Calculus

Problem 28401

Find fyy(x,y)f_{y y}(x, y) for the function f(x,y)=ln(1+4x3y2)f(x, y)=\ln(1+4x^{3}y^{2}).

See Solution

Problem 28402

Find the partial derivative Px(7,8)\mathbf{P}_{x}(7,8) and Px(2,8)\mathbf{P}_{x}(2,8) for the profit function P(x,y)=130x+300y16x2+4xy14y2600P(x, y)=130 x+300 y-16 x^{2}+4 x y-14 y^{2}-600.

See Solution

Problem 28403

Find the integral of the function: (e3x+ex3+3ex)dx\int (e^{3} x + e x^{3} + 3 e x) \, dx.

See Solution

Problem 28404

Differentiate the function: 12e3x2+14ex4+32e2\frac{1}{2} e^{3} x^{2} + \frac{1}{4} e x^{4} + \frac{3}{2} e^{2}.

See Solution

Problem 28405

Finde die Funktion ff für die Ableitungen: a) f(x)=ex+x+2f^{\prime}(x)=e^{x}+x+2, b) f(x)=e2x+ex2+2exf^{\prime}(x)=e^{2} x+e x^{2}+2 e x.

See Solution

Problem 28406

Find why the acceleration is undefined at t=0t=0 for the position function s3+t2s=2ts^3 + t^2s = 2t and velocity dsdt=22st3s2+t2\frac{ds}{dt} = \frac{2 - 2st}{3s^2 + t^2}.

See Solution

Problem 28407

Find the intervals where the function y=x5y = -x^5 is increasing and decreasing. Choose A, B, or C for your answer.

See Solution

Problem 28408

Find the curve length of y=423x321y=\frac{4 \sqrt{2}}{3} x^{\frac{3}{2}}-1 for 0x10 \leq x \leq 1.

See Solution

Problem 28409

Check if the series k=12k+23k+1\sum_{k=1}^{\infty} \frac{2^{k+2}}{3^{k+1}} converges or diverges.

See Solution

Problem 28410

Find intervals where the function y=19xy = \frac{1}{9x} is increasing or decreasing. Choose A, B, or C with your answers.

See Solution

Problem 28411

Determine if x3+y2=3xyx^{3}+y^{2}=3 x y has a horizontal tangent at (2,4)(2,4).

See Solution

Problem 28412

Find the derivative of the function f(x)=ex+exf(x) = e^{x} + e^{-x}.

See Solution

Problem 28413

Determine the truth of these statements for the curve siny=x+y\sin y = x + y: I. Vertical tangent if cosy1=0\cos y - 1 = 0. II. No horizontal tangents if cosy10\cos y - 1 \neq 0. III. No horizontal tangents if dydx0\frac{dy}{dx} \neq 0.

See Solution

Problem 28414

Determine if the series converges and find its sum: k=12k+23k+1\sum_{k=1}^{\infty} \frac{2^{k+2}}{3^{k+1}} (Enter DNE if no sum exists.)

See Solution

Problem 28415

Find values of xx for which the series n=0(x+1)n2n\sum_{n=0}^{\infty} \frac{(x+1)^{n}}{2^{n}} converges and its sum.

See Solution

Problem 28416

Find the derivative of y=x312x+4y=x^{3}-12 x+4 and determine the coordinates of the turning points AA and BB.

See Solution

Problem 28417

Find the average speed of a flare modeled by h(t)=16t2+92t+3.5h(t)=-16 t^{2}+92 t+3.5 from 1 to 3 seconds.

See Solution

Problem 28418

Find the sum of the series: n=1(3x2n22)\sum_{n=1}^{\infty} (3 x^{2n} - 22).

See Solution

Problem 28419

Determine if the function f(x)=1x21f(x)=\frac{1}{x^{2}-1} has a max, min, or is increasing (YES/NO for each).

See Solution

Problem 28420

Finde die Extremstellen von f(x)=x1+x2 f(x) = \frac{x}{1+x^2} . Bestimme die erste und zweite Ableitung und analysiere die kritischen Punkte.

See Solution

Problem 28421

Find the limit: limxx2+9x296x\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+9}-\sqrt{x^{2}-9}}{6 x}.

See Solution

Problem 28422

Find a curve through (1,1) with length integral L=141+14xdxL=\int_{1}^{4} \sqrt{1+\frac{1}{4x}} \, dx.

See Solution

Problem 28423

Find the curve length for x=0ysec4t1dtx=\int_{0}^{y} \sqrt{\sec ^{4} t-1} d t over π/4yπ/4-\pi / 4 \leq y \leq \pi / 4.

See Solution

Problem 28424

Determine limits of sequences: an=(1+15n+1)6n+1a_n=\left(1+\frac{1}{5n+1}\right)^{6n+1}, bnb_n, cnc_n, dnd_n and an=(n2+4n)k=1n(1+1k+1)a_n=\left(\sqrt{n^2+4}-n\right) \prod_{k=1}^{n}\left(1+\frac{1}{k+1}\right).

See Solution

Problem 28425

Find the curve length for x=0ysec4t1dtx=\int_{0}^{y} \sqrt{\sec ^{4} t-1} d t, where π/4yπ/4-\pi / 4 \leq y \leq \pi / 4.

See Solution

Problem 28426

Find dydx\frac{d y}{d x} for y=sin(u)y=\sin (u) and u=2x4u=2 x-4 using the chain rule: dydx=dydududx\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}.

See Solution

Problem 28427

Calculate the limit: limx0x3sin(x2)\lim _{x \rightarrow 0} \frac{x^{3}}{\sin \left(x^{2}\right)} or state if it doesn't exist.

See Solution

Problem 28428

Calculate the curve length for x=0ysec4t1dtx=\int_{0}^{y} \sqrt{\sec ^{4} t-1} dt in the range π/4yπ/4-\pi / 4 \leq y \leq \pi / 4. Options: a-2, b-4, c-8, d-None.

See Solution

Problem 28429

Find the velocity of the object at t=π4t=\frac{\pi}{4}, given S(t)=3+7costS(t)=3+7 \cos t.

See Solution

Problem 28430

Determine if the function f(x)=11x2f(x)=\frac{1}{1-x^{2}} has a max, min, and if it's increasing (YES/NO for each).

See Solution

Problem 28431

Given y=sin(4x24x1)y=\sin(4x^2-4x-1), find dydx\frac{dy}{dx} using the chain rule: dydu=\frac{dy}{du}=\square, dudx=\frac{du}{dx}=\square.

See Solution

Problem 28432

Find the radius of convergence for the series n=16n(n+1n)xn\sum_{n=1}^{\infty} 6^{n}\left(n+\frac{1}{n}\right) x^{n}.

See Solution

Problem 28433

Find the limit: limx3+x2+2x3x+3\lim _{x \rightarrow 3^{+}} \frac{x^{2}+2 x-3}{|x+3|}. Does it exist?

See Solution

Problem 28434

Find the limit: limx1arctan(x21x2)\lim _{x \rightarrow 1} \arctan \left(\frac{x^{2}}{1-x^{2}}\right). Does it exist?

See Solution

Problem 28435

Find the limit: limx0x3sin(3x2)\lim _{x \rightarrow 0} \frac{x^{3}}{\sin(3 x^{2})}; state if it does not exist.

See Solution

Problem 28436

Find the average rate of change of f(x)=4x2+1f(x)=4x^{2}+1 on the interval [2,2+h][2,2+h].

See Solution

Problem 28437

Find the derivative of y=x7y=x^{-7} for x0x \neq 0. What is yy'?

See Solution

Problem 28438

Find the slope of the inverse function g1\mathrm{g}^{-1} at the origin, given g(0)=0g(0)=0 and g(0)=2g'(0)=2. Options: a-2, b-0, c-1/2, d-undefined, e-None.

See Solution

Problem 28439

Is the function f(x)={(x1)sin(1x1)x11x=1f(x)=\left\{\begin{array}{cc}(x-1) \sin \left(\frac{1}{x-1}\right) & x \neq 1 \\ -1 & x=1\end{array}\right. continuous on R\mathbb{R}?

See Solution

Problem 28440

Find where the tangent line to f(x)=x3ln(x)f(x) = x^{3} \ln(x) is horizontal and if it intersects at (1,0)(1,0) for x>1x > 1.

See Solution

Problem 28441

Check if the Mean Value Theorem applies to f(x)=sinxf(x) = \sin x on [0,π][0, \pi] and find cc where f(c)=f(π)f(0)πf'(c) = \frac{f(\pi) - f(0)}{\pi}.

See Solution

Problem 28442

Find the limit as xx approaches -\infty for (x38x4+16)10\left(\frac{x^{3}-8}{x^{4}+16}\right)^{10}.

See Solution

Problem 28443

Check if the Mean Value Theorem applies to f(x)=x3+4x23f(x)=-x^{3}+4x^{2}-3 on [0,4][0,4] and find cc where f(c)=f(4)f(0)4f'(c) = \frac{f(4) - f(0)}{4}.

See Solution

Problem 28444

Find the surface area S=2πxdsS= \int 2 \pi x d s for y=(1/3)(x2+2)3/2y=(1/3)(x^{2}+2)^{3/2}, 0x20 \leq x \leq \sqrt{2}.

See Solution

Problem 28445

Find the limit as xx approaches -\infty for: x2+xx\sqrt{x^{2}+x}-x.

See Solution

Problem 28446

Find the derivative of y=(x6+4)7y=\left(x^{6}+4\right)^{7} using the Chain Rule. What is y=y^{\prime}=?

See Solution

Problem 28447

Find the derivative of y=2(x2+2x)3y=2\left(x^{2}+2 x\right)^{-3} with respect to xx: dydx=\frac{d y}{d x}=

See Solution

Problem 28448

Find the derivative f(x)f'(x) of the function f(x)=(x3+5x+7)2f(x)=(x^{3}+5x+7)^{2} and calculate f(3)f'(3).

See Solution

Problem 28449

Find the derivative dydx\frac{d y}{d x} for y=(4x3)2y=(4 x-3)^{-2} using the chain rule.

See Solution

Problem 28450

Find the derivative of y=(16x+25)12y=(16x+25)^{\frac{1}{2}}. What is yy'?

See Solution

Problem 28451

Find the derivative of f(x)=tan(5x)f(x)=\tan(5x) and calculate f(4)f^{\prime}(4), rounding to the nearest hundredth.

See Solution

Problem 28452

Find the derivative of the function f(x)=5x+10f(x)=\sqrt{5x+10}, denoted as f(x)f^{\prime}(x).

See Solution

Problem 28453

Find the derivatives: (a) f(x)=sin5(x)f(x)=\sin^5(x), (b) f(x)=sin(x5)f(x)=\sin(x^5). What are f(x)f^{\prime}(x) for each?

See Solution

Problem 28454

Find the derivative dy/dxd y / d x for the function y=(tan(x))1y=(\tan (x))^{-1}.

See Solution

Problem 28455

Find the derivative of y=(9+cos2x)13y=(9+\cos^2 x)^{13} with respect to xx: dydx=\frac{dy}{dx}=

See Solution

Problem 28456

Find where f(x)=0f^{\prime}(x)=0 for: a. f(x)=x3+6x2+1f(x)=x^{3}+6x^{2}+1, c. f(x)=(2x1)2(x29)f(x)=(2x-1)^{2}(x^{2}-9).

See Solution

Problem 28457

Evaluate these integrals using table 8.1 and appropriate methods or identities: a. 2x2xdx\int \frac{2^{\sqrt{x}}}{2 \sqrt{x}} d x b. dx2xx2\int \frac{d x}{\sqrt{2 x-x^{2}}}

See Solution

Problem 28458

Find the derivatives f(x)f'(x) for f(x)=sin1xf(x)=\sin \frac{1}{x} and g(x)g'(x) for g(x)=1sinxg(x)=\frac{1}{\sin x}.

See Solution

Problem 28459

Find the derivative of the function g(t)=6(6sint2cost)6g(t)=6(-6 \sin t-2 \cos t)^{6}. What is g(t)=g^{\prime}(t)=\square?

See Solution

Problem 28460

Evaluate the following integrals using integration by parts: a) x3e2xdx\int x^{3} e^{-2 x} d x b) excosxdx\int e^{x} \cos x d x

See Solution

Problem 28461

Evaluate these integrals: a) 8cos32θsin2θdθ\int 8 \cos^{3} 2\theta \sin 2\theta \, d\theta b) sec2θtanθdθ\int \sec^{2} \theta \tan \theta \, d\theta.

See Solution

Problem 28462

Exercice 2 : Limites et continuité (5 points) A. Pour f(x)=3x2+12x1f(x)=\frac{\sqrt{3 x^{2}+1}-2}{x-1}, justifiez la discontinuité en 1 et montrez le prolongement. B. Pour g(x)=x33x4g(x)=x^{3}-3 x-4, calculez les limites aux extrêmes, dérivée, variations, unique solution de g(x)=0g(x)=0, et son signe.

See Solution

Problem 28463

Find the derivative of the function f(x)=sin(x2+81)f(x)=\sin(x^{2}+81). What is f(x)=f^{\prime}(x)=\square?

See Solution

Problem 28464

Find the length of the curve x=0ysec4t1dtx=\int_{0}^{y} \sqrt{\sec ^{4} t-1} dt for π/4yπ/4-\pi / 4 \leq y \leq \pi / 4. Options: a) 2, c) 8.

See Solution

Problem 28465

Find the tangent line equation for f(x)=2x(34x)3f(x)=2 x(3-4 x)^{3} at x=2x=2. Tangent line: y=y=

See Solution

Problem 28466

Find the derivative of the function f(x)=4cos(4x9)f(x)=4 \cos (4 x-9). What is f(x)f^{\prime}(x)?

See Solution

Problem 28467

Find the velocity of a particle with displacement s(t)=12+14sin(8πt)s(t)=12+\frac{1}{4} \sin (8 \pi t) after tt seconds. v(t)= v(t)=

See Solution

Problem 28468

Find the derivative dy/dtd y / d t for the function y=cot3(πt)y=\cot ^{3}(\pi-t).

See Solution

Problem 28469

Calculate the length of the curve y=(x/2)2/3y=(x / 2)^{2 / 3} between x=0x=0 and x=2x=2.

See Solution

Problem 28470

Rewrite y=cot(5x6)y=\cot(5x-6) as y=f(u)y=f(u) and u=g(x)u=g(x), then find dydx\frac{dy}{dx} in terms of xx.

See Solution

Problem 28471

Find the second derivative d2ydx2\frac{d^{2} y}{d x^{2}} for the function y=6xsinxy=6 x \sin x.

See Solution

Problem 28472

Find the limit: limh0(5+h)225h\lim _{h \rightarrow 0} \frac{(5+h)^{2}-25}{h}

See Solution

Problem 28473

Find the limit as xx approaches -4 for the expression x2+2x+6x^{2}+2x+6.

See Solution

Problem 28474

Find the derivative DxyD_{x} y for the function y=x+8x8y=\frac{x+8}{x-8}.

See Solution

Problem 28475

A force on an object moving along the x-axis is given by Fx=(3x2+2x)NF_{x}=(3 x^{2}+2 x) \, N. Find the work done from x=0x=0 to x=5mx=5 \, m.

See Solution

Problem 28476

Find the limit as x approaches 0: limx01+x1x\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1}{x}

See Solution

Problem 28477

Berechne die Ableitung von f(x)=(x2)2x+3f(x)=(x-2) \cdot \sqrt{2x+3}.

See Solution

Problem 28478

Find the slope of the curve y=3xy=3 \sqrt{x} at x=36x=36.

See Solution

Problem 28479

Let an=nn+2a_{n}=\frac{n}{n+2}. Find the smallest MM such that: (a) an10.001|a_{n}-1| \leq 0.001 for nMn \geq M, (b) an10.00001|a_{n}-1| \leq 0.00001 for nMn \geq M, (c) an1<t|a_{n}-1|<t for all n>Mn>M, find MM as a function of tt.

See Solution

Problem 28480

Find the limit: If f(x)=sin(4x)xf(x)=\frac{\sin (4 x)}{x}, what is limx0f(x)\lim _{x \rightarrow 0} f(x)?

See Solution

Problem 28481

Express yy as y=f(u)y=f(u) and u=g(x)u=g(x), then calculate dydx\frac{dy}{dx} for y=(2x+9)3y=(2x+9)^{3}.

See Solution

Problem 28482

Find the derivative DxyD_{x} y for the function y=(48x2)(3x296)y=(4-8 x^{2})(3 x^{2}-96).

See Solution

Problem 28483

Find the rate of change of current A(t)=5sin(120πt)A(t)=5 \sin(120\pi t) at t=2t=2 seconds.

See Solution

Problem 28484

Find the derivative dy/dt\mathrm{dy} / \mathrm{dt} for the function y=cos4(πt19)y=\cos ^{4}(\pi t-19).

See Solution

Problem 28485

Find the limit as xx approaches 1 from the right: limx1+1(x1)2\lim _{x \rightarrow 1^{+}} \frac{1}{(x-1)^{2}}.

See Solution

Problem 28486

Find the derivative DxyD_{x} y for the function y=3x(2x+4)4y=3 x(2 x+4)^{4}.

See Solution

Problem 28487

Find the derivative of the function: s=t3csct+20s = t^{3} - \csc t + 20.

See Solution

Problem 28488

Find the tangent line equation to the curve y=x2xy=x^{2}-x at the point (-4, 20).

See Solution

Problem 28489

A car moving at 42ft/sec42 \mathrm{ft/sec} has position s=42t3t2s=42t-3t^2. How long until it stops after braking?

See Solution

Problem 28490

Calculate the limit: limx4x216x29x+20\lim _{x \rightarrow 4} \frac{x^{2}-16}{x^{2}-9 x+20}

See Solution

Problem 28491

Find the derivative DxyD_{x} y for the function y=12x615x5y=\frac{1}{2} x^{6}-\frac{1}{5} x^{5}.

See Solution

Problem 28492

Find the speed and acceleration of the body at t=2t=2 for the function s=6t2+2t+4s=6 t^{2}+2 t+4 where 0t20 \leq t \leq 2.

See Solution

Problem 28493

Zbadaj zbieżność szeregów dla αR\alpha \in \mathbb{R}: a) n=1+(15n+n10014n7)α\sum_{n=1}^{+\infty}\left(\frac{15^{n}+n}{100 \cdot 14^{n}-7}\right)^{\alpha} b) n=1+(2023n1n)α\sum_{n=1}^{+\infty}\left(\frac{\sqrt[n]{2023}-1}{n}\right)^{\alpha}.

See Solution

Problem 28494

Find the instantaneous rate of change of f(x)=3x25x+1f(x)=3x^{2}-5x+1 at x=4x=4 using the difference quotient. Simplify first!

See Solution

Problem 28495

Find the derivative of f(x)=x+1x1f(x) = \frac{\sqrt{x} + 1}{\sqrt{x} - 1} using the quotient rule.

See Solution

Problem 28496

Find the derivative dydx\frac{dy}{dx} of y=3x(2+x)2y=\frac{3-\sqrt{x}}{(2+x)^{2}} using the quotient rule.

See Solution

Problem 28497

Solve 42x=8x14^{2x}=8^{x-1} and find the instantaneous mass change of a 2000 g2000 \mathrm{~g} substance after 1.5 days.

See Solution

Problem 28498

Determine if (1,1)(-1,-1) is a max, min, or neither for f(x)=4x4+4x32x2+1f(x)=4x^4+4x^3-2x^2+1 using rates of change with h=±0.001h=\pm 0.001.

See Solution

Problem 28499

A rectangle's width grows at 2 cm/s2 \mathrm{~cm/s} and length at 4 cm/s4 \mathrm{~cm/s}. Find area change rate with width 9 cm9 \mathrm{~cm} and length 15 cm15 \mathrm{~cm}.

See Solution

Problem 28500

A square's area grows at 23 cm2/s23 \mathrm{~cm}^{2} / \mathrm{s}. Find the side length growth rate when it is 10 cm10 \mathrm{~cm}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord