Calculus

Problem 12501

Berechne die Gesamtmasse der Glocke (Haube + Körper) mit Dichte ρ=8,5gcm3\rho=8,5 \frac{\mathrm{g}}{\mathrm{cm}^{3}}.

See Solution

Problem 12502

Untersuchen Sie den Mittelwert der Innendurchmesser des Glockenkörpers und vergleichen Sie ihn mit dem Wert bei x=3,95x=3,95.

See Solution

Problem 12503

Estimate f(3.2)f(3.2) given f(3)=2f(3)=2 and f(3)=5f^{\prime}(3)=5.

See Solution

Problem 12504

Find the xx-coordinate of the stationary point of y=e2x(sinx+3cosx)y=\mathrm{e}^{2 x}(\sin x+3 \cos x) in 0xπ0 \leq x \leq \pi, to 2 decimal places.

See Solution

Problem 12505

Gegeben ist die Funktion fa(x)=x2+3ax6a+4f_{a}(x)=-x^{2}+3 a x-6 a+4. a) Zeigen, dass fa(2)=0f_{a}(2)=0. b) Bestimmen Sie Extrempunkte in Abhängigkeit von a.

See Solution

Problem 12506

Find the limits: limx3g(x)\lim_{x \rightarrow 3^{-}} g(x), limx3+g(x)\lim_{x \rightarrow 3^{+}} g(x), and limx3g(x)\lim_{x \rightarrow 3} g(x).

See Solution

Problem 12507

Find the derivative f(x)f^{\prime}(x) using the limit definition for f(x)=xx2f(x)=x-x^{2}. Show all work and simplify.

See Solution

Problem 12508

Find ff where f(x)=10x9f'(x)=10x-9 and f(9)=0f(9)=0.

See Solution

Problem 12509

Find the derivative f(x)f^{\prime}(x) using the limit definition for f(x)=xx2f(x)=x-x^{2}. Show all work and simplify.

See Solution

Problem 12510

Find the function ff where f(x)=8xf^{\prime}(x)=\frac{8}{\sqrt{x}} and f(1)=22f(1)=22.

See Solution

Problem 12511

Find f(2)f^{\prime}(2) for f(x)=q(x)p(x)3(1)f(x) = \frac{q(x)-p(x)}{3-(-1)} given p(2)=1p(2)=-1, q(2)=3q(2)=3.

See Solution

Problem 12512

A circle inscribed in a square has a circumference increasing at 6in/sec6 \mathrm{in/sec}.
(a) Find the rate of increase of the square's perimeter. (b) When the circle's area is 25πin225 \pi \mathrm{in}^2, find the rate of increase of the area between the circle and square.

See Solution

Problem 12513

Bestimmen Sie die Extrempunkte der Funktionen:
1. f(x)=12x2+2kx+kf(x)=\frac{1}{2} x^{2}+2 k x+k
2. f(x)=x33b2x+2b3f(x)=x^{3}-3 b^{2} x+2 b^{3}
3. f(x)=14x424x2f(x)=\frac{1}{4} x^{4}-\frac{2}{4} x^{2}

Nutzen Sie die Ableitung und setzen Sie sie gleich Null.

See Solution

Problem 12514

Find the demand function given that D(x)=2000x2D^{\prime}(x)=-\frac{2000}{x^{2}} and D(2)=1006D(2)=1006.

See Solution

Problem 12515

Find the total cost function CC if the marginal cost is C(x)=x34xC^{\prime}(x)=x^{3}-4x and fixed costs are \$2000.

See Solution

Problem 12516

A circle's radius grows at 7 ft/min. When the radius is 4 ft, find the area change rate. Round to three decimals.

See Solution

Problem 12517

Untersuchen Sie den Mittelwert der Innendurchmesser des Glockenkörpers und vergleichen Sie ihn mit dem Wert bei x=3,95x=3,95.

See Solution

Problem 12518

A sphere's radius decreases at 5 ft/s. When its volume is 510 ft³, find the volume's rate of change using V=43πr3V=\frac{4}{3} \pi r^{3}. Round to three decimals.

See Solution

Problem 12519

Differentiate g(x)=x23a23g(x)=x^{\frac{2}{3}}-a^{\frac{2}{3}} using the power rule: if f(x)=xnf(x)=x^n, then f(x)=nxn1f'(x)=nx^{n-1}.

See Solution

Problem 12520

Untersuchen Sie den Mittelwert der Innendurchmesser des Glockenkörpers und vergleichen Sie ihn mit dem Wert bei x=3,95x=3,95.

See Solution

Problem 12521

Is there a solution for g(x)=16g'(x)=16 with 3<x<53<x<5 using the mean value theorem for g(x)=2xg(x)=2^{x}? Choose A, B, or C.

See Solution

Problem 12522

Can we apply the mean value theorem to f(x)=1xf(x)=\frac{1}{|x|} for 2<x<42<x<4 with f(x)=14f'(x)=-\frac{1}{4}?
A No, not differentiable. B No, average rate isn't 14-\frac{1}{4}. C Yes, conditions are met.

See Solution

Problem 12523

Differentiate f(x)=1xcf(x) = \frac{1}{x^c} where cc is a constant.

See Solution

Problem 12524

Find dydx\frac{d y}{d x} if y=1+x21x2y=\frac{1+x^{2}}{1-x^{2}}. Options: a. 4x(1x2)2-\frac{4 x}{(1-x^{2})^{2}}, b. 4x(1x2)2\frac{4 x}{(1-x^{2})^{2}}, c. 4x3(1x2)2-\frac{4 x^{3}}{(1-x^{2})^{2}}, d. 2x1x2\frac{2 x}{1-x^{2}}.

See Solution

Problem 12525

Can we apply the mean value theorem to find a solution for g(x)=12g^{\prime}(x)=\frac{1}{2} in 100<x<101100<x<101?
Choose 1 answer: (A) No, since we don't know if the function is differentiable on that interval. (B) No, since the average rate of change of gg over 100x101100 \leq x \leq 101 isn't 12\frac{1}{2}. (C) Yes, both conditions for using the mean value theorem have been met.

See Solution

Problem 12526

Find the area under the curve y=13x2+2y=13 x^{2}+2 from x=0x=0 to x=3x=3 using a calculator.

See Solution

Problem 12527

Given values of hh: h(5)=18h(-5)=18, h(4)=13h(-4)=13, h(3)=15h(-3)=15, h(2)=19h(-2)=19. Is Tom's justification for h(c)=2h'(c)=2 in (4,3)(-4,-3) complete?

See Solution

Problem 12528

Is Lucy's justification for g(c)=0g(c)=0 in (8,10)(8,10) complete? Choose: (A) Yes, (B) No, she didn’t show average rate is 0. (C) No, she needed to mention differentiability.

See Solution

Problem 12529

Find the value of cc that satisfies the Mean Value Theorem for h(x)=4x8h(x)=\sqrt{4x-8} on [3,11][3,11]. Choose: (A) 3.5, (B) 6, (C) 8, (D) 9.5.

See Solution

Problem 12530

Find the derivative of y=8x2+ln(x2)y=8 x^{2}+\ln(x^{2}).

See Solution

Problem 12531

Find the derivative of y=18x2ln(x3)y=18 x^{2} \ln(x^{3}).

See Solution

Problem 12532

Eine Schraube fällt aus h=65 mh=65 \mathrm{~m}. a) Bestimme die Fallzeit tt. b) Bestimme die Aufprallgeschwindigkeit vv.

See Solution

Problem 12533

Estimate the area between the curves y=3xy=3x and y=0.5x2y=0.5x^{2}.

See Solution

Problem 12534

A circle inscribed in a square has a circumference increasing at 6in/sec6 \mathrm{in} / \mathrm{sec}.
(a) Find the rate of increase of the square's perimeter. (b) When the circle's area is 25πin225 \pi \mathrm{in}^{2}, find the rate of increase in the area between the circle and square.

See Solution

Problem 12535

Find the derivative of f(x)=5x4ln(x2)f(x)=5 x^{4} \ln(x^{2}).

See Solution

Problem 12536

Graph the curves y=2xy=2x and y=8xy=8\sqrt{x}. Find the other x\mathrm{x}-coordinate where they intersect and the area between them. x=\mathrm{x}= Area=\text{Area}=

See Solution

Problem 12537

Calculate the area between the curves y=x1/2y=x^{1/2} and y=x1/3y=x^{1/3} from x=0x=0 to x=1x=1.

See Solution

Problem 12538

Find the derivative of f(x)=20x5ln(x)f(x)=20 x^{5} \ln (x).

See Solution

Problem 12539

Determine if the functions are continuous at the given points: a. f(x)=x21x+1f(x)=\frac{x^{2}-1}{x+1} at x=1x=-1 b. f(x)={2x+3if x16x1if x>1f(x)=\begin{cases}2x+3 & \text{if } x \leq 1 \\ 6x-1 & \text{if } x>1\end{cases} at x=1x=1

See Solution

Problem 12540

Check if these functions are continuous at the given points: a. f(x)=x21x+1f(x)=\frac{x^{2}-1}{x+1} at x=1x=-1 b. f(x)={2x+3if x16x1if x>1f(x)=\begin{cases} 2x+3 & \text{if } x \leq 1 \\ 6x-1 & \text{if } x > 1 \end{cases} at x=1x=1 c. f(x)=x5x3f(x)=x^{5}-x^{3} for x>1x>1

See Solution

Problem 12541

Find dxdt\frac{d x}{d t} when x=4x=4, y=3y=3, dzdt=1\frac{d z}{d t}=1, and dxdt=3dydt\frac{d x}{d t}=3 \frac{d y}{d t}.

See Solution

Problem 12542

Water drains from a conical tank (height 12 ft, diameter 8 ft) into a cylindrical tank (area 400πft2400 \pi \mathrm{ft}^{2}).
(a) Find the volume of the conical tank as a function of hh. (b) Determine the volume change rate when h=3h=3. (c) Find the rate of change of depth yy in the cylindrical tank when h=3h=3.

See Solution

Problem 12543

Find the antiderivative FF of f(x)=x44x35f(x)=x^{4}-4 x^{-3}-5 such that F(1)=1F(1)=1.

See Solution

Problem 12544

Water drains from a conical tank (height 12 ft, diameter 8 ft) into a cylindrical tank (area 400π400\pi ft²).
(a) Find volume of the conical tank as a function of hh. (b) Rate of volume change when h=3h=3? (c) Rate of change of depth yy in the cylindrical tank when h=3h=3?

See Solution

Problem 12545

Determine if these functions are continuous at the given points: a. f(x)=x21x+1f(x)=\frac{x^{2}-1}{x+1} at x=1x=-1 b. f(x)=(2x+36x1f(x)=\left(\begin{array}{l}2 x+3 \\ 6 x-1\end{array}\right. if x>1x>1 at x=1x=1 c. f(x)=x5x3f(x)=x^{5}-x^{3} for all xx

See Solution

Problem 12546

Find the area between the lines f(x)=2xf(x)=2x and g(x)=4g(x)=4 from x=0x=0 to x=4x=4.

See Solution

Problem 12547

Find the production level xx that minimizes the average cost given c(x)=5x335x2+5,547xc(x)=5 x^{3}-35 x^{2}+5,547 x.

See Solution

Problem 12548

Find the antiderivative FF of f(x)=x54x33f(x)=x^{5}-4 x^{-3}-3 such that F(1)=2F(1)=2. What is F(x)=F(x)=\square?

See Solution

Problem 12549

Find the derivative of f(x)=xf(x)=\lfloor x\rfloor at x=1x=1 and x=32x=\frac{3}{2}: compute f(1)f'(1) and f(32)f'\left(\frac{3}{2}\right).

See Solution

Problem 12550

Find 16limtyt16 \lim_{t \rightarrow \infty} \frac{y}{t} for the equation y+2ty=t2y' + 2ty = t^2. Options: (1) 8, (2) 9, (3) 7, (4) 6.

See Solution

Problem 12551

A sphere with radius 1 m1 \mathrm{~m} is dissolving at 3 cm/3 \mathrm{~cm} / hour. Find the volume change rate in cm3/hr\mathrm{cm}^{3} / \mathrm{hr}.

See Solution

Problem 12552

Find the derivative f(x)f'(x) of the piecewise function f(x)={x2+2,x1;2x+1,x<1}f(x)=\{x^{2}+2, x \geq 1; 2x+1, x<1\}.

See Solution

Problem 12553

Approximate the area under f(x)=15x3x+7f(x)=\frac{1}{5} x^{3}-x+7 on [1,2][-1,2] using a Midpoint Riemann Sum with n=3n=3.

See Solution

Problem 12554

Find the derivative g(1)g^{\prime}(1) for the piecewise function g(x)={x2+2,x1;<3,x<1}g(x)=\{x^{2}+2, x \geq 1; <3, x<1\}.

See Solution

Problem 12555

Analyze how the average rate of change of the function f(x)=xf(x) = \sqrt{x} varies as interval endpoints increase.

See Solution

Problem 12556

Find the average rate of change of f(x)=20(0.5)xf(x)=20(0.5)^{x} from x=2x=-2 to x=2x=2. Options: 18.75-18.75, 18.7518.75, 17.5-17.5, 17.517.5.

See Solution

Problem 12557

Find the critical numbers of f(x)=49x2f(x)=\sqrt{49-x^{2}}. Options: a) 0 b) 7,7-7,7 c) 7,0,7-7,0,7 d) 7,0 e) None.

See Solution

Problem 12558

Find the interval where f(x)=x13(x249)f(x)=x^{\frac{1}{3}}(x^{2}-49) is decreasing. Choose from the options given.

See Solution

Problem 12559

Calculate the integral: (4x4+4x14+4)dx\int(4 x^{4}+4 x^{14}+4) \, dx

See Solution

Problem 12560

Determine where the function f(x)=x13(x221)f(x)=x^{\frac{1}{3}}(x^{2}-21) is increasing from the options given.

See Solution

Problem 12561

Find the rate of increase for the function y=1.08(1.16)xy=1.08(1.16)^{x}.

See Solution

Problem 12562

Find the limits: a. limx2x54x+1010x5+x1\lim_{x \to \infty} \frac{2x^5 - 4x + 10}{10x^5 + x - 1}, b. f(x)={x2+1,2x+4}f(x)=\{x^2 + 1, 2x + 4\} for x<3x < 3 (limit at 3), c. limx1x2+3x+14x29\lim_{x \to 1} \frac{x^2 + 3x + 1}{4x^2 - 9}.

See Solution

Problem 12563

Find the antiderivative FF of f(x)=x33x4+2f(x)=x^{3}-3 x^{-4}+2 such that F(1)=1F(1)=1.

See Solution

Problem 12564

Find the limits: a. limx2x54x+1010x5+x1\lim _{x \rightarrow \infty} \frac{2 x^{5}-4 x+10}{10 x^{5}+x-1}, b. f(x)={x2+12x+4f(x)=\left\{\begin{array}{c}x^{2}+1 \\ 2 x+4\end{array}\right. (limit at 3), c. limx1x2+3x+14x29\lim _{x \rightarrow 1} \frac{x^{2}+3 x+1}{4 x^{2}-9}.

See Solution

Problem 12565

Find local minimum(s) of f(x)=x13(x27)f(x)=x^{\frac{1}{3}}\left(x^{2}-7\right) using the first derivative test. Choices: a) 1 b) 0,1 c) -1 d) \infty e) None.

See Solution

Problem 12566

Find local maxima of f(x)=x13(x249)f(x)=x^{\frac{1}{3}}\left(x^{2}-49\right) using the first derivative test. Options: a) 7\sqrt{7} b) 0,7 c) 7-\sqrt{7} d) \infty e) None.

See Solution

Problem 12567

Find the second derivative of f(x)=ln(5x)5xf(x)=\ln(5x)-5x. Choices: a) 1x2\frac{1}{x^{2}}, b) 2x2\frac{2}{x^{2}}, c) 3x2\frac{3}{x^{2}}, d) 1x2\frac{-1}{x^{2}}, e) None.

See Solution

Problem 12568

Find the interval where the graph of f(x)=ln(4x)4xf(x)=\ln(4x)-4x is always concave down, given x>0x > 0. Options: a) (4,)(4, \infty) b) (,)(-\infty, \infty) c) (0,)(0, \infty) d) (,0)(-\infty, 0) e) None.

See Solution

Problem 12569

Find the absolute max and min of f(t)=t2t8f(t)=\frac{t^{2}}{t-8} on the interval 5t14-5 \leq t \leq -\frac{1}{4}.

See Solution

Problem 12570

Calculate the arc length of the curve y=(x+59)3/2y=\left(x+\frac{5}{9}\right)^{3 / 2} between x=0x=0 and x=3x=3.

See Solution

Problem 12571

Übung: Differenzialrechnung Bestimmen Sie die 1. und 2. Ableitung der Funktionen: a) f(x)=6x3+2x23f(x)=6 x^{3}+2 x^{2}-3 b) f(x)=53x2f(x)=5-\frac{3}{x^{2}} c) f(x)=4xf(x)=\frac{4}{\sqrt{x}} d) f(x)=16x3+23x2+45f(x)=\frac{1}{6} x^{3}+\frac{2}{3} x^{2}+\frac{4}{5} e) ft(x)=52tx2tx+3tf_{t}(x)=\frac{5}{2 t} x^{2}-t x+3 t f) f(x)=(3x3+x2)(4x22x)f(x)=(3 x^{3}+x^{2})(4 x^{2}-2 x)

See Solution

Problem 12572

Solve the differential equation y+1xy=exy' + \frac{1}{x} y = e^{x} with the initial condition y(1)=1y(1) = 1.

See Solution

Problem 12573

Calculate the integral from -1 to 3 of the function x45x3+8x24xx^{4}-5 x^{3}+8 x^{2}-4 x.

See Solution

Problem 12574

Find the average of f(x)=x31+x2f(x)=x^{3} \sqrt{1+x^{2}} from 00 to 3\sqrt{3}, rounded to four decimal places.

See Solution

Problem 12575

Calcola l'integrale particolare di y+y=0y^{\prime \prime}+y=0 con y=2y=\sqrt{2} a x=π4x=\frac{\pi}{4} e y=1y=1 a x=π2x=\frac{\pi}{2}.

See Solution

Problem 12576

Given the function g(x)=x312x2+45x+9g(x)=x^{3}-12 x^{2}+45 x+9, find critical points, classify them, and determine intervals of increase/decrease and concavity.

See Solution

Problem 12577

Find the function f(x)f(x) if f(x)=x(x+1)f''(x)=\sqrt{x}(x+1) and the tangent line at (1,0)(1,0) is y=x1y=x-1.

See Solution

Problem 12578

Given y=x3+5y=x^{3}+5 and dxdt=2\frac{dx}{dt}=2 when x=1x=1, find dydt\frac{dy}{dt} at x=1x=1. dydt=\frac{dy}{dt}=\square.

See Solution

Problem 12579

Find dydx\frac{dy}{dx} for y=sin1(1x4)y=\sin^{-1}\left(\frac{1}{x^{4}}\right).

See Solution

Problem 12580

How much will \$6000 grow in 15 years with 6% continuous interest? Use the formula for continuous compounding.

See Solution

Problem 12581

How much will you have in an account after 10 years if you deposit \$5000 at a 5% continuous interest rate?

See Solution

Problem 12582

Find the derivative of the function f(x)=9x8f(x)=\frac{-9}{x^{8}} at the point x=3x=3. What is f(3)f^{\prime}(3)?

See Solution

Problem 12583

Compare the average rates of change for f(x)=2x2f(x)=2 x^{2} and g(x)=3x2g(x)=3 x^{2} over the interval 3x4-3 \leq x \leq 4.

See Solution

Problem 12584

Find f(2)f'(2) and f(4)f'(4) for the function f(x)=4x1/6f(x)=-4 x^{1/6}.

See Solution

Problem 12585

Find f(1)f'(1) and f(6)f'(6) for the function f(x)=8x1/4(x34)f(x)=8 x^{1/4}(x^{3}-4).

See Solution

Problem 12586

Differentiate Y(u)=(u2+u3)(u55u2) Y(u) = (u^{-2} + u^{-3})(u^{5} - 5u^{2}) and find Y(u) Y'(u) .

See Solution

Problem 12587

Find the values of P2(0)P_{2}(0), P2(0)P_{2}^{\prime}(0), and P2(0)P_{2}^{\prime \prime}(0) for P2(x)=1+x+x22P_{2}(x)=1+x+\frac{x^{2}}{2}. Then compute P2(1)P_{2}(1).

See Solution

Problem 12588

Bestimmen Sie die Extrempunkte von faf_{a} in Abhängigkeit von a. Für welches a liegt ein Extrempunkt auf der xx-Achse?

See Solution

Problem 12589

Finde eine Funktion FF mit F(1)=100F(1)=100 für die folgenden ff:
a) f(x)=x2f(x)=x^{2}
b) f(x)=10f(x)=-10
c) f(x)=xf(x)=-x

See Solution

Problem 12590

Finde die Punkte des Graphen von f(x)=16(2x33x230x+8)f(x)=\frac{1}{6}(2x^{3}-3x^{2}-30x+8) mit Steigungswinkel a) 4545^{\circ}, b) 6060^{\circ}.

See Solution

Problem 12591

Bestimmen Sie die Ableitung ff^{\prime} für folgende Funktionen: a) f(x)=x3f(x)=x^{3}, b) f(x)=2xf(x)=2 x, c) f(t)=3t2f(t)=3 t^{2}, d) f(x)=13x3f(x)=\frac{1}{3} x^{3}, e) f(x)=13xnf(x)=\frac{1}{3} x^{n}, f) f(u)=2u0f(u)=2 u^{0}, g) f(a)=asin(π2)f(a)=a \cdot \sin \left(\frac{\pi}{2}\right), h) f(x)=32f(x)=3^{2}, i) f(x)=xn+2f(x)=x^{n+2}, j) f(p)=pn1f(p)=p^{n-1}, k) f(t)=0,5t2nf(t)=0,5 t^{2 n}, l) f(v)=anvn+1f(v)=a^{n} v^{n+1}.

See Solution

Problem 12592

Bestimmen Sie die Steigung von ff an x0x_{0} für: a) f(x)=x2,x0=5f(x)=x^{2}, x_{0}=5; b) f(x)=x3,x0=2f(x)=x^{3}, x_{0}=\sqrt{2}; c) f(x)=1x2,x0=2f(x)=\frac{1}{x^{2}}, x_{0}=-2; d) f(x)=2x,x0=0f(x)=2\sqrt{x}, x_{0}=0.

See Solution

Problem 12593

Find the tangent line equation for g(x)=f(x)2xg(x)=\frac{f(x)}{2x} at x=3x=-3, given f(3)=6f(-3)=-6 and f(3)=1f'(-3)=-1.

See Solution

Problem 12594

Untersuchen Sie die Funktion f(x)=15(x48x3+18x2)f(x) = \frac{1}{5}(x^{4}-8x^{3}+18x^{2}) auf Symmetrie und Nullstellen. Bestimmen Sie die Wendepunktgerade und zeichnen Sie die Graphen.

See Solution

Problem 12595

Geben Sie eine Stammfunktion für f(x)f(x) an: a) f(x)=x3f(x)=x^{3}, b) f(x)=3x3+x2f(x)=3x^{3}+x^{2}, c) f(x)=27x4+13f(x)=\frac{2}{7}x^{4}+\frac{1}{3}, d) f(x)=x75f(x)=\sqrt[5]{x^{7}}.

See Solution

Problem 12596

Finde die Stellen, wo ff die Steigung mm hat und wo ff und gg parallel sind. a) f(x)=3x24xf(x)=3x^{2}-4x, m=1m=-1 b) f(x)=x4xf(x)=x-\frac{4}{x^{\prime}}, m=2m=2 c) f(x)=12xf(x)=1-2\sqrt{x}, m=12m=-\frac{1}{2}. g(x)=13x3+2x2xg(x)=-\frac{1}{3}x^{3}+2x^{2}-x, g(x)=2x+7xg(x)=\frac{2}{x}+7x, g(x)=13x+4g(x)=-\frac{1}{3}x+4.

See Solution

Problem 12597

Berechne die Punkte des Graphen von f(x)=16(2x33x230x+8)f(x)=\frac{1}{6}(2 x^{3}-3 x^{2}-30 x+8) mit Steigungswinkel a) 4545^{\circ}, b) 6060^{\circ}.

See Solution

Problem 12598

Find the tangent line equation for g(x)=(2x4)f(x)g(x)=(2x-4)f(x) at x=6x=6, given f(6)=1f(6)=1 and f(6)=2f'(6)=-2.

See Solution

Problem 12599

Bestimme die Maße eines offenen Kartons mit quadratischer Grundfläche, um bei 100 cm2100 \mathrm{~cm}^{2} Oberfläche maximales Volumen zu erreichen. Zeige, dass es keine weiteren Maxima gibt.

See Solution

Problem 12600

Find the tangent line equation for g(x)=3xf(x)g(x)=3x f(x) at x=2x=-2, given f(2)=2f(-2)=-2 and f(2)=3f'(-2)=-3.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord