Calculus

Problem 25001

Estimate e0.01e^{-0.01} using linear approximation or differentials.

See Solution

Problem 25002

Find the linearization L(x)L(x) of f(x)=x4+4x2f(x)=x^{4}+4x^{2} at a=1a=1. What is L(x)L(x)?

See Solution

Problem 25003

Find the linear approximation of g(x)=1+x3g(x)=\sqrt[3]{1+x} at a=0a=0. Use it to estimate 0.953\sqrt[3]{0.95} and 1.13\sqrt[3]{1.1} (3 decimal places).

See Solution

Problem 25004

If nicotine constricts artery diameter by 11%, what pressure difference (in mm Hg) is needed for blood flow if normal is 9.1 mm Hg?

See Solution

Problem 25005

Find the linear approximation of f(x)=4xf(x)=\sqrt{4-x} at a=0a=0. Use L(x)L(x) to estimate 3.9\sqrt{3.9} and 3.99\sqrt{3.99}.

See Solution

Problem 25006

Find the differential of each function: (a) y=x2sin6xy=x^{2} \sin 6 x, (b) y=ln5+t2y=\ln \sqrt{5+t^{2}}.

See Solution

Problem 25007

Find the differential of the functions: (a) y=etanπty=e^{\tan \pi t}; (b) y=3+lnzy=\sqrt{3+\ln z}.

See Solution

Problem 25008

Find the linear approximation of f(x)=4xf(x)=\sqrt{4-x} at a=0a=0: L(x)=214xL(x)=2-\frac{1}{4} x. Use L(x)L(x) to estimate 3.9\sqrt{3.9} and 3.99\sqrt{3.99}.

See Solution

Problem 25009

Find the differential dyd y for y=tanxy=\tan x. Then evaluate dyd y at x=π/3x=\pi/3 and dx=0.05d x=-0.05.

See Solution

Problem 25010

Find the value of cc guaranteed by the Mean Value Theorem for q(x)=4x2+5x10q(x) = 4x^2 + 5x - 10 on [4,1][-4,1].

See Solution

Problem 25011

Find the derivative f(x)f^{\prime}(x) of the function f(x)=1x2+x+33f(x)=\frac{1}{\sqrt[3]{x^{2}+x+3}}.

See Solution

Problem 25012

Find the first and second derivatives of y=sin(x2)y=\sin(x^2). What are yy' and yy''?

See Solution

Problem 25013

Find the derivative of the function F(x)=(x4+9x27)3F(x)=(x^{4}+9 x^{2}-7)^{3}. What is F(x)F^{\prime}(x)?

See Solution

Problem 25014

Find the derivative of the function y=(x2+3x23)3y=\left(\frac{x^{2}+3}{x^{2}-3}\right)^{3}. What is yy^{\prime}?

See Solution

Problem 25015

Find the derivative of f(x)=(2x2)4(x2+x+1)5f(x)=(2x-2)^{4}(x^{2}+x+1)^{5}. What is f(x)f'(x)?

See Solution

Problem 25016

Find F(2)F^{\prime}(2) for F(x)=f(g(x))F(x)=f(g(x)) with given values: f(3)=8f(3)=8, f(3)=9f^{\prime}(3)=9, g(2)=3g(2)=3, g(2)=5g^{\prime}(2)=5.

See Solution

Problem 25017

Plot f(x)=ex2f(x) = e^{-x^2} on [0,1][0,1] and solve f(x)=(average value)f(x) = \text{(average value)} using n=500n=500 partitions.

See Solution

Problem 25018

Find the derivative of f(x)=(2x2)4(x2+x+1)5f(x)=(2x-2)^{4}(x^{2}+x+1)^{5}. What is f(x)f^{\prime}(x)?

See Solution

Problem 25019

Find the derivative of the function y=cos(a3+x3)y=\cos(a^{3}+x^{3}). What is y(x)y'(x)?

See Solution

Problem 25020

Find the derivative of y=cot2(cosθ)y=\cot^{2}(\cos \theta). What is yy'?

See Solution

Problem 25021

Find the derivative of the function y=xsin2xy=x \sin \frac{2}{x}. What is y(x)y'(x)?

See Solution

Problem 25022

Find the second partial derivatives of f(x,y)=ln(1xy)+2ln(x)+ln(y)f(x, y) = \ln(1-x-y) + 2\ln(x) + \ln(y) for x,y(0,1]x, y \in (0,1]. Specifically, compute 2fx2\frac{\partial^2 f}{\partial x^2}, 2fy2\frac{\partial^2 f}{\partial y^2}, and 2fxy\frac{\partial^2 f}{\partial x \partial y}.

See Solution

Problem 25023

Differentiate y=2x5cotxy=\frac{2x}{5-\cot x} and find y=y'=\square.

See Solution

Problem 25024

Find the limit: limx0cos(7x)cos(8x)x2\lim _{x \rightarrow 0} \frac{\cos (7 x)-\cos (8 x)}{x^{2}} using I'Hospital's Rule.

See Solution

Problem 25025

Differentiate F(y)=(1y27y4)(y+3y3)F(y)=\left(\frac{1}{y^{2}}-\frac{7}{y^{4}}\right)\left(y+3 y^{3}\right).

See Solution

Problem 25026

Find the second derivative f(3)f^{\prime \prime}(3) for the function f(x)=x23+xf(x)=\frac{x^{2}}{3+x}.

See Solution

Problem 25027

Differentiate y=7x2sinxtanx y=7 x^{2} \sin x \tan x using the Product Rule. What is y y' ?

See Solution

Problem 25028

Differentiate y=2x5cotx y = \frac{2x}{5 - \cot x} and find y y' .

See Solution

Problem 25029

Find the tangent line equation for the curve y=x21x2+x+1y=\frac{x^{2}-1}{x^{2}+x+1} at the point (1,0).

See Solution

Problem 25030

Evaluate the Riemann sum for f(x)=3x22xf(x)=3x^{2}-2x from 00 to 33 with n=6n=6 using right endpoints.

See Solution

Problem 25031

Given f(5)=1,f(5)=8,g(5)=6f(5)=1, f^{\prime}(5)=8, g(5)=-6, and g(5)=7g^{\prime}(5)=7, find: (a) (fg)(5)(f g)^{\prime}(5), (b) (f/g)(5)(f / g)^{\prime}(5), (c) (g/f)(5)(g / f)^{\prime}(5).

See Solution

Problem 25032

Find the limits of the sequences an=(qn+5n+11n)1/na_n = (q^n + 5^n + 11^n)^{1/n}, bn=qn+n2nb_n = \sqrt[n]{q^n + n^2}, and cn=sin(qnπ)nc_n = \frac{\sin(q^n \pi)}{n}.

See Solution

Problem 25033

Funktion f beschreibt tägliche Übernachtungen (in 1000) ab 2020. Analysiere die Aussagen (1)-(6) für f(t)=0,15(t15)e0,1t+8f(t)=0,15 \cdot(t-15) \cdot e^{-0,1 t}+8.

See Solution

Problem 25034

Calculate the integral from 1 to 4 of the function x24x+2x^{2}-4 x+2.

See Solution

Problem 25035

Find the general antiderivative of f(x)=55xx3xf(x)=\frac{5-5x-x^{3}}{\sqrt{x}}. Use xn=xn+1n+1x^{n} = \frac{x^{n+1}}{n+1}.

See Solution

Problem 25036

Calculate the integral (cos(x)sin3(x))dx\int\left(\cos (x) \sin ^{3}(x)\right) d x.

See Solution

Problem 25037

Find the integral of the function: (8x3+1x2+x)dx\int\left(8 x^{3}+\frac{1}{x^{2}}+\sqrt{x}\right) d x.

See Solution

Problem 25038

Bestimme das Maximum der Erkrankten e(t)=1400t2(t48)e(t)=-\frac{1}{400} t^{2}(t-48) und die maximale Wachstumsrate. Wann endet die Epidemie?

See Solution

Problem 25039

Evaluate the integral: 14(1+x)1/2xdx\int_{1}^{4} \frac{(1+\sqrt{x})^{1 / 2}}{\sqrt{x}} d x

See Solution

Problem 25040

Find the limit: limx(xsin(πx))\lim _{x \rightarrow \infty}\left(x \sin \left(\frac{\pi}{x}\right)\right).

See Solution

Problem 25041

Find the area between the curves y=x24y = x^2 - 4 and y=2x2+3x+2y = -2x^2 + 3x + 2.

See Solution

Problem 25042

Evaluate the integral I=012f(t)dt=012t(t21)(t+1)dtI=\int_{0}^{12} f(t) dt=-\int_{0}^{12} t(t-21)(t+1) dt.

See Solution

Problem 25043

A projectile is fired at v0=150 m/sv_0 = 150\ \text{m/s} and θ=47\theta = 47^\circ. Find the max height HH with g=9.81 m/s2g = 9.81\ \text{m/s}^2.

See Solution

Problem 25044

Find the volume of the solid formed by y=xy=\sqrt{x}, x=4x=4, x=9x=9, and the xx axis, when rotated about the xx axis.

See Solution

Problem 25045

Find when the velocity of the object given by g(t)=23t352t2+3t+7g(t) = \frac{2}{3} t^3 - \frac{5}{2} t^2 + 3t + 7 is decreasing.

See Solution

Problem 25046

Calculate the integral from 1 to e: 1elnxdx\int_{1}^{e} \ln x \, dx.

See Solution

Problem 25047

Find the integral of the function: (8x3+1x2+x)dx\int \left(8x^3 + \frac{1}{x^2} + \sqrt{x}\right) dx.

See Solution

Problem 25048

Find where f(x)f(x) is concave up and down, and determine the points of inflection for f(x)=x46x3f(x)=x^{4}-6 x^{3}.

See Solution

Problem 25049

Bestimmen Sie die Ableitungen der folgenden Funktionen mit der linearen Kettenregel: a) f(x)=sin(3x2)f(x)=\sin (3 x-2), b) f(x)=cos(0,5x+3)f(x)=\cos (0,5 x+3), c) f(x)=sin(7x1)f(x)=\sin (7 x-1), d) f(x)=7x3f(x)=\sqrt{7 x-3}, e) h(z)=(3z4)4zh(z)=(3 z-4)^{4 z}, f) f(a)=13a5f(a)=\frac{1}{3 a-5}.

See Solution

Problem 25050

Find the limit: limx(xsin(πx))\lim _{x \rightarrow \infty}\left(x \sin \left(\frac{\pi}{x}\right)\right).

See Solution

Problem 25051

Find the derivative of f(x)=(x23x)5f(x) = (x^{2} - 3x)^{5}.

See Solution

Problem 25052

Find f(x)f^{\prime}(x) for: a) f(x)=(x23x)5f(x)=(x^{2}-3x)^{5} b) f(x)=xtan2(x)f(x)=\sqrt{x} \tan^{2}(x).

See Solution

Problem 25053

Find the derivative of the function f(x)=xtan2(x)f(x) = \sqrt{x} \tan^2(x).

See Solution

Problem 25054

Find the integral: 3csc(7x)cot(7x)dx\int 3 \csc (7 x) \cot (7 x) \, dx

See Solution

Problem 25055

Evaluate the integral using substitution: 0π2xsin(5x2)dx\int_{0}^{\sqrt{\pi}} 2 x \sin(5 x^{2}) \, dx.

See Solution

Problem 25056

Find the average rate of change of power output from x=4x=4 hours (20 MW) to x=12x=12 hours (80 MW).

See Solution

Problem 25057

Bestimme die Tangentengleichung an f(x)=2e12xf(x)=2 e^{-\frac{1}{2} x} im Schnittpunkt mit der yy-Achse.

See Solution

Problem 25058

Zeichne ein Flächenstück unter f(x)=2e12xf(x)=2 e^{-\frac{1}{2} x}, das Fläche 1,5 hat, und gib den Berechnungsterm an.

See Solution

Problem 25059

Evaluate these integrals: a. (8x3+1x2+x)dx\int(8 x^{3}+\frac{1}{x^{2}}+\sqrt{x}) dx b. (cos(x)sin3(x))dx\int(\cos(x) \sin^{3}(x)) dx c. 14(1+x)1/2xdx\int_{1}^{4} \frac{(1+\sqrt{x})^{1/2}}{\sqrt{x}} dx

See Solution

Problem 25060

Calculate the integral of (5x3)2(5 x-3)^{2} with respect to xx.

See Solution

Problem 25061

Find the integral of (2x+6)8(2 x+6)^{8} with respect to xx.

See Solution

Problem 25062

Find the intervals where the function ff is decreasing given that ff^{\prime} has two zeros and selected values of f(x)f^{\prime}(x).

See Solution

Problem 25063

Find the integral of cos(πθ)\cos (\pi \theta) with respect to θ\theta.

See Solution

Problem 25064

Calculate the integral: 2165xdx\int_{-2}^{1} \sqrt{6-5 x} \, dx

See Solution

Problem 25065

Find the fluid force on a semicircular plate (radius 14ft14 \mathrm{ft}) submerged in water (depth 15ft15 \mathrm{ft}).

See Solution

Problem 25066

Find the derivative of the function f(x)=2+(11x2)f(x) = 2 + \left(\frac{-1}{\sqrt{1-x^{2}}}\right). What is f(x)f'(x)?

See Solution

Problem 25067

d. Find 3csc(7x)cot(7x)dx\int 3 \csc (7 x) \cot (7 x) d x. e. Calculate (2x+6)8dx\int(2 x+6)^{8} d x. f. Evaluate cos(πθ)dθ\int \cos (\pi \theta) d \theta. g. Solve 2165xdx\int_{-2}^{1} \sqrt{6-5 x} d x.

See Solution

Problem 25068

Berechne die Elastizität von y=3xexp(42x)y=3 x \exp (4-2 x) für x=0.01x=0.01 und x=4.39x=4.39. Ergebnisse als Dezimalzahlen, gerundet auf zwei Nachkommastellen.

See Solution

Problem 25069

Consider the vector field F=4ytanxsec2xi+(2tan2x+4y)j\mathbf{F}=4 y \tan x \sec ^{2} x \mathbf{i}+\left(2 \tan ^{2} x+4 y\right) \mathbf{j}.
(a) Prove F\mathbf{F} is conservative. (b) Determine the potential function ff.

See Solution

Problem 25070

Bestimme die jährliche Fahrstrecke xx (in 1000 km1000 \mathrm{~km}), um die Durchschnittskosten minimal zu halten. Kostenformel: K=1302+120x+32xln(x)+12x2K = 1302 + 120x + 32x \ln(x) + 12x^2.

See Solution

Problem 25071

Find the gradient F=f\mathbf{F}=\nabla f for the function f(x,y,z)=zex+y+zexzf(x, y, z)=z e^{x+y}+z e^{x-z}.

See Solution

Problem 25072

Finde das Minimum der Funktion f(x)=6x2+12x+3f(x)=6 x^{2}+12 x+3. Ergebnisse als Dezimalzahl (4 Nachkommastellen) angeben: xmin=x_{\text{min}}=, ymin=y_{\text{min}}=. Bestimme f(xmin)=f^{\prime \prime}(x_{\min })=.

See Solution

Problem 25073

Bearbeite eine der drei Aufgaben: Zeige, dass das Volumen der Flüssigkeit in den ersten 4 Stunden zunimmt und finde tt, wenn f(t)=7f(t)=7.

See Solution

Problem 25074

Ein Behälter hat anfangs 2 Liter. Berechne, wann er 7 Liter erreicht, wenn f(t)=t(t4)f(t)=-t(t-4) die Zuflussrate ist.

See Solution

Problem 25075

Given the vector function F=3xyi+2yzj+xzk\mathbf{F}=3xy\mathbf{i}+2yz\mathbf{j}+xz\mathbf{k}, find:
(a) curl F\mathbf{F}.
(b) Is F\mathbf{F} conservative? Explain.
(c) Calculate work done by F\mathbf{F} along curve CC from (1,0,0)(1,0,0) to (0,2,0)(0,2,0) to (0,0,3)(0,0,3) to (4,0,0)(-4,0,0).

See Solution

Problem 25076

Sketch the area between y=xy = \sqrt{x}, x=4x = 4, and x=9x = 9. Find the volume when this area is revolved around the x-axis.

See Solution

Problem 25077

Berechnen Sie die Fläche zwischen g(x)=12x+2g(x) = \frac{1}{2} x + 2 und der x-Achse von x=0x=0 bis x=4x=4.

See Solution

Problem 25078

Find the average rate of change of f(x)=2x2+8f(x)=2 x^{2}+8 from x=2x=2 to x=6x=6. A. 2 B. 4 C. 12 D. 16

See Solution

Problem 25079

Calculez f(x)f^{\prime}(x) pour f(x)=ex+lnx+ln(x+ex)+π2x2f(x)=e^{x+\ln x}+\ln \left(x+e^{x}\right)+\pi^{-2 x^{2}}.

See Solution

Problem 25080

Find values of aa and bb for the function f(x)={ax if x1bx2+x+1 if x>1f(x)=\left\{\begin{array}{ll}a x & \text { if } x \leq 1 \\ b x^{2}+x+1 & \text { if } x>1\end{array}\right. to ensure continuity at x=1x=1. Express aa in terms of bb.

See Solution

Problem 25081

Bestimme den Betrag der Elastizität von f(x)=(4x4+7)2f(x)=(4 x^{4}+7)^{2} bei x=1.8x^{*}=1.8 und runde auf zwei Dezimalstellen!

See Solution

Problem 25082

Find the derivative of f(x)=3(x2+5)4 f(x) = 3\left(x^{2} + 5\right)^{4} .

See Solution

Problem 25083

Find the tangent line to f(x)=x22x+3f(x)=x^{2}-2x+3 that is parallel to 4xy+1=04x-y+1=0.

See Solution

Problem 25084

Find aa and bb for the function f(x)={axx1bx2+x+1x>1f(x)=\begin{cases}a x & x \leq 1 \\ b x^{2}+x+1 & x>1\end{cases} to be continuous and differentiable at x=1x=1.
Continuity: a=b+2a=b+2; Differentiability: a=Numbera=\text{Number}.

See Solution

Problem 25085

Die Elastizität von P(x)P(x) bei x0=63x_0 = 63 beträgt 0.27. Welche Aussage ist korrekt?
1. Bei Verdopplung von xx steigt PP auf 1.20581.2058.
2. Bei 2%2\% Rückgang von PP sinkt xx um 0.54%0.54\%.
3. Steigt xx auf 65.5265.52, steigt PP um 1.08%1.08\%.
4. Sinkt xx auf 6262, sinkt PP um 27%27\%.

See Solution

Problem 25086

Ableitungsregeln und Differentiation: 1. Nennen Sie Ableitungsregeln. 2. Leiten Sie folgende Funktionen ab. 3. Finden Sie Fehler in den Ableitungen. 4. Für f(x)=(x6)xf(x)=(x-6) \cdot \sqrt{x}: a) Nullstellen, b) Ableitung, c) Extremum, d) Steigungswinkel bei x=6x=6, e) Graph skizzieren. 5. Bestimmen Sie die Anleitung von ff.

See Solution

Problem 25087

Find the average rate of change of f(x)=5x22x+6f(x)=5 x^{2}-2 x+6 between x=2x=2 and x=4x=4.

See Solution

Problem 25088

Given the position function s(t)=2t416t364t2+64ts(t)=2 t^{4}-16 t^{3}-64 t^{2}+64 t, find: a) v(t)v(t), b) when v(t)=64v(t)=64, c) when a(t)=0a(t)=0.

See Solution

Problem 25089

Find the derivative of the Phillips curve y=9.638x1.3940.900y=9.638 x^{-1.394}-0.900 at x=2%x=2\% and x=7%x=7\%. Round to two decimal places. Interpret results.

See Solution

Problem 25090

Soit f(x)=9x2(x4)2f(x)=\frac{9 x^{2}}{(x-4)^{2}}. Trouvez le domaine, les asymptotes, et les nombres critiques de ff.

See Solution

Problem 25091

Find the integral of cos3(14x)\cos^3\left(\frac{1}{4} x\right) with respect to xx.

See Solution

Problem 25092

Differentiate the function y=x34x29(3x+5)5y=\frac{x^{\frac{3}{4}} \sqrt{x^{2}-9}}{(3 x+5)^{5}} using logarithmic differentiation.

See Solution

Problem 25093

A company’s cost function is C(x)=7x+80C(x)=7x+80. Find the average cost AC(x)AC(x), marginal average cost MAC(x)MAC(x), and MAC(22)MAC(22).

See Solution

Problem 25094

Find the derivative of y=(x5+2)2(x3+4)5y=\left(x^{5}+2\right)^{2}\left(x^{3}+4\right)^{5} using logarithmic differentiation.

See Solution

Problem 25095

Find the derivative f(x)f^{\prime}(x) of the function f(x)=13x3x4f(x)=\frac{1}{3} x^{3}-x^{4} and evaluate it at x=2x=-2.

See Solution

Problem 25096

Gegeben ist f(x)=(x6)x,x0f(x)=(x-6) \cdot \sqrt{x}, x \geq 0. Finde Nullstellen, Ableitung, Extremum, Steigungswinkel bei x=6x=6 und skizziere den Graphen.

See Solution

Problem 25097

Vereinfachen Sie den Integranden und berechnen Sie das Integral:
13(4x30,25x2)dx,864(1x23)dx,12(54x40,25x4)dx \int_{1}^{3}\left(4 x^{3} \cdot \frac{0,25}{x^{2}}\right) d x, \quad \int_{8}^{64}\left(\frac{1}{x^{\frac{2}{3}}}\right) d x, \quad \int_{1}^{2}\left(\frac{5}{4 x^{4}}-0,25 x^{-4}\right) d x

See Solution

Problem 25098

Find the curvature KK of the curve y=5x2+7y=5x^{2}+7 at x=1x=-1.

See Solution

Problem 25099

Soit f(x)=9x2(x4)2f(x)=\frac{9 x^{2}}{(x-4)^{2}}.
(a) Déterminez le domaine de ff. (b) Trouvez les asymptotes (verticales et horizontales). (c) Montrez que f(x)=72x(x4)3f^{\prime}(x)=\frac{-72 x}{(x-4)^{3}} et trouvez les nombres critiques. (d) Montrez que f(x)=144(x+2)(x4)4f^{\prime \prime}(x)=\frac{144(x+2)}{(x-4)^{4}} et trouvez les nombres critiques de ff^{\prime}.

See Solution

Problem 25100

Find values of aa and bb so that the function ff is differentiable at x=2x=2 where:
f(x)={bx2+ax3aif x<2x3+ax2+8if x2f(x) = \begin{cases} b x^{2} + a x - 3a & \text{if } x < 2 \\ x^{3} + a x^{2} + 8 & \text{if } x \geq 2 \end{cases}

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord