Calculus

Problem 5801

Calculate the relative rate of change of f(x)=6x2lnxf(x)=6 x^{2}-\ln x at x=8x=8.

See Solution

Problem 5802

Calculate the relative rate of change of f(x)=2763xf(x)=276-3x at x=34x=34.

See Solution

Problem 5803

Estimate f(8)f(8) using local linear approximation given f(12)=10f(12)=10 and f(12)=3f^{\prime}(12)=-3.

See Solution

Problem 5804

Calculate the relative rate of change of the function f(x)=10+2e2xf(x)=10+2 e^{-2 x}.

See Solution

Problem 5805

Gegeben ist eine differenzierbare Funktion g. Bestimmen Sie die Ableitungen für f1(x)=g(3x)f_{1}(x)=g(3 x), f2(x)=g(1x)f_{2}(x)=g(1-x) und f3(x)=g(1x)f_{3}(x)=g\left(\frac{1}{x}\right).

See Solution

Problem 5806

What does h(12)<0h^{\prime}(12)<0 indicate about wind speed at 12 km from a hurricane's center?

See Solution

Problem 5807

Calculate the percentage rate of change of f(x)f(x) where f(x)=300+65xf(x)=300+65x at x=7x=7.

See Solution

Problem 5808

Find the percentage rate of change of f(x)f(x) at x=45x=45 for f(x)=54002x2f(x)=5400-2 x^{2}.

See Solution

Problem 5809

Find f(x)f^{\prime}(x) for f(x)=3x2+2f(x)=3 x^{2}+2 using f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} as hh approaches 0.

See Solution

Problem 5810

A plane at 1 mile altitude flies at 500 mph. Find the rate of distance increase from the radar when it's 2 miles away.

See Solution

Problem 5811

Find the limit: limxx2+13x1\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+1}}{3 x-1}.

See Solution

Problem 5812

Find the derivative of exlnx+x2cosxe^{x} \ln x + x^{2} \cos x using the product and chain rules.

See Solution

Problem 5813

Find the average velocity of a particle with position x(t)=(3.5 m/s)t(5.0 m/s2)t2x(t)=(3.5 \mathrm{~m/s}) t-(5.0 \mathrm{~m/s}^2) t^2 from t=0.30 st=0.30 \mathrm{~s} to t=0.40 st=0.40 \mathrm{~s}.

See Solution

Problem 5814

Find f(2)f^{\prime}(2) for f(x)=g(x)h(x)f(x)=\frac{g(x)}{h(x)} given g(2)=5g(2)=5, g(2)=1g^{\prime}(2)=-1, h(2)=4h(2)=4, and h(2)=3h^{\prime}(2)=3.

See Solution

Problem 5815

Calculate the limit: limx03x+2x+24x+5x2\lim _{x \rightarrow 0} \frac{\sqrt{3 x+2}-\sqrt{x+2}}{4^{x}+5^{x}-2}.

See Solution

Problem 5816

Finde die Tangentengleichungen der Funktionen ff, die parallel zu den Geraden gg sind. a) f(x)=x29x+13f(x)=x^{2}-9 x+13, g:3x5y=7g: 3 x-5 y=7 b) f(x)=2x2+34x1f(x)=-2 x^{2}+\frac{3}{4} x-1, g:2x+4y=2g: 2 x+4 y=-2 c) f(x)=x33+3x227x+1f(x)=\frac{x^{3}}{3}+\frac{3 x^{2}}{2}-7 x+1, g:6x2y=1g: 6 x-2 y=1 d) f(x)=x33+x230+4f(x)=\frac{x^{3}}{3}+\frac{x^{2}}{30}+4, g:2x15y=5g: 2 x-15 y=5

See Solution

Problem 5817

Find the derivative of f(x)=5x4+5x3+2x2+5x+5f(x)=-5 x^{4}+5 x^{3}+2 x^{2}+5 x+5. What is f(x)f^{\prime}(x)?

See Solution

Problem 5818

Find the missing part of the derivative for k(x)=(5+5x2)3k(x)=\left(5+5 x^{2}\right)^{-3}: k(x)=(3(5+5x2)4 ? )(10x)k^{\prime}(x)=\left(-3\left(5+5 x^{2}\right)^{-4} \quad \text { ? }\right)(10 x)

See Solution

Problem 5819

Leiten Sie die Funktionen ab: (a) f(x)=sin(3x+3)f(x)=\sin (3 x+3), (b) f(t)=2cos(πt2)f(t)=2 \cdot \cos (\pi t-2), (c) f(t)=cos(5t)f(t)=-\cos (5 t), (d) f(x)=4sin(πx)f(x)=-4 \cdot \sin (\pi-x), (e) f(t)=sin(t6)f(t)=\sin (t-6), (f) f(x)=cos(3x+π)f(x)=\cos (3 x+\pi).

See Solution

Problem 5820

Bestimme die Steigung von f(x)=(2x1)3f(x)=(2x-1)^{3} bei P(1f(1))P(1 \mid f(1)), finde aa mit g(a)=2g^{\prime}(a)=-2 für g(x)=1(x1)2g(x)=\frac{1}{(x-1)^{2}}, und prüfe, ob h(x)=3x+5h(x)=\sqrt{3x+5} waagerechte Tangenten hat.

See Solution

Problem 5821

Find the limit: limt23tt4t22+5t222\lim _{t \rightarrow \sqrt{2}} \frac{\sqrt{3} t - t}{4^{t^{2}-2} + 5^{t^{2}-2} - 2}.

See Solution

Problem 5822

Verify if (fg)(x)=f(x)g(x)\left(\frac{f}{g}\right)^{\prime}(x)=\frac{f^{\prime}(x)}{g^{\prime}(x)} for f(x)=8x+7f(x)=8x+7 and g(x)=5xg(x)=5x.

See Solution

Problem 5823

Calculate the integral from 4 to 9 of the function 1x2\frac{1}{x^{2}}.

See Solution

Problem 5824

Verify if the derivative of the quotient (fg)(x)\left(\frac{f}{g}\right)^{\prime}(x) equals f(x)g(x)\frac{f^{\prime}(x)}{g^{\prime}(x)} for f(x)=7x+3f(x)=7x+3 and g(x)=8xg(x)=8x.

See Solution

Problem 5825

Check if the derivative of a quotient is the quotient of the derivatives for f(x)=7x+3f(x)=7x+3 and g(x)=8xg(x)=8x.

See Solution

Problem 5826

Find the derivative of f(x)=sin(3x)4x26xf(x)=\frac{\sin(3x)}{4x^{2}-6x}.

See Solution

Problem 5827

Find the limit: limx24x21531x+31\lim _{x \rightarrow-2} \frac{\sqrt[3]{4 x^{2}-15}-1}{\sqrt{x+3}-1}.

See Solution

Problem 5828

Bestimmen Sie die Stammfunktion FF von f(x)=3x22xf(x)=3 x^{2}-2 x, die durch den Punkt P(2,1)P(2, -1) verläuft. Wählen Sie CC passend.

See Solution

Problem 5829

Ein Kreuzfahrtschiff hat 2500 Passagiere. Am Tag 1 erkranken 22 Passagiere. Zeigen Sie, dass f(t)=24980,008e0,008tf^{\prime}(t)=2498 \cdot 0,008 \cdot e^{-0,008 \cdot t} gilt und bestimmen Sie, wie lange medizinisches Personal benötigt wird.

See Solution

Problem 5830

Verify if (fg)(x)=f(x)g(x)\left(\frac{f}{g}\right)^{\prime}(x)=\frac{f^{\prime}(x)}{g^{\prime}(x)} for f(x)=9x+5f(x)=9x+5, g(x)=2xg(x)=2x.

See Solution

Problem 5831

Verify if (fg)(x)=f(x)g(x)\left(\frac{f}{g}\right)^{\prime}(x)=\frac{f^{\prime}(x)}{g^{\prime}(x)} is true for f(x)=3x+4f(x)=3x+4, g(x)=7xg(x)=7x.

See Solution

Problem 5832

Find the limit: limx12x5+6x15x44x3+3\lim _{x \rightarrow \infty} \frac{12 x^{5}+6 x-1}{5 x^{4}-4 x^{3}+3}.

See Solution

Problem 5833

Find the derivative f(x)f'(x) of f(x)=4x(sinx+cosx)f(x)=4x(\sin x+\cos x) and calculate f(2)f'(2) rounded to the nearest hundredth.

See Solution

Problem 5834

Calculate the limit: limx17+x339x3x1\lim _{x \rightarrow 1} \frac{\sqrt[3]{7+x^{3}}-\sqrt[3]{9-x}}{x-1}.

See Solution

Problem 5835

Check if the derivative of a product (fg)(x)(f g)^{\prime}(x) equals the product of derivatives f(x)g(x)f^{\prime}(x) g^{\prime}(x) for f(x)=5x+4f(x)=5x+4, g(x)=3x+2g(x)=3x+2.

See Solution

Problem 5836

Find the derivative f(x)f'(x) for f(x)=3x(sinx+cosx)f(x)=3x(\sin x+\cos x) and calculate f(3)f'(3) rounded to the nearest hundredth.

See Solution

Problem 5837

Find the selling price xx that maximizes profit P(x)=R(x)C(x)P(x) = R(x) - C(x), where C(x)C(x) and R(x)R(x) are defined.

See Solution

Problem 5838

Finde die Ableitung von f(x)=(x1)(x3)2f(x) = (x-1)(x-3)^{2} und vereinfache f(x)f'(x).

See Solution

Problem 5839

Find the degree 3 Taylor expansion of f(x)=ln(x2+8x+17)f(x) = \ln(x^2 + 8x + 17) around x=4x = -4, including the best big-OO term.

See Solution

Problem 5840

Find the integral of the function f(x)=x2ex2f(x) = x - 2 - e^{x - 2}.

See Solution

Problem 5841

Sketch a function graph and check if f\mathrm{f} is continuous at x=2\mathrm{x}=2: f(2)=3f(2)=-3, limx2f(x)=3\lim _{x \rightarrow 2^{-}} f(x)=3, limx2+f(x)=3\lim _{x \rightarrow 2^{+}} f(x)=-3.

See Solution

Problem 5842

Given the production function Y=ZK+BNY=Z K+B N, find output per worker yy in terms of capital per worker kk. Determine the marginal and average product of kk. Then derive the dynamic equation for kk. Discuss conditions for steady state and endogenous growth. Analyze growth rates of capital, output, and consumption per worker. Finally, calculate long-run growth rate of output per worker for s=0.4,Z=1,B=2,d=0.08,n=0.02s=0.4, Z=1, B=2, d=0.08, n=0.02 and compare with B=5B=5.

See Solution

Problem 5843

Find f(0)f^{\prime}(0) for the piecewise function: f(x)=2x2+7xf(x)=-2x^{2}+7x for x<0x<0 and f(x)=3x22f(x)=3x^{2}-2 for x0x\geq0.

See Solution

Problem 5844

Find the limits of the function f(x)f(x) at x=0x=0:
1. limx0f(x)\lim _{x \rightarrow 0^{-}} f(x)
2. limx0+f(x)\lim _{x \rightarrow 0^{+}} f(x)

Choose the correct answer:
A. 2;12 ;-1 B. 2; Does not exist C. 1;2-1 ; 2 D. Does not exist; does not exist

See Solution

Problem 5845

Identify vertical asymptotes for g(x)=x6xg(x)=\frac{x}{6-x} and describe limits at x=6x=6.

See Solution

Problem 5846

Sketch a function graph that meets these conditions: f(2)=1f(2)=1 and limx2f(x)=1\lim_{x \rightarrow 2} f(x)=1. Is ff continuous at x=2x=2?

See Solution

Problem 5847

Find the limit as xx approaches -10 from the left for f(x)=1x+10f(x)=\frac{1}{x+10}. Options: A. -1 B. \infty C. 0 D. -\infty

See Solution

Problem 5848

Find limx0f(x)\lim _{x \rightarrow 0} f(x) and f(0)f(0) from the graph. Options: A, B, C, D based on the graph's behavior.

See Solution

Problem 5849

A bucket catches water leaking at 0.5 cm30.5 \mathrm{~cm}^{3} per minute. Find dhdt\frac{dh}{dt} when h=10 cmh=10 \mathrm{~cm}.

See Solution

Problem 5850

Find the derivative of f(x)=sin3xcos2xf(x)=\frac{\sin 3 x}{\cos 2 x} at x=π6x=\frac{\pi}{6}.

See Solution

Problem 5851

Find the local linear approximation of f(x)=5x+7x4f(x)=\frac{5 x+7}{x-4} near x=5x=5. Answer: f(x)f(x) \approx

See Solution

Problem 5852

Find the vertical asymptotes of f(x)=x7x249f(x)=\frac{x-7}{x^{2}-49} and evaluate the limits: a. limx7f(x)\lim _{x \rightarrow 7} f(x), b. limx7f(x)\lim _{x \rightarrow-7^{-}} f(x), c. limx7+f(x)\lim _{x \rightarrow-7^{+}} f(x).

See Solution

Problem 5853

Determine vertical asymptotes x=ax=a for f(x)=x311x2+28xx27xf(x)=\frac{x^{3}-11 x^{2}+28 x}{x^{2}-7 x}. Evaluate limits as xx approaches aa.

See Solution

Problem 5854

Estimate p(1997)p^{\prime \prime}(1997) using the percentages of seniors using marijuana from 1991 to 1999. Choose A, B, C, D, or E.

See Solution

Problem 5855

Find f(x)f'(x) for f(x)=x6x+6f(x)=\frac{\sqrt{x}-6}{\sqrt{x}+6} and calculate f(4)f'(4) (round to the nearest hundredth).

See Solution

Problem 5856

Find the derivative f(x)f'(x) of f(x)=5x(sinx+cosx)f(x)=5x(\sin x+\cos x) and calculate f(3)f'(3) rounded to the nearest hundredth.

See Solution

Problem 5857

Prove that y=ex(sin2x+cos2x)y=e^{x}(\sin 2 x+\cos 2 x) satisfies y2y+5y=0y^{\prime \prime}-2 y^{\prime}+5 y=0.

See Solution

Problem 5858

Find the derivative of the function f(x)=sec(g(x))f(x)=\sec(g(x)), i.e., compute f(x)f'(x).

See Solution

Problem 5859

A steak at 25F25^{\circ} \mathrm{F} thaws in a 71F71^{\circ} \mathrm{F} room. After 9 mins it's 36F36^{\circ} \mathrm{F}. When is it 60F60^{\circ} \mathrm{F}?

See Solution

Problem 5860

Déterminez si la suite an=3n45n8+4n5a_{n}=\frac{3 n^{4}}{\sqrt{5 n^{8}+4 n^{5}}} converge et trouvez sa limite ou écrivez diverge.

See Solution

Problem 5861

A particle moves on the circle x2+y2=100x^{2}+y^{2}=100. At (8,6)(8,6), if dxdt=5\frac{d x}{d t}=5, find dydt\frac{d y}{d t}.

See Solution

Problem 5862

Determine the intervals where the function f(x)=3x218x+24f(x)=3x^{2}-18x+24 is increasing.

See Solution

Problem 5863

Find the limit as xx approaches infinity: limx(11x4)\lim _{x \rightarrow \infty}\left(-11 x^{-4}\right).

See Solution

Problem 5864

Find the limit as xx approaches infinity for the expression 11x4-11 x^{-4}.

See Solution

Problem 5865

Find the rate of change of gravitational force F(r)=2.99×1016r2F(r)=\frac{2.99 \times 10^{16}}{r^{2}} at r=6.77×106r=6.77 \times 10^{6} m.

See Solution

Problem 5866

Find the limit: limx8+8x+9x3x3.\lim _{x \rightarrow \infty} \frac{8+8 x+9 x^{3}}{x^{3}}.

See Solution

Problem 5867

The logistic growth function f(t)=107,0001+5100etf(t)=\frac{107,000}{1+5100 e^{-t}} models flu cases.
a. Find initial cases. b. Find cases after 4 weeks. c. Determine maximum cases.

See Solution

Problem 5868

Find the limit as xx approaches infinity of exe^{x}.

See Solution

Problem 5869

Find the tangent plane and normal line equations for f(x,y)=xexyf(x, y)=x e^{x y} at (1,0,1)(1,0,1).

See Solution

Problem 5870

Find f/r\partial f / \partial r for f(x,y)=y2+6x3f(x, y)=y^{2}+6 x^{3}, where x(r,s)=rsx(r, s)=r s and y(r,s)=r2+s2y(r, s)=r^{2}+s^{2}.

See Solution

Problem 5871

Find the limit: limxsin15x13x\lim _{x \rightarrow \infty} \frac{\sin 15 x}{13 x}.

See Solution

Problem 5872

Find the rate of change of power P(R)=2.1R(R+0.5)2P(R)=\frac{2.1 R}{(R+0.5)^{2}} W at R=3ΩR=3 \Omega. Round to four decimal places.

See Solution

Problem 5873

Find when the object moves right on the xx-axis given x(t)=12t4103t3+4t2x(t)=\frac{1}{2} t^{4}-\frac{10}{3} t^{3}+4 t^{2}. Options: (0,1)(4,)(0,1) \cup(4, \infty), (0,1)(6,)(0,1) \cup(6, \infty), (0,23)(83,)\left(0, \frac{2}{3}\right) \cup\left(\frac{8}{3}, \infty\right), (1,4)(1,4), (0,12)(2,)\left(0, \frac{1}{2}\right) \cup(2, \infty).

See Solution

Problem 5874

Find the time intervals when the object moves right given x(t)=12t4103t3+4t2x(t)=\frac{1}{2} t^{4}-\frac{10}{3} t^{3}+4 t^{2}.

See Solution

Problem 5875

Find the limit: limx7x26x72x+14\lim _{x \rightarrow 7} \frac{x^{2}-6 x-7}{-2 x+14}.

See Solution

Problem 5876

Find the limit: limx0x27xx2x\lim _{x \rightarrow 0} \frac{x^{2}-7 x}{x^{2}-x} in simplest form.

See Solution

Problem 5877

Find the limit: limx3x2+11x+24x2+3x\lim _{x \rightarrow-3} \frac{x^{2}+11 x+24}{x^{2}+3 x}.

See Solution

Problem 5878

Find the limit as xx approaches infinity: limx14x3+1049x435xx+9x4436x3\lim_{x \rightarrow \infty} \frac{14x^{3}+10-49x^{4}-35x}{x+9x^{4}-4-36x^{3}}. State DNE if infinite.

See Solution

Problem 5879

Find the limit as xx approaches infinity for (8+x2)(2x7)(2x3+1)(3x3+7)\frac{(8+x^{2})(2x-7)}{(2x^{3}+1)(3x^{3}+7)}. State DNE if infinite.

See Solution

Problem 5880

Find the limit: limx(3x2)(6+5x3)(17x2)(5x+6)\lim _{x \rightarrow \infty} \frac{(3 x-2)(6+5 x^{3})}{(1-7 x^{2})(5 x+6)}. State if it DNE.

See Solution

Problem 5881

Find the limit: limx0x27xx2x\lim _{x \rightarrow 0} \frac{x^{2}-7 x}{x^{2}-x}.

See Solution

Problem 5882

Find the limit: limx2(4x31)(2x39)(32x)\lim _{x \rightarrow \infty} \frac{-2(4 x^{3}-1)}{(2 x^{3}-9)(3-2 x)}. State if DNE.

See Solution

Problem 5883

Find the limit: limx8x12+49x623x432x+4x4+6\lim _{x \rightarrow \infty} \frac{\sqrt[3]{8 x^{12}+49 x^{6}-23 x^{4}}}{2 x+4 x^{4}+6}. State if DNE.

See Solution

Problem 5884

Find the limit as xx approaches infinity: limx47x7+x85+4x2+9x4\lim _{x \rightarrow \infty} \frac{\sqrt{-47 x^{7}+x^{8}}}{5+4 x^{2}+9 x^{4}}. If infinite, state DNE.

See Solution

Problem 5885

Find the limit: limx20x3+x4x+10x3+3x2\lim _{x \rightarrow \infty} \frac{\sqrt{-20 x^{3}+x^{4}}}{x+10 x^{3}+3 x^{2}}. State if it DNE.

See Solution

Problem 5886

Find the limit: limx27x930x33x3+7+7x4\lim _{x \rightarrow \infty} \frac{\sqrt[3]{27 x^{9}-30 x^{3}}}{x^{3}+7+7 x^{4}}. State if it DNE.

See Solution

Problem 5887

Find the limit: limx40+64x1339x4+4x\lim _{x \rightarrow \infty} \frac{\sqrt[3]{40+64 x^{13}}}{9 x^{4}+4 x}. State DNE if infinite.

See Solution

Problem 5888

Find the time tt for maximum rabbit population given P(t)=140t0.3t4+1000P(t)=140t-0.3t^4+1000 and when it disappears.

See Solution

Problem 5889

Find the limit: limx27x930x33x3+7+7x4\lim _{x \rightarrow \infty} \frac{\sqrt[3]{27 x^{9}-30 x^{3}}}{x^{3}+7+7 x^{4}}. State DNE if infinite.

See Solution

Problem 5890

Find the velocity of a ball dropped from 150 m150 \mathrm{~m} when it hits the ground, using g=9.8 m/s2g=9.8 \mathrm{~m/s}^2.

See Solution

Problem 5891

Find the limit as xx approaches infinity: limx49x6+46x2+42x58x2+5+5x3\lim _{x \rightarrow \infty} \frac{\sqrt{49 x^{6}+46 x^{2}+42 x^{5}}}{8 x^{2}+5+5 x^{3}}. State DNE if infinite.

See Solution

Problem 5892

Find the limit: limx36x445x419x+5x2+2\lim _{x \rightarrow \infty} \frac{\sqrt{36 x^{4}-45 x-41}}{9 x+5 x^{2}+2}. State if it DNE.

See Solution

Problem 5893

Find the maximum rabbit population and when it occurs for P(t)=140t0.3t4+1000P(t)=140t-0.3t^4+1000. Also, determine when it disappears.

See Solution

Problem 5894

Find the limit: limx16x531+25x10x2+7x4+1\lim _{x \rightarrow \infty} \frac{\sqrt{-16 x^{5}-31+25 x^{10}}}{x^{2}+7 x^{4}+1}. State DNE if infinite.

See Solution

Problem 5895

Find the tangent line to f(x)=2arccos(x)f(x)=-2 \arccos (x) at x=32x=-\frac{\sqrt{3}}{2}.

See Solution

Problem 5896

Determine the limit as xx approaches infinity for x722x\frac{x^{72}}{2^{x}}. What does it equal?

See Solution

Problem 5897

Find the horizontal asymptotes for the function f(x)=4x425x32x5x2f(x)=\frac{\sqrt{4 x^{4}-25 x^{3}}}{2 x-5 x^{2}}.

See Solution

Problem 5898

Determine the limit: limx8log5x6x36x43\lim _{x \rightarrow \infty} \frac{8 \log _{5} x-6 x^{36}}{x^{43}}. What does it equal?

See Solution

Problem 5899

Evaluate the limit: L=limx07cos(x)10x3x1L = \lim _{x \rightarrow 0} \frac{7-\cos (x)-10 x}{3 x-1}

See Solution

Problem 5900

Find the half-life of Technetium-99 if a 250 g sample decays to 62.5 g in 319,500 years.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord