Calculus

Problem 21801

Evaluate the integral from -2 to 5 of the function x- |x|.

See Solution

Problem 21802

Find the equation of the tangent line to f(t)=(et+t)2f(t)=\left(e^{-t}+\sqrt{t}\right)^{2} at (1/2,f(1/2))(1/2, f(1/2)), for t>0.1t>0.1.

See Solution

Problem 21803

Find where the curve 3x+3y2y=103x + 3y^2 - y = 10 has vertical and horizontal tangent lines.

See Solution

Problem 21804

Find the limit as Δx0\Delta x \rightarrow 0 of k=1n(xk)6Δxk\sum_{k=1}^{n}(x_{k}^{*})^{6} \Delta x_{k} over the interval [3,9][3,9].

See Solution

Problem 21805

Calculate the integral from 0 to 2 of 4x2\sqrt{4-x^{2}} with respect to xx.

See Solution

Problem 21806

Calculate the line integral CFdr\int_{C} \vec{F} \cdot d \vec{r} for F=<x2,y2>\vec{F} = <x^{2}, y^{2}> and C:r(t)=sin(t),cos(t),t2C: \vec{r}(t)=\langle\sin(t), \cos(t), t^{2}\rangle for 0tπ20 \leq t \leq \frac{\pi}{2}. Set up the integral but do not evaluate it.

See Solution

Problem 21807

Set up the integral CFdr\int_{C} \vec{F} \cdot d \vec{r} with F=x2,y2,z2\vec{F}=\langle x^{2}, y^{2}, z^{2} \rangle and C:r(t)=sin(t),cos(t),t2C: \vec{r}(t)=\langle \sin(t), \cos(t), t^{2} \rangle, 0tπ20 \leq t \leq \frac{\pi}{2}.

See Solution

Problem 21808

Calculate 05f(x)dx\int_{0}^{5} f(x) dx for the piecewise function f(x)={4if x43x8if x>4f(x)=\begin{cases}4 & \text{if } x \leq 4 \\ 3x - 8 & \text{if } x > 4\end{cases}.

See Solution

Problem 21809

Calculate the indefinite integral using substitution: x6x2dx\int \frac{x}{6-x^{2}} \, dx. Don't forget absolute values!

See Solution

Problem 21810

Find the derivative of g(t)=3tan(t3)g(t) = 3 \tan(t^{3}).

See Solution

Problem 21811

Evaluate 72g(x)dx\int_{7}^{2} g(x) d x given 27g(x)dx=4\int_{2}^{7} g(x) d x=4.

See Solution

Problem 21812

Calculate the average rate of change of g(x)=5+3(x1)g(x)=-5+3(x-1) from x=2x=-2 to x=0x=0.

See Solution

Problem 21813

Given 24f(x)dx=5\int_{2}^{4} f(x) d x=5, 27f(x)dx=3\int_{2}^{7} f(x) d x=-3, and 27g(x)dx=4\int_{2}^{7} g(x) d x=4, find:
1. 72g(x)dx\int_{7}^{2} g(x) d x
2. 279g(x)dx\int_{2}^{7} 9 g(x) d x
3. 27[g(x)f(x)]dx=\int_{2}^{7}[g(x)-f(x)] d x=\square

See Solution

Problem 21814

Given 24f(x)dx=5\int_{2}^{4} f(x) d x=5, 27f(x)dx=3\int_{2}^{7} f(x) d x=-3, and 27g(x)dx=4\int_{2}^{7} g(x) d x=4, find 279g(x)dx=\int_{2}^{7} 9 g(x) d x=\square.

See Solution

Problem 21815

Given 27f(x)dx=5\int_{2}^{7} f(x) d x=5, 26f(x)dx=3\int_{2}^{6} f(x) d x=-3, and 27g(x)dx=4\int_{2}^{7} g(x) d x=4, find:
1. 72g(x)dx\int_{7}^{2} g(x) d x
2. 279g(x)dx\int_{2}^{7} 9 g(x) d x
3. 27[g(x)f(x)]dx=\int_{2}^{7}[g(x)-f(x)] d x=\square

See Solution

Problem 21816

Find the biomass at t=13t=13 hours if the average rate of change from t=3t=3 to t=13t=13 is 15mg/hour\frac{1}{5} \mathrm{mg}/\mathrm{hour} and at t=3t=3 is 13.

See Solution

Problem 21817

Find 267f(x)dx\int_{2}^{6} 7 f(x) d x given 27f(x)dx=11\int_{2}^{7} f(x) dx=11, 27g(x)dx=7\int_{2}^{7} g(x) dx=7, 67f(x)dx=6\int_{6}^{7} f(x) dx=6, and 26g(x)dx=3\int_{2}^{6} g(x) dx=3.

See Solution

Problem 21818

Evaluate the following integrals given 24f(x)dx=5\int_{2}^{4} f(x) d x=5, 27f(x)dx=3\int_{2}^{7} f(x) d x=-3, and 27g(x)dx=4\int_{2}^{7} g(x) d x=4:
1. 72g(x)dx\int_{7}^{2} g(x) d x
2. 279g(x)dx\int_{2}^{7} 9 g(x) d x
3. 27[g(x)f(x)]dx\int_{2}^{7}[g(x)-f(x)] d x
4. 27[6g(x)f(x)]dx\int_{2}^{7}[6 g(x)-f(x)] d x

See Solution

Problem 21819

Evaluate sFNdS\int_{s} \int \vec{F} \cdot \vec{N} d S for F(x,y,z)=x,y,z\vec{F}(x, y, z)=\langle x, y, z\rangle on S:x2+y2+z2=9S: x^{2}+y^{2}+z^{2}=9 in the first octant.

See Solution

Problem 21820

Given functions ff and gg on [2,7][2,7] with 27f(x)dx=11\int_{2}^{7} f(x) dx=11, 27g(x)dx=7\int_{2}^{7} g(x) dx=7, 67f(x)dx=6\int_{6}^{7} f(x) dx=6, and 26g(x)dx=3\int_{2}^{6} g(x) dx=3:
a. Find 267f(x)dx\int_{2}^{6} 7 f(x) dx.
b. Find 27(f(x)g(x))dx=\int_{2}^{7}(f(x)-g(x)) dx=\square.

See Solution

Problem 21821

Find the derivative of the function f(x)=x+xf(x) = \sqrt{x + \sqrt{x}}.

See Solution

Problem 21822

Find the value of 26(f(x)g(x))dx\int_{2}^{6} (f(x) - g(x)) d x given 267f(x)dx=35\int_{2}^{6} 7 f(x) d x=35 and 27(f(x)g(x))dx=4\int_{2}^{7}(f(x)-g(x)) d x=4.

See Solution

Problem 21823

Given functions ff and gg on [2,7][2,7], find:
a. 267f(x)dx\int_{2}^{6} 7 f(x) d x b. 27(f(x)g(x))dx\int_{2}^{7}(f(x)-g(x)) d x c. 26(f(x)g(x))dx=\int_{2}^{6}(f(x)-g(x)) d x=\square

See Solution

Problem 21824

Find the derivative f(x)f^{\prime}(x) of the function f(x)=x22xf(x)=x^{2}-2x and evaluate it at x=3x=3.

See Solution

Problem 21825

Find the limit limx0f(x)\lim _{x \rightarrow 0} f(x) for the piecewise function:
f(x)={x+3x<04e2x0x<62ln(x2)x6f(x)=\begin{cases} \lfloor x+3\rfloor & x<0 \\ 4 e^{-2 x} & 0 \leq x<6 \\ 2 \ln (x-2) & x \geq 6 \end{cases}

See Solution

Problem 21826

Find the derivative f(2)f^{\prime}(2) for the function f(x)=x2f(x)=|x-2|.

See Solution

Problem 21827

Calculate the indefinite integral of ex2xdxe^{-x^{2}} x \, dx.

See Solution

Problem 21828

Calculate the integral using substitution: (x69)7x5dx\int\left(x^{6}-9\right)^{7} x^{5} dx.

See Solution

Problem 21829

Find the tangent and normal line equations to x3+2xyy2=11x^{3}+2xy-y^{2}=11 at the point (2,3)(2,3).

See Solution

Problem 21830

Find the area AA between the curves x=y2+2yx=y^{2}+2y and x=y+12x=y+12. Provide the answer in exact form.

See Solution

Problem 21831

Calculate the integral of ex6x6e^{x^{6}} x^{6} with respect to xx: ex6x6dx\int e^{x^{6}} x^{6} d x.

See Solution

Problem 21832

Find the time xx when the drug concentration K(x)=12xx2+25K(x)=\frac{12x}{x^2+25} is at its maximum.

See Solution

Problem 21833

Approximate the change in drug concentration C(x)=10x9+x2C(x)=\frac{10 x}{9+x^{2}} from x=0.5x=0.5 to x=10x=10.

See Solution

Problem 21834

Bestimme den Grenzwert limnn2n\varlimsup_{n \to \infty} \sqrt{n^{2}-n} für die Folge cnc_{n}.

See Solution

Problem 21835

Find the instantaneous rate of change of height hh at t=20 st=20 \mathrm{~s} from h(t)=15cos(πt120)+18h(t)=15 \cos \left(\frac{\pi t}{120}\right)+18. What does this rate represent?

See Solution

Problem 21836

Find the monkey's acceleration at t=3t=3 for the distance S(t)=tsin(2t)+t3S(t)=t \sin (2 t)+t^{3}. Round up the result.

See Solution

Problem 21837

Find the critical points of the function y=f(x)=4x36x272x+3y=f(x)=4 x^{3}-6 x^{2}-72 x+3.

See Solution

Problem 21838

Given a conservative vector field F(x,y)\vec{F}(x, y) with potential function f(x,y)f(x, y), find the integrals along paths C1C_1, C2C_2, C3C_3, and C4C_4 from (x1,y1)\left(x_1, y_1\right) to (x2,y2)\left(x_2, y_2\right), where f(x1,y1)=1f\left(x_1, y_1\right)=1, f(x2,y2)=4f\left(x_2, y_2\right)=4.

See Solution

Problem 21839

Calculate the integral of (x2+3)95xdx(x^{2}+3)^{9} 5 x \, dx.

See Solution

Problem 21840

Calculate the indefinite integral: z3+83z2dz\int \sqrt[3]{z^{3}+8} z^{2} \, dz.

See Solution

Problem 21841

Compare the integrals S1(curlFundefined)NundefineddS\int_{S_{1}} \int(\operatorname{curl} \overrightarrow{\mathbf{F}}) \cdot \overrightarrow{\mathbf{N}} d S and S2(curlFundefined)NundefineddS\int_{S_{2}} \int(\operatorname{curl} \overrightarrow{\mathbf{F}}) \cdot \overrightarrow{\mathbf{N}} d S. Which is greater?

See Solution

Problem 21842

Compare the values of the integrals over two surfaces: S1curlFundefinedNundefineddS\int_{S_{1}} \operatorname{curl} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{N}} d S and S2curlFundefinedNundefineddS\int_{S_{2}} \operatorname{curl} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{N}} d S to determine which is greater.

See Solution

Problem 21843

Find the tangent line equation for the function f(t)=(e2t+t)2f(t)=\left(e^{-2 t}+\sqrt{t}\right)^{2} at (3,f(3))(3, f(3)), t>0.1t>0.1.

See Solution

Problem 21844

Find the monkey's acceleration at t=3t=3 for S(t)=tsin(2t)+t3S(t)=t \sin (2 t)+t^{3}. Round up your answer. a) 15 b) 20 c) 26 d) 27

See Solution

Problem 21845

Calculate the indefinite integral using substitution: x8+2568x6dx\int \sqrt[8]{x^{8}+256} x^{6} d x.

See Solution

Problem 21846

Find the tangent line equation in terms of xx and yy for r=3sin4θr=3 \sin 4 \theta at θ=π/3\theta=\pi / 3. y=y=

See Solution

Problem 21847

Calculate 1402154x+1dx14 \int_{0}^{2} 15 \sqrt{4 x+1} \, dx.

See Solution

Problem 21848

Approximate the integral 110(x2+4)dx\int_{1}^{10}\left(x^{2}+4\right) d x using a Riemann sum with 3 subintervals of length 3.

See Solution

Problem 21849

Approximate the integral 211(x3+4)dx\int_{2}^{11}(x^{3}+4) dx using a Riemann sum with 3 subintervals of length 3.

See Solution

Problem 21850

Differentiate and optimize the equation 5x2+4x165 x^{2}+4 x-16. Find x=x= and state max or min value. Show workings to 1.d.p.

See Solution

Problem 21851

Differentiate and optimize 5x2+4x165 x^{2}+4 x-16. Find x=x= and state max or min value, correct to 1.d.p.

See Solution

Problem 21852

Find the total reaction from t=1t=1 to t=10t=10 for R(t)=6t+4t3+e2tR^{\prime}(t)=\frac{6}{t}+\frac{4}{t^{3}}+e^{-2t}. Round up.

See Solution

Problem 21853

Evaluate the integral: (sin(x))20(cos(x))dx\int(\sin (x))^{20}(\cos (x)) d x.

See Solution

Problem 21854

Find the derivative of the function f(x)=(x8+6x)5f(x)=(x^{8}+6 x)^{5}. What is df(x)dx\frac{d f(x)}{d x}?

See Solution

Problem 21855

Find dydt\frac{dy}{dt} if y=(tan(x8)+6)6y = \left( \tan \left( x^{8} \right) + 6 \right)^{6}.

See Solution

Problem 21856

Evaluate the integral 01x4xx5dx\int_{0}^{1} x^{4} x^{x^{5}} d x.

See Solution

Problem 21857

Calculate the integral 01x4ex5dx\int_{0}^{1} x^{4} e^{x^{5}} d x.

See Solution

Problem 21858

Find dydt\frac{d y}{d t} for y=(tan(x8)+6)6y=\left(\tan \left(x^{8}\right)+6\right)^{6}. Choose the correct option.

See Solution

Problem 21859

Find the integral of the function: (e3t+t+5)dt\int(e^{3 t}+t+5) dt. Choose the correct answer from the options.

See Solution

Problem 21860

If ff is even and 02f(x)dx=1\int_{0}^{2} f(x) dx=1, 06f(x)dx=3\int_{0}^{6} f(x) dx=3, find 26f(x)dx\int_{-2}^{6} f(x) dx. a) 6 b) 8 c) 10 d) 4

See Solution

Problem 21861

Find the total reaction from t=1t=1 to t=10t=10 for R(t)=6t+4t3+e2tR^{\prime}(t)=\frac{6}{t}+\frac{4}{t^{3}}+e^{-2t}. Round up.

See Solution

Problem 21862

Find the partial derivative y200x15y45\frac{\partial}{\partial y} 200 x^{\frac{1}{5}} y^{\frac{4}{5}}.

See Solution

Problem 21863

Bestimmen Sie f(x)f^{\prime}(x) für: a) f(x)=(2x1)5f(x)=(2 x-1)^{5}, b) f(x)=x(7x+3)6f(x)=x \cdot(7 x+3)^{6}, c) f(x)=x(x21)f(x)=\sqrt{x} \cdot(x^{2}-1), d) f(x)=xcos(2x+1)f(x)=x \cdot \cos (2 x+1), e) f(x)=53xf(x)=\sqrt{5-3 x}, f) f(x)=x2cos(3x)f(x)=x^{2} \cdot \cos (3 x).

See Solution

Problem 21864

Find the derivative of the function (2x312x+11+x2)\left(\frac{2 x^{3}-12 x+1}{1+x^{2}}\right).

See Solution

Problem 21865

Find the area under the curve y=2xx2y = 2x - x^2 from x=0x = 0 to x=2x = 2: 02(2xx2)dx\int_{0}^{2} (2x - x^2) \, dx.

See Solution

Problem 21866

Evaluate the integral 1e3(lnx)5xdx\int_{1}^{e^{3}} \frac{(\ln x)^{5}}{x} dx.

See Solution

Problem 21867

Calculate the integral from -1 to 1 of 14x323x\frac{1}{4} x^{3}-\frac{2}{3} x.

See Solution

Problem 21868

Berechne die Ableitung f(5.94)f^{\prime}(5.94) für die Funktion f(x)=3.3x464x2+9.2x+30f(x)=3.3 x^{4}-64 x^{2}+9.2 x+30 und runde auf zwei Nachkommastellen.

See Solution

Problem 21869

Evaluate the integral 0π/35sin(5t)4cos(5t)dt\int_{0}^{\pi / 3} \frac{5 \sin (5 t)}{4-\cos (5 t)} d t.

See Solution

Problem 21870

Find the area under the curve y=3x3y = \frac{3}{x^3} from x=1x=1 to x=3x=3 using the integral 133x3dx\int_{1}^{3} \frac{3}{x^3} \, dx.

See Solution

Problem 21871

Gegeben ist die Funktion f(x)=13x32x+3f(x)=\frac{1}{3} x^{3}-2 x+3. Finde die Tangentengleichung bei B(0f(0))B(0 \mid f(0)) und zeige, dass ff für x>0x>0 linksgekrümmt ist.

See Solution

Problem 21872

Untersuchen Sie das Krümmungsverhalten der Funktion f(x)=(2x3)312x2f(x)=(2 x-3)^{3}-12 x^{2}.

See Solution

Problem 21873

Bestimme die Ableitung von f(x)=3(x31)x7f(x)=3\left(x^{3}-1\right) \sqrt{x^{7}} bei x0=4.3x_{0}=4.3. Ergebnis: f(4.3)=f^{\prime}(4.3)=

See Solution

Problem 21874

Evaluate the integral C2xyzds\int_{C} 2xyz \, ds for the curve C:r(t)=12ti+5tj+84tkC: \vec{r}(t)=12t\vec{i}+5t\vec{j}+84t\vec{k}, 0t10 \leq t \leq 1.

See Solution

Problem 21875

Leiten Sie die Funktionen ab: a) f(x)=xaf(x)=x^{a} b) f(x)=xt+1f(x)=x^{t+1}

See Solution

Problem 21876

Find the derivative of sin2x+π+cos2x+57\sin ^{2} x + \sqrt{\pi} + \cos ^{2} x + 5^{7} with respect to xx.

See Solution

Problem 21877

Bestimme die richtigen Ableitungen der Funktion f(x)=(lnx2+1ex)20f(x)=\left(\ln \frac{x^{2}+1}{e^{x}}\right)^{20}.

See Solution

Problem 21878

Welche Ableitung ist richtig für f(x)=(lnx2+1ex)20f(x)=\left(\ln \frac{x^{2}+1}{e^{x}}\right)^{20}?

See Solution

Problem 21879

Bestimme die Ableitung von f(x)=2(x21)x5f(x)=2\left(x^{2}-1\right) \sqrt{x^{5}} bei x0=4.2x_{0}=4.2. Ergebnis: f(4.2)=f^{\prime}(4.2)=

See Solution

Problem 21880

Find the derivative of the function f(x)=3x8lnxf(x)=-3 x^{8} \ln x and evaluate it at x=e2x=e^{2}.

See Solution

Problem 21881

Find the velocity of a particle given by s(t)=4t378t2+360ts(t)=4 t^{3}-78 t^{2}+360 t at time tt, where tt is in seconds.

See Solution

Problem 21882

Find the tangent line equation for y=cos2(2x)y=\cos^{2}(2^{x}) at x=π3x=\frac{\pi}{3}. Round to two decimal places.

See Solution

Problem 21883

Approximate the displacement of an object with velocity v=12t2+5(ft/s)v=\frac{1}{2} t^{2}+5(f t / s) from t=0t=0 to t=12t=12 using n=6n=6.

See Solution

Problem 21884

Bestimme die Extrem- und Wendepunkte der Funktion f(x)=x(x3)2f(x)=x \cdot(x-3)^{2}.

See Solution

Problem 21885

Berechne die Grenzwerte von f(x)f(x) bei x0=2x_{0}=2: links für 0<x<20<x<2 und rechts für x>2x>2. Ergebnisse auf zwei Dezimalstellen.

See Solution

Problem 21886

Find the indefinite integral: (4y2+8y)3(y+1)dy\int\left(4 y^{2}+8 y\right)^{3}(y+1) d y

See Solution

Problem 21887

Find the derivative of the function f(x)=ln(8x65x+4)f(x)=\ln \left(\sqrt{\frac{8 x-6}{5 x+4}}\right). What is f(x)f^{\prime}(x)?

See Solution

Problem 21888

Calculate the indefinite integral using substitution:
x3+x23x4+4x3dx \int \frac{x^{3}+x^{2}}{3 x^{4}+4 x^{3}} d x

See Solution

Problem 21889

Differentiate the function f(x)=79x+4f(x) = 7^{-9x + 4}. What is f(x)=f^{\prime}(x) = ?

See Solution

Problem 21890

Bestimmen Sie die Ableitung von f(x)=2(x31)x7f(x)=2\left(x^{3}-1\right) \sqrt{x^{7}} bei x0=1x_{0}=1 und runden Sie auf zwei Nachkommastellen.

See Solution

Problem 21891

Find the derivative of the function f(x)=203xf(x)=20-3^{x}. What is f(x)=?f^{\prime}(x)=?

See Solution

Problem 21892

Find the derivative of f(x)=x5e3.5xf(x)=x^{5} e^{3.5 x}. What is f(x)=?f^{\prime}(x)=?

See Solution

Problem 21893

Find the derivative of f(x)=x7e5.5xf(x) = x^{7} e^{5.5 x}. What is f(x)f'(x)?

See Solution

Problem 21894

Find the derivative of f(x)=5e8x10+3x5f(x)=5 e^{-8 x^{10}+3 x^{5}} using the chain rule. What is f(x)=f^{\prime}(x)=?

See Solution

Problem 21895

Compute F(0)F(0), F(x)F^{\prime}(x), and F(2)F^{\prime}(2) for F(x)=0xt3+1dtF(x)=\int_{0}^{x} \sqrt{t^{3}+1} dt.

See Solution

Problem 21896

Find the tangent line to y=exy=e^{x} parallel to 2xy=52x-y=5 and the intervals of increase/decrease for f(x)=x3exf(x)=x^{3} e^{x}.

See Solution

Problem 21897

Find the derivative of g(x)=ex13xg(x)=\frac{e^{x}}{1-3 x}. What is g(x)g^{\prime}(x)?

See Solution

Problem 21898

Find the tangent line to y=exy=e^{x} parallel to 2xy=52x-y=5.

See Solution

Problem 21899

Welche Ableitung ist richtig für f(x)=2(x31)x7f(x)=2\left(x^{3}-1\right) \sqrt{x^{7}}? Optionen sind: f(x)=13x1157x5f^{\prime}(x)=13 \sqrt[5]{x^{11}}-7 \sqrt{x^{5}}, f(x)=6x112+7x52(x31)f^{\prime}(x)=6 x^{\frac{11}{2}}+7 x^{\frac{5}{2}} \cdot\left(x^{3}-1\right), f(x)=x5(13x1157)f^{\prime}(x)=\sqrt{x^{5}} \cdot\left(13 \sqrt[5]{x^{11}}-7\right), f(x)=13x117x5f^{\prime}(x)=13 \sqrt{x^{11}}-7 \sqrt{x^{5}}, oder keine der Antworten.

See Solution

Problem 21900

Find the derivative of the function f(x)=7ex+xef(x)=7 e^{x}+x^{e}. What is f(x)f^{\prime}(x)?

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord