Calculus

Problem 14601

Find the minimum distance of the object from the point given by s(t)=8t3+18t224t+10s(t)=8 t^{3}+18 t^{2}-24 t+10 for 0t100 \leq t \leq 10.

See Solution

Problem 14602

When does the bacterial population N(t)=500[1+1.2e0.03t]1N(t)=500\left[1+1.2 e^{-0.03 t}\right]^{-1} reach about 75%75\% of its capacity?

See Solution

Problem 14603

Find the derivative of f(x)=x2+3xf(x) = x^2 + 3x at x=4x=4 using limits, and verify f(4)=11f(4) = 11.

See Solution

Problem 14604

Derivatives Quiz: Given f(x)={4x24x1,x14,x=1f(x)=\left\{\begin{array}{lll}\frac{4 x^{2}-4}{x-1}, & x \neq 1 \\ 4, & x=1\end{array}\right., which statements are true? a. none b. I only c. I and II only d. I, II, and III

See Solution

Problem 14605

Find the asymptotes of the function f(x)=1+ln(x2)xf(x)=\frac{1+\ln (x-2)}{x}.

See Solution

Problem 14606

Find the limit: limx2+1+ln(x2)x\lim _{x \rightarrow 2+} \frac{1+\ln (x-2)}{x}.

See Solution

Problem 14607

Find the antiderivative F(t)F(t) of f(t)=7sec2(t)8t2f(t)=7 \sec ^{2}(t)-8 t^{2} with F(0)=0F(0)=0. What is F(t)F(t)?

See Solution

Problem 14608

Find the antiderivative F(x)F(x) of f(x)=6x38x2+6x5f(x)=6 x^{3}-8 x^{2}+6 x-5 in the form F(x)=Ax4+Bx3+Cx2+DxF(x)=A x^{4}+B x^{3}+C x^{2}+D x.

See Solution

Problem 14609

Find the limit: limx2+1+ln(x2)x\lim _{x \rightarrow 2^{+}} \frac{1+\ln (x-2)}{x}.

See Solution

Problem 14610

Find the limit: limx21+ln(x2)x\lim _{x \rightarrow 2^{-}} \frac{1+\ln (x-2)}{x}.

See Solution

Problem 14611

Find the additional profit when production increases from 10 to 11, given P(q)=300q10q2200P(q)=300 q-10 q^{2}-200.

See Solution

Problem 14612

A plane at 1.5 miles altitude flies at 650mi/h650 \mathrm{mi} / \mathrm{h}. Find the distance rate increase when it's 2.5 miles from a radar.

See Solution

Problem 14613

Find f(x)f^{\prime}(x) given f(x)=2x+5f^{\prime \prime}(x)=2x+5, f(3)=3f^{\prime}(-3)=3, and f(3)=4f(-3)=4. Also, find f(2)f(2).

See Solution

Problem 14614

Find the average change in profit when production increases from 10 to 14, given P(q)=300q10q2200P(q)=300 q-10 q^{2}-200.

See Solution

Problem 14615

Find f(π2)f\left(\frac{\pi}{2}\right) given f(x)=4sin(2x)f^{\prime \prime}(x)=-4 \sin (2 x), f(0)=3f^{\prime}(0)=3, and f(0)=4f(0)=4.

See Solution

Problem 14616

A student is 50 m from a track. A train moves at 120 km/h. Find the rate at which distance decreases when the train is 60 m away.

See Solution

Problem 14617

Find f(π2)f\left(\frac{\pi}{2}\right) given f(x)=4sin(2x)f^{\prime \prime}(x)=-4 \sin (2 x), f(0)=3f^{\prime}(0)=3, f(0)=4f(0)=4.

See Solution

Problem 14618

Find the derivative of the function f(x)=1x2f(x)=\frac{1}{x^{2}}.

See Solution

Problem 14619

Find the derivative of the function: 76x3x\frac{7-\sqrt{6 x}}{\sqrt{3 x}}.

See Solution

Problem 14620

Find f(π6)f\left(\frac{\pi}{6}\right) given f(x)=36sin(6x)f^{\prime \prime}(x)=-36 \sin (6 x), f(0)=2f^{\prime}(0)=-2, and f(0)=6f(0)=-6.

See Solution

Problem 14621

Find f(5)f(5) for the function with f(x)=3x+4sin(x)f^{\prime \prime}(x)=3 x+4 \sin (x), given f(0)=3f(0)=3 and f(0)=4f^{\prime}(0)=4.

See Solution

Problem 14622

A balloon loses air at 2 cm3/sec2 \mathrm{~cm}^{3} / \mathrm{sec}. Find the radius decrease rate when the diameter is 30 cm30 \mathrm{~cm}.

See Solution

Problem 14623

A 6 ft person walks away from a 12ft12 \mathrm{ft} light post at 4ft/s4 \mathrm{ft/s}. Find the shadow length increase rate at 30ft30 \mathrm{ft}.

See Solution

Problem 14624

Bestimme die Ableitungen für die Funktionen: a) f(x)=2+exf(x)=2+e^{x}, b) f(x)=e2xf(x)=e^{2 x}, c) f(x)=e7xf(x)=e^{7 x}, d) f(x)=2x+exf(x)=2 x+e^{x}, e) f(x)=4e3xf(x)=4 \cdot e^{3 x}, f) f(x)=0,5e4xf(x)=0,5 \cdot e^{4 x}, g) f(x)=2ex+1f(x)=2 \cdot e^{x+1}, h) f(x)=13e3xf(x)=\frac{1}{3} \cdot e^{-3 x}, i) f(x)=x2+e0,5xf(x)=x^{2}+e^{0,5 x}, j) f(x)=0,4e5xf(x)=-0,4 \cdot e^{-5 x}, k) f(x)=3e2x+1f(x)=3 e^{2 x+1}, l) f(x)=5e3x2f(x)=5 e^{-3 x-2}.

See Solution

Problem 14625

Oblicz pochodną funkcji f(x)=x2e4xf(x)=x^{2} e^{4x}.

See Solution

Problem 14626

Find f(5)f(5) given that f(4)=5f(4)=5 and the slope of the tangent line is 4x+24x + 2.

See Solution

Problem 14627

Find the antiderivative of the function f(x)=5x8+7x64x42f(x)=5 x^{8}+7 x^{6}-4 x^{4}-2 and include the constant +C+\mathrm{C}.

See Solution

Problem 14628

Find the antiderivative of the function f(x)=9x9+5x78x310f(x)=9 x^{9}+5 x^{7}-8 x^{3}-10.

See Solution

Problem 14629

Solve the differential equation: y2y=e2xy' - 2y = e^{2x}.

See Solution

Problem 14630

Find the first and second derivatives of the function f(x)=2+6x535x38x34f(x)=2+6 x^{5}-\frac{3}{5 x^{3}}-8 \sqrt[4]{x^{3}}.

See Solution

Problem 14631

a. Calculate the derivative of y=1016xx6y=10 \cdot 16^{x}-x^{6}. What is dydx=\frac{d y}{d x}=?
b. Determine the derivative of f(x)=x10e9+10xf(x)=\frac{x^{10}}{e^{9}}+10^{x}. What is f(x)=f^{\prime}(x)=?

See Solution

Problem 14632

Evaluate the expression (e5x5e7x7)\left(\frac{e^{5 x}}{5}-\frac{e^{7 x}}{7}\right) from x=0x=0 to x=1x=1.

See Solution

Problem 14633

Find the second derivative of f(x)=(x28)exf(x)=(x^{2}-8) \cdot e^{x}.

See Solution

Problem 14634

Find the position of a particle at time t=11t=11 given a(t)=18t+4a(t)=18t+4, s(0)=7s(0)=7, and v(0)=14v(0)=14.

See Solution

Problem 14635

Find the derivative of the function: 76x3x\frac{7-\sqrt{6 x}}{\sqrt{3 x}}.

See Solution

Problem 14636

Calculate the integral of the constant function -42 from 0 to 2π2\pi.

See Solution

Problem 14637

Calculate the integral 02π(64)dt\int_{0}^{2 \pi}(64) d t.

See Solution

Problem 14638

1. Given P(t)=t2t+1t2+1P(t)=\frac{t^{2}-t+1}{t^{2}+1}, find when P(t)P(t) is least and when P(t)P'(t) is maximized for t>0t>0.

See Solution

Problem 14639

A cone-shaped tank (base radius 2 m2 \mathrm{~m}, height 6 m6 \mathrm{~m}) fills at 1.5 m3/min1.5 \mathrm{~m}^{3}/\mathrm{min}. Find the water rise rate when depth is 3 m3 \mathrm{~m}.

See Solution

Problem 14640

Find dydx\frac{d y}{d x} for the equation x2+y2=xy+39x^{2}+y^{2}=x y+39 at x=7x=7, y=2y=2.

See Solution

Problem 14641

Find the absolute extreme values of f(x)=x13(x4)f(x)=x^{\frac{1}{3}}(x-4) on the interval [64,64][-64,64].

See Solution

Problem 14642

Given the function r(x)=4x+1x7r(x)=\frac{4 x+1}{x-7}, complete the tables and analyze the asymptotes.
(a) Fill in the values for r(x)r(x) at specified xx values. (b) Describe r(x)r(x) as xx approaches 7 from both sides. (c) Find the horizontal asymptote.

See Solution

Problem 14643

Differentiate the equation x6y=3x^{6} y = 3 implicitly to find dydx\frac{d y}{d x}.

See Solution

Problem 14644

Ein Schauspieler springt von einer 43 m43 \mathrm{~m} hohen Brücke.
1) Wie lange dauert der Fall? 2) Welche Geschwindigkeit hat er beim Aufprall?
Nutze s(t)=5t2s(t)=5 t^{2}.

See Solution

Problem 14645

Find the derivative of f(x)=x(x10)2f(x) = x(x-10)^{2}.

See Solution

Problem 14646

Bestimmen Sie die Steigung von f\mathrm{f} an x0x_{0} durch eine Näherungstabelle für: a) f(x)=x2,x0=1f(x)=x^{2}, x_{0}=1 b) f(x)=14x3,x0=2f(x)=\frac{1}{4} x^{3}, x_{0}=2 c) f(x)=1x,x0=2f(x)=\frac{1}{x}, x_{0}=2 d) f(x)=x,x0=1f(x)=\sqrt{x}, x_{0}=1

See Solution

Problem 14647

Leiten Sie folgende Funktionen ab: a) f(x)=xexf(x)=x e^{x}, b) f(x)=exxf(x)=\frac{e^{x}}{x}, c) f(x)=xexf(x)=\frac{x}{e^{x}}, d) f(x)=(x+1)exf(x)=(x+1) e^{x}, e) f(x)=xe0,5xf(x)=\frac{x}{e^{-0,5 x}}, f) f(x)=ex+1xf(x)=\frac{e^{x}+1}{x}, g) f(x)=exx1f(x)=\frac{e^{x}}{x-1}, h) f(x)=e3xx+2f(x)=\frac{e^{3 x}}{x+2}, i) f(x)=x2+xe0,1xf(x)=x^{2}+x e^{0,1 x}, j) f(x)=xe2x+1f(x)=x \cdot e^{-2 x+1}, k) f(x)=x2eaxf(x)=x^{2} \cdot e^{a x}, l) f(x)=xe2x2+1f(x)=x \cdot e^{2 x^{2}+1}.

See Solution

Problem 14648

Use implicit differentiation on the equation x6y=3x^{6} y=3 to find dydx\frac{d y}{d x}.

See Solution

Problem 14649

Find the tangent line equation for f(x)=(2x+1)1/4f(x)=(2x+1)^{1/4} at x=1x=1. Tangent line: y=y=

See Solution

Problem 14650

Use implicit differentiation on the equation xy5x=8xy - 5x = 8 to find dydx\frac{dy}{dx}.

See Solution

Problem 14651

Find the integral of cos17θsinθ\cos^{17} \theta \sin \theta using the substitution u=cosθu=\cos \theta.

See Solution

Problem 14652

Find the price for max profit from f(p)=80p2+2880p25,600f(p)=-80 p^{2}+2880 p-25,600. Also, find max profit and break-even prices.

See Solution

Problem 14653

Differentiate the function f(x)=2(23x2)5f(x)=\frac{2}{(2-3 x^{2})^{5}}. Find f(x)=f^{\prime}(x)=\square.

See Solution

Problem 14654

Leiten Sie die folgenden Funktionen ab: a) f(x)=xexf(x)=x e^{x}, b) f(x)=exxf(x)=\frac{e^{x}}{x}, c) f(x)=xexf(x)=\frac{x}{e^{x}}, d) f(x)=(x+1)exf(x)=(x+1) e^{x}, e) f(x)=xe0,5xf(x)=\frac{x}{e^{-0,5 x}}, f) f(x)=ex+1xf(x)=\frac{e^{x}+1}{x}, g) f(x)=exx1f(x)=\frac{e^{x}}{x-1}, h) f(x)=e3xx+2f(x)=\frac{e^{3 x}}{x+2}, i) f(x)=x2+xe0,1xf(x)=x^{2}+x e^{0,1 x}, j) f(x)=xe2x+1f(x)=x \cdot e^{-2 x+1}, k) f(x)=x2eaxf(x)=x^{2} \cdot e^{a x}, l) f(x)=xe2x2+1f(x)=x \cdot e^{2 x^{2}+1}.

See Solution

Problem 14655

Find the limit: limΔx0sin(π6+Δx)12Δx\lim _{\Delta x \rightarrow 0} \frac{\sin \left(\frac{\pi}{6}+\Delta x\right)-\frac{1}{2}}{\Delta x}.

See Solution

Problem 14656

Druzinsky (1993) found that chewing frequency c=kM0.128c=kM^{-0.128}. Given M(t)=1+2tM(t)=1+2\sqrt{t}, find dcdt\frac{dc}{dt}.

See Solution

Problem 14657

Calculate dcdt\frac{d c}{d t} for c=kM0.128c=kM^{-0.128} where M(t)=1+2tM(t)=1+2\sqrt{t}. Use the chain rule.

See Solution

Problem 14658

Given mass M(t)=1+2tM(t)=1+2\sqrt{t}, find dcdt\frac{d c}{d t} using c=kM0.128c=kM^{-0.128}. Calculate dcdt=\frac{d c}{d t}=\square.

See Solution

Problem 14659

Find the derivative of sin2(πx)\sin^{2}(\pi x).

See Solution

Problem 14660

Calculate the work done by the force field F=(3x2+2y)i^+(4y+2x)j^\vec{F}=(3 x^{2}+2 y) \hat{i}+(4 y+2 x) \hat{j} along the path y=x2y=x^{2} from x=1x=-1 to x=1x=1.

See Solution

Problem 14661

Find the limit: limx21x242x+441sin2πx\lim _{x \rightarrow 21} \frac{x^{2}-42 x+441}{\sin ^{2} \pi x}.

See Solution

Problem 14662

Chewing frequency cc relates to body mass MM as c=kM0.128c=kM^{-0.128}. Given M(t)=1+2tM(t)=1+2\sqrt{t}, find dcdt\frac{d c}{d t} and dcdL\frac{d c}{d L}.

See Solution

Problem 14663

Graph the functions: y=x2/3+(x1)1/3y=x^{2/3}+(x-1)^{1/3} and y=x2/3+(x1)2/3y=x^{2/3}+(x-1)^{2/3}. Analyze their first derivatives.

See Solution

Problem 14664

Differentiate f(x)f(x) and g(x)g(x), then evaluate at x=1x=1 and x=2x=2. Find d/dx(f+g)d/dx(f+g), d/dx((fg)2)d/dx((f-g)^2), and d/dx(f+g)d/dx(\sqrt{f+g}).

See Solution

Problem 14665

Solve the differential equation y2y=e2xy' - 2y = e^{2x} with the function u(x)=xe2xu(x) = x e^{2x}.

See Solution

Problem 14666

Besucherzahlen im Freizeitpark: f(x)=100(x10)e0,05x+10000f(x)=100(x-10)e^{-0,05x}+10000. Analysiere Verlauf, Maximum, Abnahme und Rentabilität.

See Solution

Problem 14667

Compute R6R_{6}, L6L_{6}, and M3M_{3} to estimate distance over [0,3][0,3] using given velocity data. Provide exact answers.

See Solution

Problem 14668

Solve the differential equation y2y=e2xy' - 2y = e^{2x} with the initial condition y(0)=2y(0) = 2.

See Solution

Problem 14669

Find the area represented by the limit: limN1Nj=1N(jN)7\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j=1}^{N}\left(\frac{j}{N}\right)^{7}.

See Solution

Problem 14670

Find the limit: limN4Nj=0N1e2+4jN\lim _{N \rightarrow \infty} \frac{4}{N} \sum_{j=0}^{N-1} e^{-2+\frac{4 j}{N}}. What area does it represent?

See Solution

Problem 14671

Express the area under f(x)=8sin(x)f(x)=8 \sin (x) from 00 to π3\frac{\pi}{3} as a limit using RNR_{N} approximation.

See Solution

Problem 14672

Find the derivative dydx\frac{d y}{d x} using implicit differentiation for the equation 4x4y5x+y2=164 x^{4} y^{5}-x+y^{2}=16.

See Solution

Problem 14673

Find dydx\frac{d y}{d x} using implicit differentiation for the equation x3+8y4=lnyx^{3}+8 y^{4}=\ln y.

See Solution

Problem 14674

Evaluate A(t)=0.4(12)t138.4A(t)=0.4\left(\frac{1}{2}\right)^{\frac{t}{138.4}} for (a) t=138.4t=138.4 and (b) t=276.8t=276.8. Interpret results.

See Solution

Problem 14675

Differentiate implicitly: ln(5xy)=exy\ln(5xy) = e^{xy}, find dydx\frac{dy}{dx}, where y0y \neq 0.

See Solution

Problem 14676

Berechnen Sie die Ableitungen der folgenden Funktionen: a) f(x)=x+x6f(x)=\sqrt{x}+\sqrt[6]{x} b) g(t)=2t+1tg(t)=-\frac{2}{t}+\frac{1}{\sqrt{t}} c) h(x)=(3x2)2h(x)=(3 x-2)^{2}

See Solution

Problem 14677

Evaluate A(138.4)=0.4(12)138.4138.4A(138.4)=0.4\left(\frac{1}{2}\right)^{\frac{138.4}{138.4}} to find the amount of 210Po{ }^{210} \mathrm{Po} after 138.4 years.

See Solution

Problem 14678

Deux gaz réagissent pour former l'ammoniac. Trouvez Q(t)Q(t), sa variation, et évaluez des limites et dérivées.

See Solution

Problem 14679

Find the derivative dydx\frac{d y}{d x} using implicit differentiation for (1+e3x)2=3+ln(3x+y)(1+e^{3 x})^{2}=3+\ln (3 x+y), where y3xy \neq -3 x.

See Solution

Problem 14680

Differentiate implicitly: (1+e3x)2=4+ln(x+y)(1+e^{3 x})^{2}=4+\ln (x+y), find dydx\frac{d y}{d x}, where yxy \neq -x.

See Solution

Problem 14681

Find the limit as xx approaches infinity for the expression x+4x+1-x + \frac{4}{x+1}.

See Solution

Problem 14682

Find the rate of change of qq with respect to pp for the demand equation p=10(q+6)2p=\frac{10}{(q+6)^{2}}.

See Solution

Problem 14683

Differentiate the function using logarithmic differentiation: f(x)=(x+1)(6x+1)(9x+1)8x+1f(x)=\frac{(x+1)(6 x+1)(9 x+1)}{\sqrt{8 x+1}}.

See Solution

Problem 14684

Find the limit as xx approaches 1 for the expression x+4x+1-x + \frac{4}{x+1}.

See Solution

Problem 14685

Evaluate the integral: cos(π/x5)x6dx\int \frac{\cos \left(\pi / x^{5}\right)}{x^{6}} d x

See Solution

Problem 14686

Find the derivative of yy with respect to xx using logarithmic differentiation, where y=xx2+6(x+9)2/3y=\frac{x \sqrt{x^{2}+6}}{(x+9)^{2/3}}.

See Solution

Problem 14687

Find the derivative yy^{\prime} for the function y=7xxy=7 x^{\sqrt{x}}.

See Solution

Problem 14688

A girl throws a baseball up at 20.66 m/s20.66 \mathrm{~m/s}. What is the maximum height (in m\mathrm{m}) it reaches?

See Solution

Problem 14689

Calculate the integral 03f(x)dx\int_{0}^{3} f(x) dx where f(x)={x21,x2x26x+8,x>2f(x)=\left\{\begin{array}{ll}\frac{x}{2}-1, & x \leq 2 \\ x^{2}-6 x+8, & x>2\end{array}\right.

See Solution

Problem 14690

Finde die Extrem- und Wendepunkte für die folgenden Funktionen: a) f(x)=x(x+3)2f(x)=x \cdot(x+3)^{2}, b) f(t)=(3t1)2f(t)=(3 t-1)^{2}, c) g(x)=(2x5)3150xg(x)=(2 x-5)^{3}-150 x.

See Solution

Problem 14691

Find the derivative using logarithmic differentiation: ddx(1+3x)x\frac{d}{d x}\left(1+\frac{3}{x}\right)^{x}.

See Solution

Problem 14692

Find the derivative of yy with respect to xx for y=(4x+7)xy=(4x+7)^{x}.

See Solution

Problem 14693

Find the tangent line equation for y=(x+1)(x+2)2(x+3)2y=(x+1)(x+2)^{2}(x+3)^{2} at x=1x=1.

See Solution

Problem 14694

Find the tangent line equation for y=x21xy=x^{21 x} at x=ex=e.

See Solution

Problem 14695

Find the tangent line equation for y=x14xy=x^{14 x} at x=ex=e.

See Solution

Problem 14696

Find the tangent line equation for y=x11xy=x^{11 x} at x=ex=e.

See Solution

Problem 14697

Find the tangent line equation for y=x20xy=x^{20 x} at x=ex=e.

See Solution

Problem 14698

Find the domain and range of f(x)=ex2+2f(x)=e^{x-2}+2. Options: domain =(,)=(-\infty, \infty), range (2,)(2, \infty); etc.

See Solution

Problem 14699

Find the limit as xx approaches 33 from the right for a function with a horizontal asymptote at y=1y=-1: limx3+f(x)\lim_{{x \to 3^+}} f(x).

See Solution

Problem 14700

Find the limit of the function as x3+x \rightarrow 3^{+} for a rational function with y=1y=-1 (horizontal) and x=4x=-4, x=3x=3 (vertical) asymptotes.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord