Calculus

Problem 8001

Find the tangent line equation for f(x)=x33x+1f(x)=x^{3}-3x+1 at the point (4,53)(4,53). What is y=y=?

See Solution

Problem 8002

Find the slope and equation of the tangent line to the curve f(x)=xx3f(x)=x-x^{3} at the point (1,0)(1,0). y=y=

See Solution

Problem 8003

Find the tangent line equation at (1,1)(1,-1) for f(x)=5x37x2+1f(x)=5x^3-7x^2+1. Use yy1=m(xx1)y - y_1 = m(x - x_1).

See Solution

Problem 8004

Find the derivative f(a)f^{\prime}(a) for the function f(t)=4t+8t+5f(t)=\frac{4t+8}{t+5}.

See Solution

Problem 8005

Find intervals of increase and decrease for F(x)=x6xF(x)=x \sqrt{6-x}. Also, find local min and max values.

See Solution

Problem 8006

Find the tangent line equation for f(x)=xf(x)=\sqrt{x} at the point (1,1)(1,1). What is y=y=?

See Solution

Problem 8007

Find the derivative f(9)f^{\prime}(9) for the function f(x)=10xln(x)f(x)=10 x^{\ln (x)}.

See Solution

Problem 8008

Find the derivative f(a)f^{\prime}(a) for the function f(x)=36xf(x)=\sqrt{3-6x}.

See Solution

Problem 8009

Find the tangent line equation at (2,20)(2,20) for f(x)=5x37x2+8f(x)=5 x^{3}-7 x^{2}+8. Use yy1=m(xx1)y - y_1 = m(x - x_1).

See Solution

Problem 8010

A ball is thrown with a velocity of 34ft/s34 \mathrm{ft} / \mathrm{s}. Its height is s(t)=34t16t2s(t)=34t-16t^{2}. Find the velocity at t=1st=1 \mathrm{s}.

See Solution

Problem 8011

A projectile is launched at 64 ft/s from a 45-ft platform. Find its maximum height.

See Solution

Problem 8012

A projectile is launched at 64 ft/s from a 45-ft platform. Find its maximum height. Use h(t)=16t2+64t+45h(t) = -16t^2 + 64t + 45.

See Solution

Problem 8013

Evaluate the integral: x3dx9x2\int \frac{x^{3} d x}{\sqrt{9-x^{2}}}. What is the result?

See Solution

Problem 8014

Given the cost function C(x)=44100+400x+x2C(x)=44100+400 x+x^{2}, find: a) Cost at x=1550x=1550 b) Average cost at x=1550x=1550 c) Marginal cost at x=1550x=1550 d) Production level minimizing average cost e) Minimal average cost

See Solution

Problem 8015

Find f(x)f'(x) and f(6)f'(6) for f(x)=2ln(x)f(x)=2 \ln (x). Also, find f(x)f''(x) and f(6)f''(6).

See Solution

Problem 8016

Find the area between the velocity-time graph and the time axis from t1=7.2st_{1} = 7.2s to t2=14.4st_{2} = 14.4s for displacement.

See Solution

Problem 8017

Find the limit: limx07x4+5x+123x4+4\lim _{x \rightarrow 0} \frac{7 x^{4}+5 x+12}{3 x^{4}+4}.

See Solution

Problem 8018

Find the growth rate of a snake at 3 weeks using the model L(t)=19(1(1+0.553t+0.014t2)1)L(t)=19\left(1-\left(1+0.553 t+0.014 t^{2}\right)^{-1}\right). Round to 2 decimal places.

See Solution

Problem 8019

Find the second derivative yy^{\prime \prime} for y=cscx2y=\frac{\csc x}{2}.

See Solution

Problem 8020

Write the sigma notation for the sum of f(x)=x2f(x)=x^{2} from x=1x=1 to x=2x=2 with n=30n=30.

See Solution

Problem 8021

Calculate the limit: limx0cosx+3ex2ex\lim _{x \rightarrow 0} \frac{\cos x + 3 e^{x}}{2 e^{x}}.

See Solution

Problem 8022

Find the derivative yy^{\prime} of the function y=lnx24x7y=\ln \sqrt{x^{2}-4 x-7}.

See Solution

Problem 8023

Find the derivative h(x)h^{\prime}(x) for h(x)=lnx(x1)3x2h(x)=\ln \frac{x(x-1)^{3}}{\sqrt{x-2}}. No need to simplify.

See Solution

Problem 8024

Find the derivative yy^{\prime} of the function y=35xy=3^{5x}.

See Solution

Problem 8025

A company's revenue is R(q)=q3+230q2R(q)=-q^{3}+230 q^{2} and cost is C(q)=480+10qC(q)=480+10 q.
A) Find the marginal profit function MP(q)M P(q). B) Determine the number of hundreds of units to sell for maximum profit.

See Solution

Problem 8026

Find the limit: limxπ2sinx1cos2x\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin x-1}{\cos ^{2} x}.

See Solution

Problem 8027

Find how many positive values of bb make limxbf(x)=2\lim _{x \rightarrow b} f(x)=2 for f(x)=0.1x40.5x33.3x2+7.7x1.99f(x)=0.1 x^{4}-0.5 x^{3}-3.3 x^{2}+7.7 x-1.99.

See Solution

Problem 8028

1. In a piecewise hazard rate model with intervals [τi1,τi)[\tau_{i-1}, \tau_{i}), find the survival function and mean residual-life function.

See Solution

Problem 8029

Find the tangent line equation at x=1x=1 for y=x43x25x4y=x^{4}-3x^{2}-5x-4 and graph both.

See Solution

Problem 8030

Find values of xx where the tangent line of f(x)=x39x2+24x+1f(x)=\sqrt{x^{3}-9x^{2}+24x+1} is horizontal.

See Solution

Problem 8031

Analyze the sequence an=en4na_{n}=\frac{e^{n}}{4^{n}} for convergence or divergence and find the limit if it converges.

See Solution

Problem 8032

Find the number of apartments filled, xx, that maximizes revenue given by R(x)=600x0.5x2R(x)=600x-0.5x^{2}.

See Solution

Problem 8033

Find f(x)f^{\prime}(x) and where the tangent line of f(x)=x(2x5)3f(x)=\frac{x}{(2 x-5)^{3}} is horizontal.

See Solution

Problem 8034

Given the function f(x)=4x225f(x)=\frac{4}{x^{2}-25}, which statement is FALSE?
1. Local max at (0,f(0))(0, f(0))
2. Horizontal asymptote y=0y=0
3. Increasing on (0,5)(0,5) and (5,)(5, \infty)
4. No points of inflection
5. Concave down on (5,5)(-5,5)
6. None of the above

See Solution

Problem 8035

Which statements about the graph of f(x)=27x2+2x2f(x)=27 x^{2}+\frac{2}{x}-2 are true?

See Solution

Problem 8036

Find the tangent line equation at x=2x=2 for y=x43x3+2x+4y=x^{4}-3x^{3}+2x+4. Graph both on the same axes.

See Solution

Problem 8037

Find the number of boats xx that minimizes the cost C(x)=1700040x+0.04x2C(x)=17000-40 x+0.04 x^{2}.

See Solution

Problem 8038

Identify the FALSE statement about the function f(x)=3x(x5)2f(x)=\frac{3 x}{(x-5)^{2}} and its derivatives.

See Solution

Problem 8039

Find values of xx where the tangent line of f(x)=x39x2+24x+3f(x)=\sqrt{x^{3}-9 x^{2}+24 x+3} is horizontal.

See Solution

Problem 8040

Check if the graph of f(x)=3xx63f(x)=3 x \sqrt[3]{x-6} has a vertical tangent or cusp at x=6x=6. Options: cusp, tangent, neither, both.

See Solution

Problem 8041

Consider the function f(x)=(x24x)15f(x)=(x^{2}-4x)^{\frac{1}{5}}. Which statement about f(x)f(x) is FALSE?

See Solution

Problem 8042

Find the limit: limh0sin(x+h)sinxh\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h}.

See Solution

Problem 8043

Find the derivative of y=lncos(2x)y=\ln \cos(2x).

See Solution

Problem 8044

A golfer hits a ball at 42 m/s42 \mathrm{~m/s} and 3232^{\circ}. Find the maximum height reached, ignoring air resistance.

See Solution

Problem 8045

Differentiate g(t)=ln(t(t2+1)46t17)g(t)=\ln \left(\frac{t(t^{2}+1)^{4}}{\sqrt[7]{6 t-1}}\right).

See Solution

Problem 8046

Identify the FALSE statement about the function f(x)=2x29f(x)=\frac{2}{x^{2}-9} and its derivatives.

See Solution

Problem 8047

Identify the FALSE statement about the function f(x)=(5x22x)13f(x)=\left(5 x^{2}-2 x\right)^{\frac{1}{3}}.

See Solution

Problem 8048

Find the population change in 2013 for the model P(t)=200(1.052)tP(t)=200(1.052)^{t} (in thousands). Choices are given.

See Solution

Problem 8049

Check if the graph of f(x)=2(x3)4/5f(x)=2(x-3)^{4/5} has a vertical tangent or cusp at x=3x=3. Options: neither, vertical cusp, both, vertical tangent.

See Solution

Problem 8050

Which statements about the graph of f(x)=x+sin(2x)+4f(x)=x+\sin(2x)+4 on [0,π][0, \pi] are true?

See Solution

Problem 8051

Evaluate f(x)=3x2+12x+5f(x)=3 x^{2}+12 x+5 at the endpoints 7-7 and 33. Does Rolle's Theorem apply? Find cc or enter "DNE".

See Solution

Problem 8052

A kicker must kick a ball from 34 m34 \mathrm{~m} to clear a 3.05 m3.05 \mathrm{~m} crossbar. The ball's speed is 20 m/s20 \mathrm{~m/s} at 42.242.2^{\circ}. How much higher does it go than the crossbar? Answer in m\mathrm{m}.

See Solution

Problem 8053

Calculate the derivative value f(1)=(1+2)e3(1)2f^{\prime}(1)=(-1+2)e^{3(1)^{2}}.

See Solution

Problem 8054

A pendulum of mass mm is released from horizontal. Find speed, tension, max height, and largest rr before breaking.

See Solution

Problem 8055

Evaluate f(x)=cos(3πx)f(x)=\cos(3 \pi x) at x=53x=-\frac{5}{3} and x=1x=-1. Does Rolle's Theorem apply? Find cc where f(c)=0f'(c)=0.

See Solution

Problem 8056

Find all numbers that satisfy the mean value theorem for the function f(x)=7x4xf(x)=7x-\frac{4}{x} on the interval [3,10][3,10].

See Solution

Problem 8057

Differentiate the following with respect to xx:
1. sin2x2x+5\frac{\sin 2 x}{2 x+5}
2. (3x+1)cos2xe2x\frac{(3 x+1) \cos 2 x}{e^{2 x}}
3. tanx\tan x

See Solution

Problem 8058

Which statements about the graph of f(x)=x+sin(2x)+4f(x)=x+\sin (2 x)+4 on [0,π][0, \pi] are true?

See Solution

Problem 8059

Evaluate the integral 01ln(x+1)x2+1dx\int_{0}^{1} \frac{\ln (x+1)}{x^{2}+1} dx.

See Solution

Problem 8060

Find the slope of the secant line for f(x)=4x25x+6f(x)=-4 x^{2}-5 x+6 on [3,1][-3,-1]. Then find cc in (3,1)(-3,-1) where m=f(c)m=f^{\prime}(c).

See Solution

Problem 8061

Calculate the area under the curve of 3x2x+73x^2 - x + 7 from 00 to 11 using Riemann sums: 01(3x2x+7)dx\int_{0}^{1}(3x^2 - x + 7)dx.

See Solution

Problem 8062

Find the value(s) of cc that satisfy the Mean Value Theorem for f(x)=ln(x7)f(x)=\ln(x^{7}) on the interval [1,7][1,7].

See Solution

Problem 8063

Find the derivatives of these functions: (1) y=esin2xy=e^{\sin 2 x} (2) y=sin2xy=\sin^{2} x (3) y=lncos3xy=\ln \cos 3 x (4) y=cos3(3x)y=\cos^{3}(3 x) (5) y=log10(2x1)y=\log_{10}(2 x-1).

See Solution

Problem 8064

Quiz 3: Provide examples or explanations for these functions: a. Continuous at a=2a=2, not differentiable there. b. Differentiable at a=3a=3, no limit at a=3a=3. c. Limit exists at a=2a=-2, defined there, not continuous. d. Function pp with: i. p(1)=3p(-1)=3, limx1p(x)=2\lim_{x \to -1} p(x)=2; ii. p(0)=1p(0)=1, p(0)=0p'(0)=0; iii. limx1p(x)=p(1)\lim_{x \to 1} p(x)=p(1), p(1)p'(1) doesn't exist.

See Solution

Problem 8065

Find the slope of the secant line for f(x)=2x35xf(x)=2 x^{3}-5 x on [1,4][1,4]. Then, find cc in (1,4)(1,4) where m=f(c)m=f^{\prime}(c).

See Solution

Problem 8066

Find the slope of the secant line for f(x)=3x25x+1f(x)=-3 x^{2}-5 x+1 on [3,1][-3,1]. Then, find cc in (3,1)(-3,1) where m=f(c)m=f^{\prime}(c).

See Solution

Problem 8067

How much faster is a person on an 18.6 m18.6 \mathrm{~m} building than on the ground? Use a day period and Earth's radius 6400 km6400 \mathrm{~km}.

See Solution

Problem 8068

Find the mean slope of f(x)=32x2f(x)=3-2x^{2} on [5,4][-5,4] and the value of cc where f(c)f'(c) equals this slope.

See Solution

Problem 8069

Given f(x)=1x2f(x)=\frac{1}{x^{2}} on [2,2][-2,2], answer: a. Is f(2)=f(2)f(-2)=f(2)? b. Is ff continuous on [2,2][-2,2]? c. Is ff differentiable on (2,2)(-2,2)? d. Can Rolle's or Mean Value Theorem apply? e. If applicable, find cc. c=c=

See Solution

Problem 8070

Find the derivative of the function f(x)=2tan1(6sin(2x))f(x)=2 \tan ^{-1}(6 \sin (2 x)), i.e., compute f(x)f^{\prime}(x).

See Solution

Problem 8071

Find the average slope of the function f(x)=5x34xf(x)=5 x^{3}-4 x on [2,2][-2,2] and determine the two values of cc where f(c)f^{\prime}(c) equals this slope.

See Solution

Problem 8072

Find the limit: limh0(16+h)142h\lim _{h \rightarrow 0} \frac{(16+h)^{\frac{1}{4}}-2}{h}. What is its value?

See Solution

Problem 8073

Find the derivative of the function f(x)=6tan1(8sin(3x))f(x)=6 \tan ^{-1}(8 \sin (3 x)), denoted as f(x)f^{\prime}(x).

See Solution

Problem 8074

Choose the correct answer for the given conditions on the function f(x)f(x) and its derivatives.
2. If f(x)>0f^{\prime \prime}(x)>0, then f(x)f(x) is: a. Concave up b. Concave down c. Increasing d. Decreasing e. Neither
3. If f(x)<0f^{\prime \prime}(x)<0, then f(x)f(x) is: a. Concave up b. Concave down c. Increasing d. Decreasing e. Neither
4. If f(x)>0f^{\prime}(x)>0, then f(x)f(x) is: a. Concave up b. Concave down c. Increasing d. Decreasing e. Neither
5. If f(x)=0f^{\prime}(x)=0, then f(x)f(x) is: a. Concave up b. Concave down c. Increasing d. Decreasing e. Neither

See Solution

Problem 8075

Jamie needs to find the optimal landing point L=(x,0)L=(x,0) to minimize travel time T(x)T(x) from J=(0,a)J=(0,a) to D=(c,b)D=(c,-b).
a. Derive the formula for total travel time T(x)T(x). b. Show that T(x)=sin(LJO)psin(LDN)qT'(x)=\frac{\sin (LJO)}{p}-\frac{\sin (LDN)}{q} at the minimum travel time. c. Prove that the critical xx produces a local minimum for T(x)T(x).

See Solution

Problem 8076

Choose the correct option for each statement about the function f(x)f(x):
2. If f(x)>0f^{\prime \prime}(x)>0, then f(x)f(x) is: a. Concave up b. Concave down c. Increasing d. Decreasing e. Neither
3. If f(x)<0f^{\prime \prime}(x)<0, then f(x)f(x) is: a. Concave up b. Concave down c. Increasing d. Decreasing e. Neither
4. If f(x)>0f^{\prime}(x)>0, then f(x)f(x) is: a. Concave up b. Concave down c. Increasing d. Decreasing e. Neither
5. If f(x)=0f^{\prime}(x)=0, then f(x)f(x) is: a. Concave up b. Concave down c. Increasing d. Decreasing e. Neither

See Solution

Problem 8077

Find the growth rate of the epidemic given by P=7001+20,000e0.549tP=\frac{700}{1+20,000 e^{-0.549 t}} after 10, 20, and 30 years.

See Solution

Problem 8078

A toy rocket launched from a 5-ft pad at 160 ft/s reaches max height. Find time to max height and the max height. Use h(t)=16t2+160t+5h(t)=-16t^2+160t+5.

See Solution

Problem 8079

Berechnen Sie die Ableitung f(x)f'(x) der Funktion f(x)=x36x2+20f(x)=x^{3}-6 x^{2}+20 und den Wert von f(1)f'(-1).

See Solution

Problem 8080

Zeigen Sie, dass die Funktion f(x)=x36x2+20f(x)=x^{3}-6x^{2}+20 bei x=2x=2 einen Wendepunkt hat.

See Solution

Problem 8081

Bestimme die Ableitung von f(x)=72.5x43x27f(x)=7 \cdot \sqrt{2.5 x}-\frac{4}{3} x^{2}-7.

See Solution

Problem 8082

Find the limit: limn4n+5(8n+38n+1)\lim _{n \rightarrow \infty} \sqrt{4 n+5}(\sqrt{8 n+3}-\sqrt{8 n+1}).

See Solution

Problem 8083

Berechne f(12)f^{\prime}(12) und den Durchschnitt f(18)f(12)1812\frac{f(18)-f(12)}{18-12} für f(x)=0,1xt3+4,5xt266,3x+322,7f(x)=0,1 x t^3+4,5 x t^2-66,3 x +322,7.

See Solution

Problem 8084

Find the limit: limn81n4+6n3+281n4n5n+1\lim _{n \rightarrow \infty} \frac{\sqrt{81 n^{4}+6 n^{3}+2}-\sqrt{81 n^{4}-n-5}}{n+1}.

See Solution

Problem 8085

Find the extrema of ft(x)=x3tx2+9tf_{t}(x)=x^{3}-t \cdot x^{2}+9 t and use the first derivative test.

See Solution

Problem 8086

Berechne die Fläche zwischen dem Graphen von ff und der xx-Achse für: a) f(x)=3x23f(x)=3 x^{2}-3, b) f(x)=4x2f(x)=4-x^{2}, c) f(x)=5x480f(x)=5 x^{4}-80, d) f(x)=x33xf(x)=x^{3}-3 x.

See Solution

Problem 8087

Gegeben sind die Funktionen p(x)=x2x+1p(x)=-x^{2}-x+1 und q(x)=exq(x)=\mathrm{e}^{-x}.
(1) Wie entsteht der Graph von qq' aus qq? (2) Zeigen Sie, dass pp und qq im gemeinsamen Punkt eine Tangente haben und geben Sie deren Gleichung an. (3) Berechnen Sie 02(q(x)p(x))dx\int_{0}^{2}(q(x)-p(x)) \mathrm{d} x und interpretieren Sie den Wert geometrisch.

See Solution

Problem 8088

Find the limit: limn(4n23n+24n2+n1)2n\lim _{n \rightarrow \infty}\left(\frac{4 n^{2}-3 n+2}{4 n^{2}+n-1}\right)^{2 n}.

See Solution

Problem 8089

Find limx2f(x)\lim _{x \rightarrow 2} f(x) given that limx22f(x)+πx23x+2=e\lim _{x \rightarrow 2} \frac{2 f(x)+\pi}{x^{2}-3 x+2}=e.

See Solution

Problem 8090

When marginal revenue equals marginal cost, what does it imply for the company? a. max profit b. min profit c. expand output d. shutdown point

See Solution

Problem 8091

Bestimme den Schnittwinkel der Funktionen f(x)=2x2+5x2f(x)=2 x^{2}+5 x-2 und g(x)=2x25x+2g(x)=2 x^{2}-5 x+2 an ihrem Schnittpunkt.

See Solution

Problem 8092

Bestimmen Sie die Ableitung der Funktion f(x)=23f(x) = \sqrt[3]{2}, also f(x)f'(x).

See Solution

Problem 8093

Find the limit: limx103x284x2+99x3\lim _{x \rightarrow \infty} \frac{103 x^{2}-8}{4 x^{2}+99 x-3}.

See Solution

Problem 8094

Find the limit: limx(2)x+3x(2)x+1+3x+1\lim _{x \rightarrow \infty} \frac{(-2)^{x}+3^{x}}{(-2)^{x+1}+3^{x+1}}.

See Solution

Problem 8095

Determine the horizontal asymptote of g(x)=(x2)3(x+4)(x+5)(x2)g(x)=\frac{(x-2)^{3}(x+4)}{(x+5)(x-2)}.

See Solution

Problem 8096

Find the rate of change of the cost function C(Q)=a2Q3+bC(Q)=\frac{a}{2} Q^{3}+b when production changes from QQ to Q+hQ+h.

See Solution

Problem 8097

Find the rate of change of the revenue function R(Q)=100Q2+500R(Q)=100 Q^{2}+500 as ΔR(Q0)/ΔQ\Delta R\left(Q_{0}\right) / \Delta Q.

See Solution

Problem 8098

Prove that the series n=1an\sum_{n=1}^{\infty} a_{n}, where an=1/ka_{n} = 1/k for odd nn and an=1/ka_{n} = -1/k for even nn, is conditionally convergent.

See Solution

Problem 8099

Finde die x-Koordinaten und zeichne die Graphen von f(x)=0,5x3f(x) = 0,5x^{3} und g(x)=0,25x5g(x) = 0,25x^{5}. Bestimme Nullstellen, Extrema und Wendepunkte.

See Solution

Problem 8100

Find the limit as h approaches 0 for tan(x)+tan(h)tan(x)(1tan(x)tan(h))h(1tan(x)tan(h))\frac{\tan (x)+\tan (h)-\tan (x)(1-\tan (x) \tan (h))}{h(1-\tan (x) \tan (h))} and show it simplifies to sec2(x)\sec^2(x).

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord