Calculus

Problem 3301

Find the limit as xx approaches 5 for x+7x+3\frac{x+7}{x+3}. A. limx5x+7x+3=\lim _{x \rightarrow 5} \frac{x+7}{x+3}=\square B. Limit does not exist.

See Solution

Problem 3302

Find points where the tangent line to xy+5y2=9xy + 5y^2 = -9 is vertical using implicit differentiation.

See Solution

Problem 3303

Find the limit as yy approaches -3 for (24y)53(24-y)^{\frac{5}{3}}. Choose A (integer/fraction) or B (limit does not exist).

See Solution

Problem 3304

Calculate the limit: limh02h+11h\lim _{h \rightarrow 0} \frac{\sqrt{2 h+1}-1}{h}. Is it a number or does it not exist?

See Solution

Problem 3305

Find the limit as xx approaches 8 for the expression x8x264\frac{x-8}{x^{2}-64}. Does it exist?

See Solution

Problem 3306

Find the limit: limx6x2+2x24x+6\lim _{x \rightarrow-6} \frac{x^{2}+2 x-24}{x+6}. Simplify if possible.

See Solution

Problem 3307

Calculate the limit as tt approaches 20 for the expression t2+t420t2400\frac{t^{2}+t-420}{t^{2}-400}.

See Solution

Problem 3308

Find the limit:
limx6x2+2x24x+6 \lim _{x \rightarrow-6} \frac{x^{2}+2 x-24}{x+6}
Choose A (simplify) or B (limit does not exist).

See Solution

Problem 3309

Find the limit: limx144x12x144\lim _{x \rightarrow 144} \frac{\sqrt{x}-12}{x-144}. Choose A for the limit value or B if it doesn't exist.

See Solution

Problem 3310

Find the limit as vv approaches 9: limv91v19v9\lim _{v \rightarrow 9} \frac{\frac{1}{v}-\frac{1}{9}}{v-9}. Options: A. \square, B. Does not exist.

See Solution

Problem 3311

Find the limit as xx approaches 53 for x53x+118\frac{x-53}{\sqrt{x+11}-8}. What is the answer? A. or B.

See Solution

Problem 3312

Find the limit as xx approaches 0: limx0secx\lim _{x \rightarrow 0} \sec x. Choose A or B.

See Solution

Problem 3313

Find the limit as x approaches 0: limx04+7x+sinx5cosx\lim _{x \rightarrow 0} \frac{4+7 x+\sin x}{5 \cos x}. Simplify if possible.

See Solution

Problem 3314

Find the limit: limx4πx+15cos(x+4π)\lim _{x \rightarrow-4 \pi} \sqrt{x+15} \cos (x+4 \pi). A. \square B. Limit does not exist.

See Solution

Problem 3315

Find the limit: limx2πx+15cos(x+2π)\lim _{x \rightarrow-2 \pi} \sqrt{x+15} \cos (x+2 \pi). Choose A or B.

See Solution

Problem 3316

Given limx6f(x)=9\lim _{x \rightarrow 6} f(x)=9 and limx6g(x)=9\lim _{x \rightarrow 6} g(x)=-9, find these limits: a. limx6[f(x)g(x)]\lim _{x \rightarrow 6}[f(x) g(x)], b. limx6[6f(x)g(x)]\lim _{x \rightarrow 6}[6 f(x) g(x)], c. limx6[f(x)+2g(x)]\lim _{x \rightarrow 6}[f(x)+2 g(x)], d. limx6[f(x)f(x)g(x)]\lim _{x \rightarrow 6}\left[\frac{f(x)}{f(x)-g(x)}\right].

See Solution

Problem 3317

Find the limits as xx approaches -3: a. p(x)+r(x)+s(x)p(x)+r(x)+s(x) b. p(x)r(x)s(x)p(x) \cdot r(x) \cdot s(x)

See Solution

Problem 3318

Analyze the long-term behavior of these functions:
1. x2+1x2+2\frac{x^{2}+1}{x^{2}+2}
2. x3+1x2+2\frac{x^{3}+1}{x^{2}+2}
3. x2+1x3+2\frac{x^{2}+1}{x^{3}+2}

See Solution

Problem 3319

Determine the long run behavior of these functions:
1. x2+1x2+2\frac{x^{2}+1}{x^{2}+2}
2. x3+1x2+2\frac{x^{3}+1}{x^{2}+2}
3. x2+1x3+2\frac{x^{2}+1}{x^{3}+2}

See Solution

Problem 3320

Given limits: limx3p(x)=3\lim _{x \rightarrow-3} p(x)=3, limx3r(x)=0\lim _{x \rightarrow-3} r(x)=0, limx3s(x)=8\lim _{x \rightarrow-3} s(x)=-8. Find the limits:
a. limx3(p(x)+r(x)+s(x))\lim _{x \rightarrow-3}(p(x)+r(x)+s(x)) b. limx3(p(x)r(x)s(x))\lim _{x \rightarrow-3}(p(x) \cdot r(x) \cdot s(x)) c. limx35p(x)+9r(x)s(x)\lim _{x \rightarrow-3} \frac{-5 p(x)+9 r(x)}{s(x)}

See Solution

Problem 3321

Find the limit as hh approaches 0 for f(2+h)f(2)h\frac{f(2+h)-f(2)}{h} where f(x)=8x1f(x)=-8x-1. What is the result?

See Solution

Problem 3322

Find the derivative of f(x)=x+sinxx1f(x)=\frac{x+\sin x}{|x|-1}.

See Solution

Problem 3323

Find limx0g(x)\lim _{x \rightarrow 0} g(x) given 33x2g(x)3cosx3-3 x^{2} \leq g(x) \leq 3 \cos x. What is the limit?

See Solution

Problem 3324

(a) What does 1x26<xsinx22cosx<11-\frac{x^{2}}{6}<\frac{x \sin x}{2-2 \cos x}<1 imply about limx0xsinx22cosx\lim _{x \rightarrow 0} \frac{x \sin x}{2-2 \cos x}? Explain. (b) Graph y=1x26,y=xsinx22cosx,y=1y=1-\frac{x^{2}}{6}, y=\frac{x \sin x}{2-2 \cos x}, y=1 for 2x2-2 \leq x \leq 2 and discuss their behavior as x0x \rightarrow 0.

See Solution

Problem 3325

Evaluate the limit of f(x)=x21x1f(x)=\frac{x^{2}-1}{|x|-1} as x1x \rightarrow -1 using tables and graphs.

See Solution

Problem 3326

Evaluate the difference quotient f(9+h)f(9)h\frac{f(9+h)-f(9)}{h} for f(x)=x3f(x)=x^{3} and simplify.

See Solution

Problem 3327

Find the derivative of x7x43x2+32x^7 - x^4 - 3x^2 + 32.

See Solution

Problem 3328

A person jumps from 5000 ft and opens a parachute after 10 sec. Find speed, height at deployment, and time to ground.
Speed: =ft/sec=\square \mathrm{ft} / \mathrm{sec}, Height: =ft=\square \mathrm{ft}, Time:  sec\approx \square \text{ sec}.

See Solution

Problem 3329

A person jumps from 5000 ft, deploys a parachute after 10 sec. Find speed, height at deployment, and time to ground.

See Solution

Problem 3330

Find the derivative of y=sin(x)cos(x)y=\sin (x) \cos (x) with respect to xx: dydx\frac{d y}{d x}.

See Solution

Problem 3331

Find the value of ddx(6x4+1x2)\frac{d}{d x}\left(\frac{6}{x^{4}}+\frac{1}{x^{2}}\right) when x=1x=-1.

See Solution

Problem 3332

Find the tangent line equation for the function gg at x=7x=7 given g(7)=3g(7)=-3 and g(7)=1g^{\prime}(7)=-1.

See Solution

Problem 3333

Find the derivative of x54x^{\frac{5}{4}} and evaluate it at x=16x=16.

See Solution

Problem 3334

Find F(0)F^{\prime}(0) for F(x)=g(x)h(x)F(x)=\frac{g(x)}{h(x)} given g(0)=3g(0)=-3, h(0)=2h(0)=2, g(0)=5g^{\prime}(0)=-5, h(0)=2h^{\prime}(0)=-2.

See Solution

Problem 3335

A plane drops a package from 625 m at 352 km/h. How long (in seconds) until it hits the sea? Ignore air resistance.

See Solution

Problem 3336

A plane drops a package from 625 m625 \mathrm{~m} at 352 km/h352 \mathrm{~km/h}. How long to reach sea level? (Ignore air resistance)

See Solution

Problem 3337

Find the derivative of r(x)=3x+1r(x)=3 \sqrt{x+1} or solve for xx in r(x)=3x+1r(x)=3 \sqrt{x+1}.

See Solution

Problem 3338

Find intersections of f(x)=6f(x)=\sqrt{6} and g(x)=23sin(x2)g(x)=2 \sqrt{3} \sin \left(\frac{x}{2}\right) in [0,2π][0,2\pi], area between curves, solve dydx=1x3\frac{dy}{dx}=\frac{1}{x}-3 with y=0y=0 at x=1x=1, and find derivative of h(x)=5x2h(x)=5x^2.

See Solution

Problem 3339

Prove that BundefinedT=0\overrightarrow{B^{\prime}} \cdot \vec{T}=0 given N=TT\vec{N}=\frac{\vec{T}^{\prime}}{\left|\vec{T}^{\prime}\right|} and B=T×N\vec{B}=\vec{T} \times \vec{N}.

See Solution

Problem 3340

Find the horizontal asymptotes for the function f(x)=2x24xx53x2f(x)=\frac{2 x^{2}-4 x}{x^{5}-3 x^{2}}.

See Solution

Problem 3341

Calculate the average rate of change of k(x)=6xk(x)=6 \sqrt{x} from x=13x=13 to x=20x=20. Round your answer to the nearest tenth.

See Solution

Problem 3342

Find the horizontal asymptotes of the function f(x)=16x4+16x23x24f(x)=\frac{\sqrt{16 x^{4}+16 x^{2}}}{3 x^{2}-4}.

See Solution

Problem 3343

Calculate the average rate of change of k(x)=18xk(x)=\frac{18}{x} from x=1x=1 to x=8x=8. Round your answer to the nearest tenth.

See Solution

Problem 3344

Find the horizontal asymptotes of the function f(x)=4x2+ex3x2f(x)=\frac{4 x^{2}+e^{-x}}{3-x^{2}}.

See Solution

Problem 3345

Find when the news reaches the highest spread rate, given N(t)=10,0001+50e0.4tN(t)=\frac{10,000}{1+50 e^{-0.4 t}}.

See Solution

Problem 3346

Find the derivative of the function f(x)=5x3+3xf(x)=5 x^{3}+3 x using the limit definition, without simplifying.

See Solution

Problem 3347

Calculate the average rate of change of f(x)=20xf(x)=\frac{20}{x} from x=4x=4 to x=8x=8. Round to the nearest tenth.

See Solution

Problem 3348

Calculate the average rate of change of f(x)=x3+12x2+16xf(x)=x^{3}+12 x^{2}+16 x from x=10x=-10 to x=9x=-9. Round your answer to the nearest tenth.

See Solution

Problem 3349

Calculate the average rate of change of f(x)=9x+7f(x)=9 \sqrt{x+7} on [0,6][0,6]. Round your answer to the nearest tenth.

See Solution

Problem 3350

Calculate the average rate of change of g(x)=11x+15g(x)=-11 \sqrt{x}+15 from x=4x=4 to x=10x=10. Round to the nearest tenth.

See Solution

Problem 3351

Calculate the average rate of change of k(x)=12xk(x)=\frac{1}{-2 x} from x=1x=1 to x=4x=4, rounding to the nearest tenth.

See Solution

Problem 3352

Calculate the average rate of change of g(x)=x3+17x17g(x)=-x^{3}+17 x-17 from x=6x=-6 to x=3x=-3. Round to the nearest tenth.

See Solution

Problem 3353

Calculate the average rate of change of f(x)=3x+13f(x)=-3 \sqrt{x}+13 on [10,14][10,14]. Round your answer to the nearest tenth.

See Solution

Problem 3354

Calculate the average rate of change of k(x)=8x7k(x)=8 \sqrt{x}-7 from x=3x=3 to x=10x=10. Round to the nearest tenth.

See Solution

Problem 3355

Calculate the average rate of change of f(x)=8x+17f(x)=\frac{8}{x+17} from x=20x=-20 to x=16x=-16. Round to the nearest tenth.

See Solution

Problem 3356

Calculate the average rate of change of k(x)=15x+11k(x)=15\sqrt{x}+11 from x=10x=10 to x=17x=17. Round to the nearest tenth.

See Solution

Problem 3357

1. (a) For the hyperbola y=2x2x3y=\frac{2 x-2}{x-3}: (i) Write in general form. (ii) Find yy at x=2x=2. (iii) Find xx when y=3y=3. (iv) Show dydx=4(x3)2\frac{d y}{d x}=\frac{-4}{(x-3)^{2}}. (v) Find the tangent line at x=2x=2. (b) Derive the quadratic formula from ax2+bx+c=0a x^{2}+b x+c=0.

See Solution

Problem 3358

Ordnen Sie die Funktionen A, B, D, G, E ihren ersten Ableitungen 4, F, 1 und der zweiten Ableitung C zu.

See Solution

Problem 3359

Gegeben ist der Graph einer Funktion ff.
a) Finde die Nullstellen von ff'.
b) Bestimme, wo ff' positiv oder negativ ist.
c) Skizziere den Graphen von ff'.
d) Nenne die Tangentengleichung bei P(2,51)P(2,5 \mid-1).

See Solution

Problem 3360

Find the first and second derivatives of these functions:
c) f(x)=4sin(x)1f(x) = 4 \sin (x)-1
d) f(x)=12x2(x8)f(x) = \frac{1}{2} x^{2} (x-8)
e) f(x)=7x45x23xf(x) = \frac{7 x^{4}-5 x^{2}}{3 x}

See Solution

Problem 3361

Berechnen Sie f(x)f^{\prime}(x) und f(x)f^{\prime \prime}(x) für die Funktionen: a) 3x25x+23 x^{2}-5 x+2, b) 2x+3x\frac{2}{x}+3 \sqrt{x}, c) 4sin(x)14 \sin (x)-1, d) 12x2(x8)\frac{1}{2} x^{2} \cdot(x-8), e) 7x45x33x\frac{7 x^{4}-5 x^{3}}{3 x}.

See Solution

Problem 3362

Find the antiderivative of i(x)=13e3x+1i(x)=\frac{1}{3} e^{3 x+1} and explain how you solved it.

See Solution

Problem 3363

Bestätigen Sie die Ableitung von f(a)=(12a2+a2)4f(a)=\left(-\frac{1}{2} a^{2}+a \sqrt{2}\right)^{4} und prüfen Sie den Fehler in f(a)=4(a+2)(12a2+a2)f^{\prime}(a)=4 \cdot(-a+\sqrt{2}) \cdot\left(-\frac{1}{2} a^{2}+a \sqrt{2}\right).

See Solution

Problem 3364

Was sagt das über das Schaubild von ff aus, wenn f(3)=2f(3)=2 und f(3)=1f^{\prime}(3)=-1?

See Solution

Problem 3365

Find local minima/maxima and intervals of increase/decrease for ff using f(x)=x+6x2(x18)f^{\prime}(x)=\frac{x+6}{x^{2}(x-18)}. Sketch a possible graph.

See Solution

Problem 3366

Nennen Sie drei Funktionen, die für x+x \rightarrow+\infty keinen Grenzwert haben.

See Solution

Problem 3367

Berechne den Grenzwert von f(x)=0,25x2x+2f(x)=0,25 x^{2}-x+2 für x0=2x_{0}=2.

See Solution

Problem 3368

Find the derivative of the function f(x)=2(x+x2)3f(x)=\frac{2}{(x+x^{2})^{3}}. What is f(x)f'(x)?

See Solution

Problem 3369

In einer Stadt gibt es ein Bobbycar-Rennen. Berechne f(0),f(10),f(20),f(30)f(0), f(10), f(20), f(30) und f(40)f(40) für f(t)=0,0003t40,024t3+0,605t2f(t)=0,0003 t^{4}-0,024 t^{3}+0,605 t^{2}. Wann ist die Höchstgeschwindigkeit?

See Solution

Problem 3370

Find the antiderivative and zeros of k(t)=t(t4)2k(t)=t \cdot(t-4)^{2}.

See Solution

Problem 3371

Berechnen Sie die Fläche zwischen dem Graphen von k(t)=t(t4)2k(t)=t \cdot(t-4)^{2} und der x-Achse.

See Solution

Problem 3372

Gegeben ist die Funktion f(x)=exf(x)=e^{x}. Bestimme die Steigungen an x1=1x_{1}=-1, x2=0x_{2}=0, x3=1x_{3}=1, x4=2x_{4}=2 und die Tangentengleichung bei P(a,ea)P(a, e^{a}).

See Solution

Problem 3373

Jährliches Bobbycar-Rennen:
a) Berechne f(0),f(10),f(20),f(30),f(40)f(0), f(10), f(20), f(30), f(40). b) Finde den Zeitpunkt der Höchstgeschwindigkeit. c) Berechne f(40)f(20)20\frac{f(40)-f(20)}{20} und deute. d) Wo hat die Strecke die schärfste Kurve?

See Solution

Problem 3374

Calculate the area between the curve f(x)=x34xf(x)=x^{3}-4x and the x-axis. The answer is 8FE.

See Solution

Problem 3375

Bestimmen Sie die Tangentengleichung der Funktion f(x)=12x23x+1f(x)=\frac{1}{2} x^{2}-3 x+1 an den Punkten: a) P(43)P(4 \mid-3), b) P(11,5)P(1 \mid-1,5), c) P(421)P(-4 \mid 21), d) P(01)P(0 \mid 1).

See Solution

Problem 3376

Bestimmen Sie das unbestimmte Integral für die Funktionen: a) f(x)=x5f(x)=x^{5}, b) f(x)=2x3f(x)=2 x^{3}, c) f(x)=3x46x+8f(x)=3 x^{4}-6 x+8.

See Solution

Problem 3377

Finde die Stammfunktionen für die folgenden Funktionen: a) f(x)=2x3f(x)=2 x^{3}, b) f(x)=3x46x+8f(x)=3 x^{4}-6 x+8, c) f(x)=1x3f(x)=\frac{1}{x^{3}}.

See Solution

Problem 3378

Calculate the area between the curve A(x)=6+xx2A(x) = 6 + x - x^{2} and the x-axis.

See Solution

Problem 3379

Berechnen Sie die Fläche zwischen der Funktion ff und der x-Achse für die Intervalle: a) f(x)=x+3,I=[0;4]f(x)=x+3, I=[0; 4] b) f(x)=2x2+1,I=[1;2]f(x)=2x^{2}+1, I=[1; 2] c) f(x)=(2x)2,I=[1;3]f(x)=(2-x)^{2}, I=[1; 3] Zeichnen Sie eine Skizze.

See Solution

Problem 3380

Berechne die Steigung und den Winkel der Funktion ff an x0x_{0} für die folgenden Fälle: a) f(x)=2x3f(x)=2 x^{3}, x0=1x_{0}=-1; b) f(x)=2xf(x)=-2 \sqrt{x}, x0=3x_{0}=3; c) f(x)=x25xf(x)=-x^{2}-5 x, x0=0x_{0}=0; d) f(x)=4xf(x)=\frac{4}{x^{\prime}}, x0=2x_{0}=-2; e) f(x)=(2x+1)2f(x)=(2 x+1)^{2}, x0=12x_{0}=-\frac{1}{2}; f) f(x)=12x2f(x)=\frac{1}{2 x^{2}}, x0=3x_{0}=-3.

See Solution

Problem 3381

8 a) Was bedeutet f(5)=82,0f(5)=82,0 und f(6)f(5,5)65,50,1\frac{f(6)-f(5,5)}{6-5,5} \approx-0,1? Einheiten angeben. b) Was bedeutet v(5)=25v(5)=25 und v(8)=16v^{\prime}(8)=16? Einheiten angeben. Was ist v(t)v^{\prime}(t)? 9 Nennen Sie eine Funktion ff mit: a) immer positiver Steigung. b) Ableitung ff' hat genau eine Nullstelle.

See Solution

Problem 3382

Bestimme die Steigung und den Steigungswinkel von ff an den gegebenen Stellen: a) f(x)=2x3f(x)=2 x^{3} bei x0=1x_{0}=-1; b) f(x)=2xf(x)=-2 \sqrt{x} bei x0=3x_{0}=3; c) f(x)=x25xf(x)=-x^{2}-5 x; d) f(x)=4xf(x)=-\frac{4}{x^{\prime}} bei x0=2x_{0}=-2; e) f(x)=(2x+1)2f(x)=(2 x+1)^{2} bei x0=12x_{0}=-\frac{1}{2}; f) f(x)=12x2f(x)=\frac{1}{2 x^{2}} bei x0=0x_{0}=0 und x0=3x_{0}=-3.

See Solution

Problem 3383

Finde die Punkte, wo der Graph von ff die Steigung mm hat, und gib die Tangentengleichungen an. a) f(x)=13x38x;m=1f(x)=\frac{1}{3} x^{3}-8 x ; m=1 b) f(x)=(2x+1)2;m=8f(x)=(2 x+1)^{2} ; m=8 c) f(x)=x33x2+6;m=0f(x)=x^{3}-3 x^{2}+6 ; m=0 d) f(x)=4x;m=1f(x)=-\frac{4}{x} ; m=1 e) f(x)=1x2+2x;m=94f(x)=\frac{1}{x^{2}}+2 x ; m=\frac{9}{4} f) f(x)=x5+5x3+3;m=4f(x)=x^{5}+5 x^{3}+3 ; m=4

See Solution

Problem 3384

Eine Kugel fällt von einem Garagendach. Bestimme die Ableitung der Funktion H(t)H(t) für t=0,5t=0,5, t=1,5t=1,5, t=2,5t=2,5 und untersuche die Differenzierbarkeit bei t=1t=1 und t=1,8t=1,8.

See Solution

Problem 3385

Berechnen Sie das Integral von f(x)=12(2x3)f(x) = -12(2x - 3).

See Solution

Problem 3386

Find the derivative of f(x)=2(15x2+35x6)f(x)=2\left(\frac{1}{5} x^{2}+\frac{3}{5} x^{6}\right).

See Solution

Problem 3387

Gegeben ist die Funktion f(x)f(x).
a) Finde die Gleichung der Geraden ff.
b) Bestimme die Flächeninhaltsfunktion A0A_{0} von ff mit unterer Grenze 0.

See Solution

Problem 3388

Gegeben ist die Funktion f(x)=4x348x2+84xf(x)=4 x^{3}-48 x^{2}+84 x. Finde Extremstellen und Krümmungsverhalten mit Ableitungen.

See Solution

Problem 3389

A stone is thrown up at 9.8 ms19.8 \mathrm{~ms^{-1}}. After 1s, it falls and lands in the sea at 29.4 ms129.4 \mathrm{~ms^{-1}} after 4s.
a) Draw a velocity-time graph. b) Find: (i) distance to highest point, (ii) distance to sea, (iii) height of the cliff.

See Solution

Problem 3390

Berechne die Ableitung der Funktion ff für die folgenden Fälle: a) f(x)=(8x4+2)3f(x)=(8 x^{4}+2)^{3}, b) f(x)=(125x)3f(x)=(\frac{1}{2}-5 x)^{3}, c) f(x)=(x+2)4f(x)=(x+2)^{4}, d) f(x)=14(x25)2f(x)=\frac{1}{4}(x^{2}-5)^{2}, e) f(x)=(8x7)1f(x)=(8 x-7)^{-1}, f) f(x)=(5x)4f(x)=(5-x)^{-4}, g) f(x)=(15x33)2f(x)=(15 x^{3}-3)^{-2}, h) f(x)=(15x3x2)2f(x)=(15 x-3 x^{2})^{-2}.

See Solution

Problem 3391

Zeigen Sie, dass A0A_{0} eine Flächeninhaltsfunktion von ff ist für: a) f(x)=3f(x)=3, b) f(x)=3xf(x)=3x, c) f(x)=2x+2f(x)=2x+2, d) f(x)=4x3+xf(x)=4x^3+x.

See Solution

Problem 3392

Berechnen Sie die Fläche zwischen der Kurve ff und der X-Achse über den Intervallen I. Skizzieren Sie die Graphen. a) f(x)=x+3,I=[0;4]f(x)=x+3, I=[0 ; 4] b) f(x)=2x2+1,I=[1;2]f(x)=2 x^{2}+1, I=[1 ; 2] c) f(x)=(2x)2,I=[1;3]f(x)=(2-x)^{2}, I=[1 ; 3]

See Solution

Problem 3393

Use the epsilon-delta definition of limits to find δ\delta for limx3(2x1)=5\lim_{x \to 3}(2x-1)=5 and the interval for limx2(2x1)=5\lim_{x \to -2}(2x-1)=-5 with ε=0.2\varepsilon=0.2.

See Solution

Problem 3394

Find the limits:
(a) limx2+f(x)\lim _{x \rightarrow -2^{+}} f(x)
(b) limx2f(x)\lim _{x \rightarrow -2^{-}} f(x)
(c) limx2f(x)\lim _{x \rightarrow -2} f(x)
Is f(x)f(x) continuous at x=2x=-2? Answer 'Yes' or 'No'.

See Solution

Problem 3395

Bestimme die Ableitung der Funktionen: a) f(x)=xsin(x)f(x)=x \sin(x), b) f(x)=3xcos(x)f(x)=3x \cos(x), c) f(x)=(3x+2)xf(x)=(3x+2) \sqrt{x}, d) f(x)=x(2x3)f(x)=\sqrt{x}(2x-3), e) f(x)=xcos(x)f(x)=\sqrt{x} \cos(x), f) f(x)=(53x)sin(x)f(x)=(5-3x) \sin(x), g) f(x)=2xcos(x)f(x)=\frac{2}{x} \cos(x), h) f(x)=sin(x)cos(x)f(x)=\sin(x) \cos(x), i) f(x)=x2sin(x)f(x)=x^2 \sin(x), j) f(x)=1xcos(x)f(x)=\frac{1}{\sqrt{x}} \cos(x), k) f(x)=(x2+3x)sin(x)f(x)=(x^2+3x) \sin(x), l) f(x)=x(x52x3)f(x)=\sqrt{x}(x^5-2x^3).

See Solution

Problem 3396

Find the limit as x approaches 11 for the expression 11xx2121\frac{11-x}{x^{2}-121}.

See Solution

Problem 3397

Find the derivative of f(x)=1x42x2+3x4+7xf(x)=\frac{1}{x^{4}}-\frac{2}{x^{2}}+3 x^{4}+7 \sqrt{x}.

See Solution

Problem 3398

Graph the function and estimate the limit: limx06sin(x)x3\lim _{x \rightarrow 0} \frac{6 \sin (x)}{\sqrt[3]{x}}. Use a table and analytic methods.

See Solution

Problem 3399

Find the one-sided limit:
limx3(x2+9x+3) \lim _{x \rightarrow-3^{-}}\left(x^{2}+\frac{9}{x+3}\right)

See Solution

Problem 3400

Find the limit: limx8x8x29x+8\lim _{x \rightarrow 8} \frac{x-8}{x^{2}-9 x+8} and round to four decimal places.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord