Calculus
Problem 11501
Position function: .
a) When is the particle moving left/right?
b) When is it at rest?
c) Find average rate of change in 5s.
d) Estimate velocity each second.
See SolutionProblem 11502
A particle's position is . When does it move left/right and when is it at rest?
See SolutionProblem 11506
Find the production level that minimizes the marginal cost function and determine the minimum cost.
See SolutionProblem 11511
Find the velocity and speed of a stone dropped from a 216-ft cliff on Mars, where .
See SolutionProblem 11512
A particle's position is for . Find when it moves left/right, is at rest, average rate of change, and velocity per second.
See SolutionProblem 11514
Determine if the integral is convergent or divergent. If convergent, find its value.
See SolutionProblem 11519
Find the interval(s) where the profit function, derived from and , is increasing.
A. The profit function is increasing on the interval(s) .
B. The profit function is never increasing.
See SolutionProblem 11520
Find the limit as approaches 4 for given and . Round to three decimal places.
See SolutionProblem 11523
Find the intervals where the drug concentration given by is increasing and decreasing.
See SolutionProblem 11526
Calculate the force variation for a passenger of mass on a ride with radius and speed due to changes in (a) radius , (b) speed , and (c) period . Provide derivatives and units.
See SolutionProblem 11528
Find the critical numbers, increasing intervals, and decreasing intervals for . First, compute .
See SolutionProblem 11529
For the function , find critical numbers and intervals of increase/decrease.
See SolutionProblem 11530
Find the time in when a particle with acceleration and initial velocity 21 ft/sec changes direction.
See SolutionProblem 11533
Detective Daniels investigates a murder using Newton's Law of Cooling. Find the cooling rate , the function , and time of death.
a. Calculate using body temperatures and room temp.
b. Write with initial temp .
c. Solve for to find time of death.
See SolutionProblem 11538
For an even function with , find the integrals:
15. ,
16. ,
17. .
For an odd function with , find the integrals:
18. ,
19. ,
20. .
See SolutionProblem 11549
Find where the function is increasing and decreasing with respect to the mortgage rate .
See SolutionProblem 11552
Revolve the area between and from to around the -axis. Find the volume and properties.
See SolutionProblem 11553
Find the maximum concentration .
Give to five decimal places and (time) to three decimal places.
See SolutionProblem 11554
A cone-shaped cup is 16 cm deep with a 4 cm radius. Water flows in at 2 cm³/sec. Find rates of height and radius change at given depths.
See SolutionProblem 11557
A snowball's volume increases at . Find the radius and surface area increase rates at .
See SolutionProblem 11559
How long does it take for a bacteria population to double with a growth rate of per hour? Round to the nearest hundredth.
See SolutionProblem 11560
An observer at point A sees balloon B rising from C at 3 m/sec. Find rates of change when y=50 for x, area, and θ.
See SolutionProblem 11565
An observer at point A watches balloon B rise from point C at 3 m/s, 100 m away. Find rates of change when .
See SolutionProblem 11573
What method finds the dose that maximizes blood pressure ? Choose one: a, b, c, or d.
See SolutionProblem 11578
Gewinnfunktion: für .
3.1. Berechne , , und interpretiere.
3.2. Finde die Produktionsmenge für maximalen Gewinn und den Gewinn.
3.3. Bestimme das Intervall [a; b] für Gewinn.
See SolutionProblem 11579
Berechne die Werte , und für die Gewinnfunktion und finde die Produktionsmenge mit maximalem Gewinn. Bestimme auch die Gewinnintervalle.
See SolutionProblem 11582
Find the marginal revenue from renting the 20th apartment given . Choose the correct option.
See SolutionProblem 11584
Éric lance une balle de d'un édifice de à . Trouvez l'énergie, vitesses et hauteur à différentes étapes.
See SolutionProblem 11586
Ein Unternehmen produziert Farben. a) Bestimme die Erlösfunktion und zeige, dass bei 33 Einheiten maximiert wird. b) Zeige, dass die Kostenfunktion keine Extremstellen hat. c) Benenne die Graphen der Funktionen . d) Zeige, dass gilt und berechne den maximalen Gewinn. e) Prüfe, ob 30 Einheiten weiterhin den Gewinn maximieren, wenn die Fixkosten auf 4000 steigen.
See Solution123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337