Identities & Equations

Problem 1

Express tan35+tan55 \tan 35^{\circ}+\tan 55^{\circ} using k k if cos35=k \cos 35^{\circ}=k .

See Solution

Problem 2

Prove that sin3θ+sinθ=4sinθ4sin3θ\sin 3\theta + \sin \theta = 4 \sin \theta - 4 \sin^3 \theta.

See Solution

Problem 3

Find the equivalent expression for sin(π5)\sin \left(\frac{\pi}{5}\right) from the options: A) cos(π5)-\cos \left(\frac{\pi}{5}\right) B) sin(π5)-\sin \left(\frac{\pi}{5}\right) C) cos(3π10)\cos \left(\frac{3 \pi}{10}\right) D) sin(7π10)\sin \left(\frac{7 \pi}{10}\right)

See Solution

Problem 4

Prove that cos2xcosx2cos3xcos9x2=sin5xsin5x2\cos 2x \cos \frac{x}{2} - \cos 3x \cos \frac{9x}{2} = \sin 5x \sin \frac{5x}{2}.

See Solution

Problem 5

Find the equivalent expression for secθtanθsinθ\sec \theta - \tan \theta \sin \theta.

See Solution

Problem 6

Prove that Cos2θ+Sin2θ=1\operatorname{Cos}^{2} \theta+\operatorname{Sin}^{2} \theta=1. Do all rough work on the answer scripts.

See Solution

Problem 7

Show that cos2θ+sin2θ=1 \cos^{2} \theta + \sin^{2} \theta = 1 .

See Solution

Problem 8

Show that cos2θ+sin2θ=1\cos ^{2} \theta+\sin ^{2} \theta=1 is true for any angle θ\theta.

See Solution

Problem 9

Prove the identity: 1cosxcosx1+sinx=tanx\frac{1}{\cos x}-\frac{\cos x}{1+\sin x}=\tan x using trigonometric identities.

See Solution

Problem 10

Prove the identity: 1cosxcosx1+sinx=tanx\frac{1}{\cos x}-\frac{\cos x}{1+\sin x}=\tan x.

See Solution

Problem 11

sinα=cosα\sin \alpha=\cos \alphacos2α=0\cos 2 \alpha=0 的哪种条件? A. 充分不必要 B. 必要不充分 C. 充分必要 D. 既不充分也不必要

See Solution

Problem 12

Prove the identity: sinx1+cosx+1+cosxsinx=2sinx\frac{\sin x}{1+\cos x}+\frac{1+\cos x}{\sin x}=\frac{2}{\sin x}.

See Solution

Problem 13

Find sinθ\sin \theta given cscθ=445\csc \theta = \frac{\sqrt{44}}{5}. Rationalize denominators if needed.

See Solution

Problem 14

Find the other trigonometric functions of θ\theta if sinθ=36\sin \theta=-\frac{\sqrt{3}}{6} and cosθ>0\cos \theta>0.

See Solution

Problem 15

Find sinθ\sin \theta given cscθ=204\csc \theta = \frac{\sqrt{20}}{4}. Simplify your answer, including any radicals.

See Solution

Problem 16

Find sinθ\sin \theta given cscθ=1176\csc \theta = \frac{\sqrt{117}}{6}. Simplify your answer.

See Solution

Problem 17

Find sinθ\sin \theta given cscθ=184\csc \theta = \frac{\sqrt{18}}{4}. Simplify and rationalize if needed.

See Solution

Problem 18

Find sinθ\sin \theta given cscθ=442\csc \theta = \frac{\sqrt{44}}{2}. Simplify your answer.

See Solution

Problem 19

Rewrite sin61\sin 61^{\circ} using its cofunction. What is sin61=\sin 61^{\circ}=? (Provide the answer without the degree symbol.)

See Solution

Problem 20

Rewrite tan74\tan 74^{\circ} using its cofunction. What is tan74=\tan 74^{\circ}=? Simplify your answer without the degree symbol.

See Solution

Problem 21

Solve the equations: a) 2sinxsinx1+cosx=1+cosxsinx\frac{2}{\sin x}-\frac{\sin x}{1+\cos x}=\frac{1+\cos x}{\sin x}; c) tgx(cotg2x1)=cotgx(1tg2x)\operatorname{tg} x\left(\operatorname{cotg}^{2} x-1\right)=\operatorname{cotg} x\left(1-\operatorname{tg}^{2} x\right).

See Solution

Problem 22

Find cosθ\cos \theta if sinθ=1213\sin \theta=\frac{12}{13} and θ\theta is in quadrant II.

See Solution

Problem 23

Find secθ\sec \theta given that cosθ=78\cos \theta = \frac{7}{8}.

See Solution

Problem 24

Find cotθ\cot \theta using the reciprocal identity if tanθ=6\tan \theta = 6.

See Solution

Problem 25

Find sinθ\sin \theta given cscθ=1173\csc \theta = \frac{\sqrt{117}}{3}. Rationalize denominators if needed.

See Solution

Problem 26

Find sinθ\sin \theta given cscθ=284\csc \theta = \frac{\sqrt{28}}{4}. Rationalize denominators if needed.

See Solution

Problem 27

Find sinθ\sin \theta if cscθ=31.25\csc \theta = 31.25.

See Solution

Problem 28

Find sinθ\sin \theta using the identity, given that cscθ=6.4\csc \theta = 6.4.

See Solution

Problem 29

Find cotθ\cot \theta if tanθ=1.25\tan \theta = 1.25 using the reciprocal identity.

See Solution

Problem 30

Match the expressions using Quotient and Reciprocal Identities:
1. 1csc(θ)-\vee \frac{1}{\csc (\theta)}
2. v1tan(θ)-v \frac{1}{\tan (\theta)}
3. vsin(θ)cos(θ)-v \frac{\sin (\theta)}{\cos (\theta)}
4. v1sec(θ)-v \frac{1}{\sec (\theta)}
5. 1sin(θ)-\vee \frac{1}{\sin (\theta)}
6. v1cot(θ)-v \frac{1}{\cot (\theta)}
7. vcos(θ)sin(θ)-v \frac{\cos (\theta)}{\sin (\theta)}
8. v1cos(θ)-v \frac{1}{\cos (\theta)}

Options: a. sin(θ)\sin (\theta), b. cos(θ)\cos (\theta), c. tan(θ)\tan (\theta), d. csc(θ)\csc (\theta), e. sec(θ)\sec (\theta), f. cot(θ)\cot (\theta).

See Solution

Problem 31

Rewrite sinxcotx+cosx\sin x \cdot \cot x + \cos x using sinx\sin x and cosx\cos x, then simplify.

See Solution

Problem 32

Rewrite and simplify cosxcotx+sinx\cos x^{*} \cot x + \sin x using sinx\sin x and cosx\cos x.

See Solution

Problem 33

Rewrite cosx2cotx+sinx\cos x^{2} \cot x + \sin x using sinx\sin x and cosx\cos x, then simplify.

See Solution

Problem 34

Find the exact values of sec(60)\sec(60^{\circ}) and csc(60)\csc(60^{\circ}) using trig function reciprocals. No decimals!

See Solution

Problem 35

Prove that 1+sinxcosx+cosx1+sinx2secx\frac{1+\sin x}{\cos x}+\frac{\cos x}{1+\sin x} \equiv 2 \sec x.

See Solution

Problem 36

Prove that 1cos2xsec2x1=1sin2x\frac{1-\cos ^{2} x}{\sec ^{2} x-1} = 1-\sin ^{2} x.

See Solution

Problem 37

Show that sinx1cos2x=cosecx\frac{\sin x}{1-\cos^{2} x} = \operatorname{cosec} x.

See Solution

Problem 38

Prove that sec4θsec2θ=tan2θ+tan4θ\sec ^{4} \theta - \sec ^{2} \theta = \tan ^{2} \theta + \tan ^{4} \theta.

See Solution

Problem 39

Prove that 1+sinx1sinx(tanx+secx)2\frac{1+\sin x}{1-\sin x} \equiv(\tan x+\sec x)^{2}.

See Solution

Problem 40

Prove that (1+sinxcosx)2+(1sinxcosx)2=2sec2x+2tan2x\left(\frac{1+\sin x}{\cos x}\right)^{2}+\left(\frac{1-\sin x}{\cos x}\right)^{2} = 2 \sec ^{2} x+2 \tan ^{2} x.

See Solution

Problem 41

In QRS\triangle Q R S, if sinR=cosS\sin R=\cos S, what can you conclude about R\angle R and S\angle S?

See Solution

Problem 42

Find cosθ\cos \theta if sinθ=45\sin \theta=\frac{4}{5} and θ\theta is in quadrant II. Simplify your answer.

See Solution

Problem 43

Find the remaining trigonometric functions of θ\theta if sinθ=37\sin \theta=-\frac{\sqrt{3}}{7} in quadrant III.

See Solution

Problem 44

Find the other trigonometric functions of θ\theta if sinθ=37\sin \theta=-\frac{\sqrt{3}}{7} in quadrant III.

See Solution

Problem 45

Rewrite cos(90θ)cotθ\cos \left(90^{\circ}-\theta\right) \cot \theta using one of the six trigonometric functions of angle θ\theta. cos(90θ)cotθ=\cos \left(90^{\circ}-\theta\right) \cot \theta=

See Solution

Problem 46

Identify the invalid equation from the options below: A. sinπ3=cosπ6\sin \frac{\pi}{3}=\cos \frac{\pi}{6} B. sinπ4=cosπ4\sin \frac{\pi}{4}=\cos \frac{\pi}{4} C. cscπ6=cosπ3\csc \frac{\pi}{6}=\cos \frac{\pi}{3} D. tanπ4=cotπ4\tan \frac{\pi}{4}=\cot \frac{\pi}{4}

See Solution

Problem 47

Rewrite the expression sin2θ+cot2θ+cos2θcscθ\frac{\sin ^{2} \theta+\cot ^{2} \theta+\cos ^{2} \theta}{\csc \theta} using basic trig identities.

See Solution

Problem 48

Simplify the expression: y=cos2x+sin2x+1y=\cos ^{2} x+\sin ^{2} x+1.

See Solution

Problem 49

Simplify:
1. cos45sin315+2tan120cos602sin240cos300\frac{\cos 45 \cdot \sin 315+2 \tan 120 \cdot \cos 60}{2 \sin 240 \cdot \cos 300}
2. Prove: cosx1+sinx1sinxcosx=0\frac{\cos x}{1+\sin x}-\frac{1-\sin x}{\cos x}=0
3. Find xx for 5sinx+3cosx=05 \sin x+3 \cos x=0, 0x3600^{\circ} \leq x \leq 360
4. Simplify: cos(100x)\cos (100-x)

See Solution

Problem 50

Simplify the expression: cos(160x)tan(90+x)sin(180+x)\frac{\cos (160-x)}{\tan (90+x) \sin (180+x)} using reduction formulas.

See Solution

Problem 51

Simplify cot(sin1(x))\cot \left(\sin ^{-1}(x)\right) using a triangle or trigonometric identity, assuming x>0x > 0.

See Solution

Problem 52

Find the value of the trigonometric expression: tan[sec1(5)]\tan \left[\sec ^{-1}(-5)\right].

See Solution

Problem 53

Find the value of cos(cot1(10))\cos \left(\cot ^{-1}(10)\right) using trigonometric identities.

See Solution

Problem 54

Find the value of cot(3π4)\cot \left(\frac{3 \pi}{4}\right) and its equivalent from the options given.

See Solution

Problem 55

Find xx where 5sinx+3cosx=05 \sin x + 3 \cos x = 0 for 0x3600^{\circ} \leq x \leq 360^{\circ}. Simplify cos(180x)\cos(180 - x).

See Solution

Problem 56

Express tan(β+25)\tan \left(\beta+25^{\circ}\right) using its cofunction for acute angles.

See Solution

Problem 57

Given sin15=c\sin 15^{\circ}=c, find in terms of cc: (i) sin195\sin 195^{\circ}, (ii) sin75\sin 75^{\circ}, (iii) cot(15)\cot(-15^{\circ}).

See Solution

Problem 58

Find sinθ\sin \theta given secθ=43\sec \theta=\frac{4}{3} and tanθ>0\tan \theta>0. What is sinθ\sin \theta?

See Solution

Problem 59

Find sinθ\sin \theta and cosθ\cos \theta given tanθ=715\tan \theta=\frac{7}{\sqrt{15}}.

See Solution

Problem 60

Find the exact value of cscπ6\csc \frac{\pi}{6} using sin30=12\sin 30^{\circ}=\frac{1}{2}. Options: 23\frac{2}{3}, 333 \sqrt{3}, 33\frac{\sqrt{3}}{3}, 233\frac{2 \sqrt{3}}{3}.

See Solution

Problem 61

Find the exact value of cscπ6\csc \frac{\pi}{6} using sin30=12\sin 30^{\circ}=\frac{1}{2}. Options: 23\frac{2}{3}, 333 \sqrt{3}, 33\frac{\sqrt{3}}{3}, 233\frac{2 \sqrt{3}}{3}.

See Solution

Problem 62

Find the exact value of cscπ6\csc \frac{\pi}{6} using sin30=12\sin 30^{\circ}=\frac{1}{2}. Options: 23\frac{2}{3}, 333 \sqrt{3}, 33\frac{\sqrt{3}}{3}, 233\frac{2 \sqrt{3}}{3}.

See Solution

Problem 63

Find the exact value of tan20cos70cos20\tan 20^{\circ}-\frac{\cos 70^{\circ}}{\cos 20^{\circ}} without a calculator.

See Solution

Problem 64

Find the exact value of sec2θ\sec ^{2} \theta given that tan2θ=3\tan ^{2} \theta=3. No calculator allowed.

See Solution

Problem 65

Find secθ\sec \theta given sinθ=74\sin \theta=\frac{\sqrt{7}}{4} and cosθ=34\cos \theta=\frac{3}{4}. Options: 377\frac{3 \sqrt{7}}{7}, 477\frac{4 \sqrt{7}}{7}, 73\frac{\sqrt{7}}{3}, 43\frac{4}{3}.

See Solution

Problem 66

Use cos400.77\cos 40^{\circ} \approx 0.77 to find sin50\sin 50^{\circ} using identities. Round to two decimal places.

See Solution

Problem 67

Find tanθ\tan \theta given sinθ=32\sin \theta=\frac{\sqrt{3}}{2}. Choices: 233\frac{2 \sqrt{3}}{3}, 3\sqrt{3}, 33\frac{\sqrt{3}}{3}.

See Solution

Problem 68

Simplify tan2x+11+cot2x\frac{\tan ^{2} x+1}{1+\cot ^{2} x} and identify any errors in the steps shown. What is the correct result?

See Solution

Problem 69

sin19=cos(71)\sin 19^{\circ} = \cos(71) (since 71=901971 = 90 - 19).

See Solution

Problem 70

Rewrite sec77\sec 77^{\circ} using its cofunction. What is the simplified answer? sec77=\sec 77^{\circ}=\square

See Solution

Problem 71

Rewrite cot18.6\cot 18.6^{\circ} using its cofunction. What is cot18.6=\cot 18.6^{\circ}=? (Provide a simplified answer without the degree symbol.)

See Solution

Problem 72

Find an acute angle β\beta that satisfies the equation sec(4β+24)=csc(β4)\sec(4\beta + 24^\circ) = \csc(\beta - 4^\circ).

See Solution

Problem 73

Solve for the acute angle β\beta in the equation: sec(2β+25)=csc(β+8)\sec(2\beta + 25^{\circ}) = \csc(\beta + 8^{\circ}).

See Solution

Problem 74

If aa and bb satisfy asin2θ+acos2θ=ba \sin^2 \theta + a \cos^2 \theta = b, find ba\frac{b}{a}. F. -1 G. 0 H. 12\frac{1}{2} J. 1 K. 2

See Solution

Problem 75

Find tanθ\tan \theta given sinθ=14\sin \theta=\frac{1}{4} and cosθ=154\cos \theta=\frac{\sqrt{15}}{4}.

See Solution

Problem 76

Find the exact value of cot(π2θ)\cot \left(\frac{\pi}{2}-\theta\right) if tanθ=7\tan \theta=7.

See Solution

Problem 77

Find the exact value of sec(π2θ)\sec \left(\frac{\pi}{2}-\theta\right) if tanθ=2\tan \theta=2. Choices: 5\sqrt{5}, 52\frac{\sqrt{5}}{2}, 2, 12\frac{1}{2}.

See Solution

Problem 78

Find cotθ\cot \theta if cosθ=31010\cos \theta=\frac{3 \sqrt{10}}{10}.

See Solution

Problem 79

Find the exact value of cscθ\csc \theta given sinθ=14\sin \theta=\frac{1}{4} and cosθ=154\cos \theta=\frac{\sqrt{15}}{4}.

See Solution

Problem 80

Find the expression equivalent to tanx1tanx+1\frac{\tan x-1}{\tan x+1} using identities. Options include:
1. cotx1cotx\frac{\cot x}{1-\cot x}
2. cotx1+cotx\frac{\cot x}{1+\cot x}
3. 1cotx1+cotx\frac{1-\cot x}{1+\cot x}
4. 1+cotx1cotx\frac{1+\cot x}{1-\cot x}

See Solution

Problem 81

Find the exact value of sec10csc50-\frac{\sec 10^{\circ}}{\csc 50^{\circ}} using identities. Choices: 1-1, 11, 00, undefined.

See Solution

Problem 82

Is the statement true or false? Evaluate if 1+tan230.1=sec230.11+\tan^{2} 30.1^{\circ} = -\sec^{2} 30.1^{\circ}.

See Solution

Problem 83

If sinθ=0.4\sin \theta=0.4, what is sin(θ+π)\sin (\theta+\pi)? Options: 0.4, -0.4, -0.6, 0.6.

See Solution

Problem 84

If tanθ=a(a0)\tan \theta=a(a \neq 0), what is cotθ\cot \theta using reciprocal identities?

See Solution

Problem 85

Find tanθ\tan \theta using sinθ=63737\sin \theta=\frac{6 \sqrt{37}}{37} and cosθ=3737\cos \theta=\frac{\sqrt{37}}{37}.

See Solution

Problem 86

Find cotθ\cot \theta using the values sinθ=941\sin \theta=-\frac{9}{41} and cosθ=4041\cos \theta=-\frac{40}{41}.

See Solution

Problem 87

Find cosθ\cos \theta given sinθ=12\sin \theta=\frac{1}{2} and θ\theta in QII. cosθ=\cos \theta=\square

See Solution

Problem 88

Find sinθ\sin \theta given cosθ=45\cos \theta = \frac{4}{5} and θ\theta is in QI. sinθ=\sin \theta =

See Solution

Problem 89

Find cosθ\cos \theta given sinθ=45\sin \theta = -\frac{4}{5} and θ\theta is in QIII. Use the first Pythagorean identity. cosθ=\cos \theta =

See Solution

Problem 90

Find sinθ\sin \theta if cosθ=12\cos \theta = \frac{1}{2} and θ\theta is in quadrant I.

See Solution

Problem 91

Express cosθ\cos \theta using only sinθ\sin \theta.

See Solution

Problem 92

Rewrite cscθcsc \theta using only cosθ\cos \theta.

See Solution

Problem 93

Rewrite cscθcotθ\csc \theta \cot \theta using sinθ\sin \theta and cosθ\cos \theta, then simplify if possible.

See Solution

Problem 94

Rewrite sinθcscθ\frac{\sin \theta}{\csc \theta} using sinθ\sin \theta and cosθ\cos \theta, and simplify if possible.

See Solution

Problem 95

Rewrite sinθcotθ+4cosθ\sin \theta \cot \theta + 4 \cos \theta using sinθ\sin \theta and cosθ\cos \theta, then simplify.

See Solution

Problem 96

Express secθtanθsinθ\sec \theta - \tan \theta \sin \theta using sinθ\sin \theta and cosθ\cos \theta, then simplify.

See Solution

Problem 97

Multiply and simplify: (1sinθ)(1+sinθ)(1-\sin \theta)(1+\sin \theta).

See Solution

Problem 98

Prove that cosθtanθ=sinθ\cos \theta \tan \theta = \sin \theta is an identity by simplifying the left side.

See Solution

Problem 99

Prove the identity sinθsecθcotθ=1\sin \theta \sec \theta \cot \theta = 1 by simplifying the left side using sinθ\sin \theta and cosθ\cos \theta.

See Solution

Problem 100

Prove that cscθcotθ=secθ\frac{\csc \theta}{\cot \theta}=\sec \theta by simplifying the left side to match the right side.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord