq 1} \cos \left(x^{2}+y^{2}\right) d x d y and 2) 01y1cos(x)x2dxdy\int_{0}^{1} \int_{\sqrt{y}}^{1} \frac{\cos (x)}{x^{2}} d x d y.

See Solution

Problem 823

Solve on separate sheets with signatures. No calculators. Justify answers.
1. (a) Find the integral: xarctan(x)dx\int x \arctan (x) d x (b) Evaluate: 0π/2cos(t)sin(t)dt\int_{0}^{\pi / 2} \frac{\cos (t)}{\sqrt{\sin (t)}} d t

See Solution

Problem 824

Evaluate the integral 01x4(1x)41+x2dx\int_{0}^{1} \frac{x^{4}(1-x)^{4}}{1+x^{2}} d x using integration techniques.

See Solution

Problem 825

Monthly sales (in thousands) for a music store are given by S(t)=200t2+36S(t)=\frac{200}{t^{2}+36}. Find S(2)S(2), S(2)S'(2), and estimate sales for month 3.

See Solution

Problem 826

Monthly sales for a record album are given by S(t)=200tt2+36S(t)=\frac{200 t}{t^{2}+36}. Find: a) S(2)S(2), b) S(2)S^{\prime}(2), c) estimate sales in month 3 using (a) and (b).

See Solution

Problem 827

Tính tích phân I=AB(2xydx+x2dy)I=\int_{AB} (2xy \, dx + x^2 \, dy) trên đoạn thẳng AB:y=x33x2AB: y=x^3-3x^2 với A(1,2)A(1,-2), B(2,4)B(2,-4).

See Solution

Problem 828

Differentiate x3y2x^{3} y^{2} with respect to yy.

See Solution

Problem 829

Differentiate x3y2x^{3} y^{2} with respect to xx.

See Solution

Problem 830

Find the free extrema of the function z=2x2+22y2192y+x2yz=-2x^{2}+22y^{2}-192y+x^{2}y.

See Solution

Problem 831

Find the free extremes of the function z=3x28y2+64yyx2z=3 x^{2}-8 y^{2}+64 y-y x^{2}.

See Solution

Problem 832

Find dydx\frac{d y}{d x} for the equation 4e3x+e4y+8=04 e^{-3 x}+e^{4 y}+8=0.

See Solution

Problem 833

Differentiate the function 5x252x\frac{5 x^{2}-5}{2 x}.

See Solution

Problem 834

Differentiate the function F(x)=lnx3x2e9xlnx2F(x)=\frac{\ln x}{3 x^{2}}-\frac{e^{-9 x}}{\ln x^{2}}.

See Solution

Problem 835

Find the second derivative H(x)H^{\prime \prime}(x) of the function H(x)=xexH(x)=x e^{x}.

See Solution

Problem 836

Evaluate the integrals: 1/etanxtdt1+t2+1/ecotxdtt(1+t2)\int_{1 / e}^{\tan x} \frac{t d t}{1+t^{2}} + \int_{1 / e}^{\cot x} \frac{d t}{t(1+t^{2})}.

See Solution

Problem 837

Find the derivative g(x)g^{\prime}(x) for the function g(x)=x21+x+ex1+x2g(x)=\frac{x^{2}}{1+x}+\frac{e^{x}}{1+x^{2}}.

See Solution

Problem 838

Let f(θ0,θ1)f(\theta_{0}, \theta_{1}) be a smooth function. Which statements about gradient descent minimizing ff are true?

See Solution

Problem 839

Check if the function f(x)f(x) is continuous at x=3x=-3 where f(x)={6+x2,x343x,x<3f(x)=\begin{cases} 6+x^{2}, & x \geq-3 \\ 4-3 x, & x<-3 \end{cases}.

See Solution

Problem 840

Identify type, order, and degree of these differential equations:
1. (d2wdx2)3+xydwdx+w=k\left(\frac{d^{2} w}{d x^{2}}\right)^{3}+x y \frac{d w}{d x}+w=k
2. d3sdt3k2t2+a4=0\frac{d^{3} s}{d t^{3}}-k^{2} t^{2}+a^{4}=0
3. y+(y)2=yy^{\prime \prime}+\left(y^{\prime}\right)^{2}=y
4. 7(xy)4(xy)2+c=2xy27\left(\frac{\partial x}{\partial y}\right)^{4}-\left(\frac{\partial x}{\partial y}\right)^{2}+c=\frac{\partial^{2} x}{\partial y^{2}}
5. (x2+y2)dx=2x2y2dy\left(x^{2}+y^{2}\right) d x=2 x^{2} y^{2} d y
6. (d3sdt3)2+s(d2sdt2)3+2st=0\left(\frac{d^{3} s}{d t^{3}}\right)^{2}+s\left(\frac{d^{2} s}{d t^{2}}\right)^{3}+2 s t=0
7. 2x38=d4ydx42 x^{3}-8=\frac{d^{4} y}{d x^{4}}
8. x2dx+y2dy=d2ydx2x^{2} d x+y^{2} d y=\frac{d^{2} y}{d x^{2}}
9. ut=h2(2ux2+2uu2)\frac{\partial u}{\partial t}=h^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial u^{2}}\right)
10. (uv)3+x2(2ux)+v3(uv)3=dvx\left(\frac{\partial u}{\partial v}\right)^{3}+x^{2}\left(\frac{\partial^{2} u}{\partial x}\right)+v^{3}\left(\frac{\partial u}{\partial v}\right)^{3}=\frac{d v}{x}

See Solution

Problem 841

Solve the DE: (1x)y=y2(1-x) y' = y^2 and determine if the solution is general or particular. Also solve: a2dx=yy2a2dya^2 dx = y \sqrt{y^2 - a^2} dy.

See Solution

Problem 842

Solve the differential equation y=xeyx2y' = x e^{-y - x^2}. Is the solution general or particular?

See Solution

Problem 843

Solve the separable differential equation xy3dx+(y+1)exdy=0x y^{3} dx + (y+1)e^{-x} dy = 0 and identify the type of solution. Also, solve y=xy3y' = x y^{3}.

See Solution

Problem 844

Solve these differential equations and identify solutions as general or particular:
1. 3vdvdy=93v \frac{dv}{dy}=9, initial: x=x0x=x_{0}, v=v0v=v_{0}.
2. y=xy3y'=xy^{3}.
3. drdt=2rt\frac{dr}{dt}=-2rt, initial: t=0t=0, r=r0r=r_{0}.
4. dVdP=VP\frac{dV}{dP}=\frac{-V}{P}.
5. r(1+lnx)dx+(1+lny)dy=0r(1+\ln x)dx+(1+\ln y)dy=0.
6. dydt=sin2xcos3E\frac{dy}{dt}=\sin^{2}x\cos^{3}E.

See Solution

Problem 845

An ice sphere melts at 2π2 \pi m³/hr. Find the surface area decrease rate when radius is 5 m. Options: (A) 4π5\frac{4 \pi}{5} (B) 40π40 \pi (C) 80π280 \pi^{2} (D) 100π100 \pi

See Solution

Problem 846

Find the integral of 1x7\frac{1}{\sqrt[7]{x}} with respect to xx.

See Solution

Problem 847

Calculate the integral: 2t3t21dt\int 2 t \sqrt{3 t^{2}-1} \, dt

See Solution

Problem 848

Evaluate the integral: lnθθdθ\int \frac{\ln \theta}{\theta} d \theta

See Solution

Problem 849

Find the derivative of the function ex2ex\frac{e^{x}}{2^{e^{x}}} with respect to xx.

See Solution

Problem 850

Evaluate Fdr\int F \cdot dr for fˉ=xyiˉzj^+x2kˉ\bar{f}=x y \bar{i}-z \hat{j}+x^{2} \bar{k} along α:x=t2,y=2t,z=t3\alpha: x=t^{2}, y=2t, z=t^{3} from t=0t=0 to t=1t=1. Ans: 5170\frac{51}{70}

See Solution

Problem 851

Evaluate Fdr\int F \cdot d r for Fˉ=xyiˉzj+x2kˉ\bar{F}=x y \bar{i}-z j+x^{2} \bar{k} along the curve x=t2,y=2t,z=t3x=t^{2}, y=2t, z=t^{3} from t=0t=0 to t=1t=1.

See Solution

Problem 852

Evaluate Fdr\int F \cdot d r for Fˉ=xyiˉzj+x2kˉ\bar{F}=x y \bar{i}-z j+x^{2} \bar{k} along the curve x=t2x=t^{2}, y=2ty=2t, z=t3z=t^{3} from t=0t=0 to t=1t=1. Answer: 5170\frac{51}{70}.

See Solution

Problem 853

Calculate the work done by the force fˉ=zˉiˉ+xjˉ+yk^\bar{f}=\bar{z} \bar{i}+x \bar{j}+y \hat{k} along the curve rˉ=costi+sintjtkˉ\bar{r}=\cos t i+\sin t j-t \bar{k} from t=0t=0 to t=2πt=2 \pi.

See Solution

Problem 854

Evaluate C(yzdx+xzdy+xydz)\oint_{C}(y z \, dx + x z \, dy + x y \, dz) over a helix defined by x=acostx=a \cos t, y=asinty=a \sin t, z=ktz=k t for tt from 0 to 2π2\pi.

See Solution

Problem 855

Evaluate C(yzdl+xzdy+lydz)\oint_{C}(y z \, dl + x z \, dy + l y \, dz) for the helix x=acost,y=asint,z=ktx=a \cos t, y=a \sin t, z=k t as tt goes from 0 to 2π2\pi.

See Solution

Problem 856

Evaluate C(yzdx+xzdy+xydz)\oint_{C}(y z d x+x z d y+x y d z) for the helix x=acost,y=asint,z=ktx=a \cos t, y=a \sin t, z=k t as tt goes from 0 to 2π2\pi.

See Solution

Problem 857

Evaluate c(yzdx+xzdy+xydz)\oint_{c}(y z d x+x z d y+x y d z) along the helix x=acost,y=asint,z=ktx=a \cos t, y=a \sin t, z=k t for tt from 0 to 2π2 \pi.

See Solution

Problem 858

Evaluate c(yzdx+xzdy+xydz)\oint_{c}(y z d x+x z d y+x y d z) on the helix x=acost,y=asint,z=ktx=a \cos t, y=a \sin t, z=k t for tt from 0 to 2π2 \pi.

See Solution

Problem 859

Evaluate (yzdx+xzdy+xydz)\oint(y z d x+x z d y+x y d z) along the helix x=acost,y=asint,z=ktx=a \cos t, y=a \sin t, z=k t for tt from 0 to 2π2 \pi.

See Solution

Problem 860

Find f(x)f(x) if dfdx=3x234e2x\frac{d f}{d x}=3 x^{2}-3-4 e^{2 x} and f(0)=8f(0)=8. Choose from options a, b, c, d.

See Solution

Problem 861

Find the limit as xx approaches 0 for 6(1cosx)x2\frac{6(1-\cos x)}{x^{2}}.

See Solution

Problem 862

What is the derivative of cosx\cos x with respect to xx?

See Solution

Problem 863

Find the integral of secytany\sec y \tan y with respect to yy.

See Solution

Problem 864

Calculate the integral (5ew+cosw+w3)dw\int (5 e^{w} + \cos w + w^{3}) \, dw.

See Solution

Problem 865

Evaluate the integral: 6y8+12y2y63y7dy\int \frac{6 y^{8}+12 y^{2}-y^{6}}{3 y^{7}} d y

See Solution

Problem 866

Find the limit: Limx34x2+9x9x3+27\operatorname{Lim}_{x \rightarrow-3} \frac{4 x^{2}+9 x-9}{x^{3}+27}.

See Solution

Problem 867

Solve the differential equation: dydx=3y\frac{dy}{dx} = 3y.

See Solution

Problem 868

Evaluate the integral 06(2+5x)e1/3xdx\int_{0}^{6}(2+5 x) e^{1 / 3 x} d x.

See Solution

Problem 869

Find the integral of sec2θ\sec^{2} \theta with respect to θ\theta.

See Solution

Problem 870

Calculate the integral of the function: coszdz\int \cos z \, dz

See Solution

Problem 871

Find the integral of 7x7^{x} with respect to xx.

See Solution

Problem 872

Calculate the integral of sinθ\sin \theta with respect to θ\theta: sinθdθ\int \sin \theta \, d\theta.

See Solution

Problem 873

Calculate the integral: 2bb2+7db\int \frac{2 b}{b^{2}+7} d b

See Solution

Problem 874

Evaluate the limit: limx0e1/x9x2\lim _{x \rightarrow 0} \frac{e^{-1 / x^{9}}}{x^{2}}

See Solution

Problem 875

Solve the differential equation dydx=3y7x+73x7y3\frac{d y}{d x}=\frac{3 y-7 x+7}{3 x-7 y-3}.

See Solution

Problem 876

Find the limit: limx0e1x2x2\lim _{x \rightarrow 0} \frac{e^{-\frac{1}{x^{2}}}}{x^{2}}.

See Solution

Problem 877

Solve the differential equation: y2x1x2xy=1y' - \frac{2x-1}{x^2-x} y = 1.

See Solution

Problem 878

Solve the differential equation: yx2x1x2xy=1y' - \frac{x^2 x - 1}{x^2 - x} y = 1.

See Solution

Problem 879

Calculate the integral J=0(x+x+y2y)dxdyJ=\int_{0}(x+x+y-2y) d x d y over the curves y=xx2y=x-x^{2} and y=xy=-x.

See Solution

Problem 880

Calculate the double integral J=0(x+xy2x)dxdyJ=\int_{0}(x + xy - 2x) \, dx \, dy over the region defined by y=xx2y=-x-x^2 and y=xy=-x.

See Solution

Problem 881

Evaluate the double integral D(x2+4y+x+25x)dxdy\iint_{D}(x^{2}+4y+x+25x) \, dx \, dy over the region DD bounded by y=xy=x and y=1y=1, where 0x,y10 \leq x, y \leq 1.

See Solution

Problem 882

A company sells Q(x)=60xx2Q(x) = 60x - x^2 units after spending $x\$x thousand on ads. Find Q(7)Q(7) and Q(7)Q'(7), and interpret.

See Solution

Problem 883

1. Find the volume of the solid with base between y=x2y=x^{2} and xx-axis, x=0x=0 to x=2x=2, with square cross sections.
2. Find the volume of the solid with base between y=secxy=\sec x and xx-axis, x=π/4x=\pi / 4 to x=π/3x=\pi / 3, with square cross sections.
3. Find the volume of the solid formed by revolving the region between the curves about the xx-axis: (a) y=25x2y=\sqrt{25-x^{2}}, y=3y=3. (b) y=9x2y=9-x^{2}, y=0y=0. (c) x=yx=\sqrt{y}, x=y/4x=y / 4. (d) y=sinxy=\sin x, y=cosxy=\cos x, x=0x=0, x=π/4x=\pi / 4.

See Solution

Problem 884

Find the volume when the area between y=x2y=x^{2} and y=x3y=x^{3} is revolved around x=1x=1. Also, find the volume for y=xy=\sqrt{x}, y=0y=0, and x=9x=9 revolved around x=9x=9.

See Solution

Problem 885

Find the volume of solids formed by revolving regions around axes for the given curves.

See Solution

Problem 886

Calculate the integral of the function: x+1xdx\int \frac{x+1}{x} \, dx.

See Solution

Problem 887

Evaluate the integral xex2dx\int x e^{-x^{2}} \, dx.

See Solution

Problem 888

Find the integral of x1x2x \sqrt{1-x^{2}} with respect to xx.

See Solution

Problem 889

Calculate the integral (12x)9dx\int(1-2 x)^{9} d x.

See Solution

Problem 890

Find the integral of sec2(2θ)dθ\sec^{2}(2\theta) \, d\theta.

See Solution

Problem 891

Simplify the expression (04y8y)\left(\frac{04 y^{8}}{y^{\prime}}\right)^{\prime}.

See Solution

Problem 892

Evaluate the integral: (lnx)2xdx\int \frac{(\ln x)^{2}}{x} \, dx

See Solution

Problem 893

Find the integral of sinxsin(cosx)\sin x \sin (\cos x) with respect to xx: sinxsin(cosx)dx\int \sin x \sin (\cos x) d x.

See Solution

Problem 894

Find the integral of the function xx+2x \sqrt{x+2} with respect to xx: xx+2dx\int x \sqrt{x+2} d x.

See Solution

Problem 895

Find the integral of tan1x1+1x2\frac{\tan^{-1} x}{1 + \frac{1}{x^2}} with respect to xx.

See Solution

Problem 896

Find the integral of 1+x1+x2\frac{1+x}{1+x^{2}} with respect to xx.

See Solution

Problem 897

Evaluate the integral 011+7x3dx\int_{0}^{1} \sqrt[3]{1+7 x} \, dx.

See Solution

Problem 898

Find the integral of sinh2xcoshx\sinh ^{2} x \cosh x with respect to xx: sinh2xcoshxdx\int \sinh ^{2} x \cosh x \, dx.

See Solution

Problem 899

Calculate the integral: x(2x+5)8dx\int x(2 x+5)^{8} d x

See Solution

Problem 900

Find the limit: A=limx+2x22x1x2+1A=\lim _{x \rightarrow+\infty} \frac{2x^{2}-2x-1}{x^{2}+1}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord