Calculus

Problem 11501

Position function: x=2πt+cˉcos2πt,0t5x=2 \pi t+\bar{c} \cos 2 \pi t, 0 \leq t \leq 5.
a) When is the particle moving left/right? b) When is it at rest? c) Find average rate of change in 5s. d) Estimate velocity each second.

See Solution

Problem 11502

A particle's position is x=2πt+cos2πt,0t5x=2 \pi t+\cos 2 \pi t, 0 \leq t \leq 5. When does it move left/right and when is it at rest?

See Solution

Problem 11503

Find critical points of f(x)=3x314x2+7xf(x)=3 x^{3}-14 x^{2}+7 x on [0,5][0,5] and extreme values fmin,fmaxf_{\min}, f_{\max} to 3 decimals.

See Solution

Problem 11504

Find dy/dxd y / d x using implicit differentiation for the equation 2xyy2=12 x y - y^{2} = 1.

See Solution

Problem 11505

Find the critical numbers for the function f(x)=3x4+8x3210x2+102f(x)=3 x^{4}+8 x^{3}-210 x^{2}+102.

See Solution

Problem 11506

Find the production level xx that minimizes the marginal cost function C(x)=x2140x+9000C(x) = x^2 - 140x + 9000 and determine the minimum cost.

See Solution

Problem 11507

Find the derivative of s=t4tantts=t^{4} \tan t-\sqrt{t}.

See Solution

Problem 11508

Find dydx\frac{d y}{d x} for y=tanuy=\tan u and u=13x+20u=-13 x+20.

See Solution

Problem 11509

Find dydx\frac{d y}{d x} for y=tanuy=\tan u where u=13x+20u=-13 x+20. Use the chain rule.

See Solution

Problem 11510

Un cube de glace de 27 cm327 \mathrm{~cm}^{3} fond selon dVdt=0.6x2\frac{d V}{d t}=-0.6 \mathrm{x}^{2}. Trouvez dxdt\frac{d x}{d t} et le volume après 7 min.

See Solution

Problem 11511

Find the velocity and speed of a stone dropped from a 216-ft cliff on Mars, where s(t)=6t2+216s(t) = -6t^2 + 216.

See Solution

Problem 11512

A particle's position is x=2πt+cos2πtx=2 \pi t+\overline{c o s} 2 \pi t for 0t50 \leq t \leq 5. Find when it moves left/right, is at rest, average rate of change, and velocity per second.

See Solution

Problem 11513

Is the integral xx2+9dx\int_{-\infty}^{\infty} \frac{x}{x^{2}+9} d x convergent or divergent? If convergent, find its value.

See Solution

Problem 11514

Determine if the integral 0dx(x5)13\int_{0}^{\infty} \frac{d x}{(x-5)^{\frac{1}{3}}} is convergent or divergent. If convergent, find its value.

See Solution

Problem 11515

Find the second derivative of y=x4+1x2y=\frac{x^{4}+1}{x^{2}}.

See Solution

Problem 11516

Find the derivative of yy using logarithmic differentiation, where y=xx3+2(x+4)1/3y=\frac{x \sqrt{x^{3}+2}}{(x+4)^{1/3}}.

See Solution

Problem 11517

Find the tangent line equation for y=x22y=\frac{x^{2}}{2} at x=5x=5.

See Solution

Problem 11518

Find the derivative of the function y=x23x+2x72y=\frac{x^{2}-3 x+2}{x^{7}-2}.

See Solution

Problem 11519

Find the interval(s) where the profit function, derived from C(x)=0.17x20.00008x3C(x)=0.17 x^{2}-0.00008 x^{3} and R(x)=0.746x20.0002x3R(x)=0.746 x^{2}-0.0002 x^{3}, is increasing.
A. The profit function is increasing on the interval(s) \square. B. The profit function is never increasing.

See Solution

Problem 11520

Find the limit as xx approaches 4 for 3+xh(x)3+\sqrt{x h(x)} given limx4g(x)=9\lim _{x \rightarrow 4} g(x)=-9 and limx4h(x)=3\lim _{x \rightarrow 4} h(x)=3. Round to three decimal places.

See Solution

Problem 11521

Find y0y_{0} such that points P=(1,0)P=(1,0) and Q=(2,y0)Q=(2,y_{0}) lie on the graph where the slope is 8x58x-5.

See Solution

Problem 11522

Write y=f(u)y=f(u) and u=g(x)u=g(x) for y=(3x+10)5y=(-3x+10)^{5}, then find dydx\frac{dy}{dx} as a function of xx.

See Solution

Problem 11523

Find the intervals where the drug concentration given by K(t)=16tt2+16K(t)=\frac{16 t}{t^{2}+16} is increasing and decreasing.

See Solution

Problem 11524

Find the intervals where the function A(x)=0.004x30.05x2+0.18x+0.05A(x)=0.004 x^{3}-0.05 x^{2}+0.18 x+0.05 is increasing or decreasing on [0,5][0,5].

See Solution

Problem 11525

Verify that dydx=119y18\frac{d y}{d x}=\frac{1}{19 y^{18}} for the curve x=y19x=y^{19} and find d2ydx2\frac{d^{2} y}{d x^{2}}.

See Solution

Problem 11526

Calculate the force variation dFd F for a passenger of mass m=63.0 kgm=63.0 \mathrm{~kg} on a ride with radius r=5.30 mr=5.30 \mathrm{~m} and speed v=2.00 m/sv=2.00 \mathrm{~m/s} due to changes in (a) radius drd r, (b) speed dvd v, and (c) period dTd T. Provide derivatives and units.

See Solution

Problem 11527

Check if the integral 4dxlnx1\int_{4}^{\infty} \frac{d x}{\ln x - 1} converges.

See Solution

Problem 11528

Find the critical numbers, increasing intervals, and decreasing intervals for f(x)=43x314x272x24f(x)=\frac{4}{3} x^{3}-14 x^{2}-72 x-24. First, compute f(x)f^{\prime}(x).

See Solution

Problem 11529

For the function f(x)=6x4+16x3288x2+33f(x)=6 x^{4}+16 x^{3}-288 x^{2}+33, find critical numbers and intervals of increase/decrease.

See Solution

Problem 11530

Find the time tt in 0t60 \leq t \leq 6 when a particle with acceleration a(t)=2t10a(t)=2t-10 and initial velocity 21 ft/sec changes direction.

See Solution

Problem 11531

Find all values of cc in the interval (14,24)\left(\frac{1}{4}, 24\right) where f(c)=0f^{\prime}(c)=0 for f(x)=x+6x1f(x)=x+6 x^{-1}.

See Solution

Problem 11532

Find all values of cc in (2,10)(2,10) for the function f(x)=x26x10f(x)=\frac{x^{2}}{6 x-10} where f(c)=0f^{\prime}(c)=0.

See Solution

Problem 11533

Detective Daniels investigates a murder using Newton's Law of Cooling. Find the cooling rate kk, the function T(t)T(t), and time of death.
a. Calculate kk using body temperatures and room temp. b. Write T(t)T(t) with initial temp T0=98.6FT_{0} = 98.6^{\circ} \mathrm{F}. c. Solve T(t)=77.9FT(t) = 77.9^{\circ} \mathrm{F} for tt to find time of death.

See Solution

Problem 11534

Evaluate the integral: 17xx+13dx\int_{-1}^{7} x \sqrt[3]{x+1} \, dx

See Solution

Problem 11535

Find the function f(x)f(x) given that f(x)=2x+6sin(x)f^{\prime \prime}(x)=2x+6\sin(x), f(0)=2f(0)=2, and f(0)=4f^{\prime}(0)=4.

See Solution

Problem 11536

Find the unique anti-derivative FF of f(x)=(4x)22(4x)2f(x)=(4-x)^{2}-\frac{2}{(4-x)^{2}} with F(0)=0F(0)=0, and calculate F(3)F(3).

See Solution

Problem 11537

Find y0y_{0} so that points P=(1,3)P=(1,3) and Q=(2,y0)Q=(2, y_{0}) lie on the graph where the slope is 8x78x - 7.

See Solution

Problem 11538

For an even function f(x)f(x) with 02f(x)dx=83\int_{0}^{2} f(x) d x=\frac{8}{3}, find the integrals:
15. 20f(x)dx\int_{-2}^{0} f(x) d x,
16. 22f(x)dx\int_{-2}^{2} f(x) d x,
17. 203f(x)dx\int_{-2}^{0} 3 f(x) d x.

For an odd function f(x)f(x) with 02f(x)dx=83\int_{0}^{2} f(x) d x=\frac{8}{3}, find the integrals:
18. 20f(x)dx\int_{-2}^{0} f(x) d x,
19. 22f(x)dx\int_{-2}^{2} f(x) d x,
20. 203f(x)dx\int_{-2}^{0} 3 f(x) d x.

See Solution

Problem 11539

関数 y=x2y=-x^{2} で、xx が 1 から 4 まで増加する時の変化の割合を求めなさい。

See Solution

Problem 11540

Evaluate the integral Rexydxdy\int_{R} e^{-x-y} d x d y for the region RR in the first quadrant where x+y1x+y \leq 1.

See Solution

Problem 11541

Find the function f(x)f(x) given that f(x)=8x+10sin(x)f^{\prime \prime}(x)=8 x+10 \sin (x), f(0)=3f(0)=3, and f(0)=3f^{\prime}(0)=3. f(x)= f(x)=

See Solution

Problem 11542

Find the position s(t)s(t) of the particle given v(t)=7sin(t)6cos(t)v(t)=7 \sin(t)-6 \cos(t) and s(0)=5s(0)=5.

See Solution

Problem 11543

Find f(x)f^{\prime}(x) given f(x)=6x3f^{\prime \prime}(x)=6 x-3, f(1)=1f^{\prime}(-1)=1, and f(1)=5f(-1)=-5. Also, find f(2)f(2).

See Solution

Problem 11544

Find where H(r)=3001+0.06r2H(r)=\frac{300}{1+0.06 r^{2}} is increasing/decreasing and calculate H(r)H'(r).

See Solution

Problem 11545

Find the position of a particle at time t=13t=13 given a(t)=12t+18a(t)=12t+18, s(0)=2s(0)=2, and v(0)=17v(0)=17.

See Solution

Problem 11546

Find the antiderivative F(t)F(t) of f(t)=4sec2(t)6t3f(t)=4 \sec ^{2}(t)-6 t^{3} with F(0)=0F(0)=0. Calculate F(5)F(5).

See Solution

Problem 11547

Find values of cc in (2,4)(2,4) where f(c)=0f^{\prime}(c)=0 for f(x)=x23x4f(x)=\frac{x^{2}}{3 x-4}. c= c=

See Solution

Problem 11548

Find aa so that the line x=ax=a bisects the area under y=1x2y=\frac{1}{x^{2}} from 11 to 44. Also, find bb for y=by=b.

See Solution

Problem 11549

Find where the function H(r)=3001+0.06r2H(r) = \frac{300}{1 + 0.06 r^2} is increasing and decreasing with respect to the mortgage rate rr.

See Solution

Problem 11550

Find all values of cc in the interval (14,28)\left(\frac{1}{4}, 28\right) where f(c)=0f^{\prime}(c)=0 for f(x)=x+7x1f(x)=x+7 x^{-1}.
c= c=

See Solution

Problem 11551

Find f(5)f(5) for the function with f(x)=7x+10sin(x)f^{\prime \prime}(x)=7x+10\sin(x), f(0)=4f(0)=4, f(0)=3f^{\prime}(0)=3.

See Solution

Problem 11552

Revolve the area between y=sin(x)y=\sin(x) and y=0y=0 from 00 to π\pi around the xx-axis. Find the volume and properties.

See Solution

Problem 11553

Find the maximum concentration C(t)=0.014tt2+3t+3C(t)=\frac{0.014 t}{t^{2}+3 t+3}.
Give CmaxC_{\max } to five decimal places and tt (time) to three decimal places.

See Solution

Problem 11554

A cone-shaped cup is 16 cm deep with a 4 cm radius. Water flows in at 2 cm³/sec. Find rates of height and radius change at given depths.

See Solution

Problem 11555

Find f(x)f^{\prime}(x) given f(x)=3x3f^{\prime \prime}(x)=3x-3, f(2)=6f^{\prime}(-2)=6, and f(2)=2f(-2)=2. Also, find f(2)f(2).

See Solution

Problem 11556

Find the minimum height of the catenary y=11cosh(x11)5.4y=11 \cosh \left(\frac{x}{11}\right)-5.4 for x[3,3]x \in [-3,3]. Report to one decimal place.

See Solution

Problem 11557

A snowball's volume increases at 10in3/min10 \mathrm{in}^{3}/\mathrm{min}. Find the radius and surface area increase rates at 36πin336 \pi \mathrm{in}^{3}.

See Solution

Problem 11558

Find the limit: limx0(sin(x+9)sin(9))=\lim _{x \rightarrow 0}(\sin (x+9)-\sin (9))=

See Solution

Problem 11559

How long does it take for a bacteria population to double with a growth rate of 2.4%2.4\% per hour? Round to the nearest hundredth.

See Solution

Problem 11560

An observer at point A sees balloon B rising from C at 3 m/sec. Find rates of change when y=50 for x, area, and θ.

See Solution

Problem 11561

Find f(x)f^{\prime}(x) given f(x)=5x+3f^{\prime \prime}(x)=5x+3, f(2)=3f^{\prime}(-2)=3, and f(2)=4f(-2)=4. Also, find f(4)f(4).

See Solution

Problem 11562

Find f(x)f^{\prime}(x) given f(x)=4x+4f^{\prime \prime}(x)=4 x+4, f(1)=4f^{\prime}(-1)=4, and f(1)=5f(-1)=-5. Also find f(2)f(2).

See Solution

Problem 11563

Find f(x)f^{\prime}(x) given f(x)=4x+4f^{\prime \prime}(x)=4 x+4, f(1)=4f^{\prime}(-1)=4, and f(1)=5f(-1)=-5. Then find f(2)f(2).

See Solution

Problem 11564

Find the derivative of sin(π2x)\sin\left(\frac{\pi}{2} - x\right).

See Solution

Problem 11565

An observer at point A watches balloon B rise from point C at 3 m/s, 100 m away. Find rates of change when y=50y=50.

See Solution

Problem 11566

Find f(x)f^{\prime}(x) from f(x)=9x2f^{\prime \prime}(x)=9x-2, given f(1)=2f^{\prime}(-1)=-2, f(1)=3f(-1)=-3. Then, find f(3)f(3).

See Solution

Problem 11567

Find the horizontal asymptote of f(x)=43x2x23x2+x1f(x)=\frac{4-3x-2x^{2}}{3x^{2}+x-1} and the xx value where it touches.

See Solution

Problem 11568

Find the limit as xx approaches 00 of sin(x+9)sin(9)x\frac{\sin (x+9)-\sin (9)}{x}.

See Solution

Problem 11569

Find f(x)f^{\prime}(x) from f(x)=7x5f^{\prime \prime}(x)=7x-5, given f(0)=4f^{\prime}(0)=-4 and f(0)=6f(0)=6. Also, find f(4)f(4).

See Solution

Problem 11570

Find f(x)f^{\prime}(x) from f(x)=4x6f^{\prime \prime}(x)=4 x-6 with f(3)=4f^{\prime}(-3)=4, f(3)=6f(-3)=-6. Then, find f(3)f(3).

See Solution

Problem 11571

Find f(x)f^{\prime}(x) from f(x)=9x1f^{\prime \prime}(x)=9x-1 with f(3)=3f^{\prime}(-3)=3, f(3)=4f(-3)=-4, then find f(3)f(3).

See Solution

Problem 11572

Given f(2)=5f(2)=5, f(2)=2f^{\prime}(2)=-2, and f(3)=1f^{\prime}(3)=1, which statement is true about local extrema?

See Solution

Problem 11573

What method finds the dose aa that maximizes blood pressure bb? Choose one: a, b, c, or d.

See Solution

Problem 11574

Find the local maximum of f(x)=x39x248x+52f(x)=x^{3}-9 x^{2}-48 x+52. Choose from: x=2x=-2, x=ex=e, x=5x=5, x=8x=8.

See Solution

Problem 11575

Calculate the integral: 1+cos(4t)2dt\int \frac{1+\cos (4 t)}{2} d t

See Solution

Problem 11576

Find the limit: limx(4x2+3x+2x)\lim _{x \rightarrow-\infty}\left(\sqrt{4 x^{2}+3 x}+2 x\right).

See Solution

Problem 11577

Find f(x)f^{\prime}(x) given f(x)=2x+3f^{\prime \prime}(x)=2 x+3, f(3)=4f^{\prime}(-3)=4, and f(3)=5f(-3)=-5. Also, find f(2)f(2).

See Solution

Problem 11578

Gewinnfunktion: G(x)=0,5x3+2x2+2,5x6G(x)=-0,5 x^{3}+2 x^{2}+2,5 x-6 für x[0;5]x \in[0 ; 5].
3.1. Berechne G(0)G(0), G(1)G(1), G(4,5)G(4,5) und interpretiere. 3.2. Finde die Produktionsmenge für maximalen Gewinn und den Gewinn. 3.3. Bestimme das Intervall [a; b] für Gewinn.

See Solution

Problem 11579

Berechne die Werte G(0)G(0), G(1)G(1) und G(4.5)G(4.5) für die Gewinnfunktion G(x)=0,5x3+2x2+2,5x6G(x)=-0,5x^3+2x^2+2,5x-6 und finde die Produktionsmenge mit maximalem Gewinn. Bestimme auch die Gewinnintervalle.

See Solution

Problem 11580

Find the zeros, extrema, and inflection points of f(x)=2x2e0.1xf(x)=2 x^{2} e^{-0.1 x}.

See Solution

Problem 11581

Find dydx\frac{d y}{d x} for the function y=2x+14xy=2 x+\frac{1}{\sqrt{4 x}}.

See Solution

Problem 11582

Find the marginal revenue from renting the 20th apartment given R(x)=6x38x2xR(x)=6x^3-8x^2-\sqrt{x}. Choose the correct option.

See Solution

Problem 11583

Berechne den Extrempunkt der Funktion f(x)=2x2e0,1xf(x)=2 x^{2} \cdot e^{-0,1 x}.

See Solution

Problem 11584

Éric lance une balle de 2 kg2 \mathrm{~kg} d'un édifice de 356 m356 \mathrm{~m} à 24 m/s24 \mathrm{~m/s}. Trouvez l'énergie, vitesses et hauteur à différentes étapes.

See Solution

Problem 11585

Find the derivative of the function f(x)=x(x+1)2f(x)=\frac{x}{(x+1)^{2}} and verify that f(x)=1x(x+1)3f^{\prime}(x)=\frac{1-x}{(x+1)^{3}}.

See Solution

Problem 11586

Ein Unternehmen produziert Farben. a) Bestimme die Erlösfunktion EE und zeige, dass EE bei 33 Einheiten maximiert wird. b) Zeige, dass die Kostenfunktion KK keine Extremstellen hat. c) Benenne die Graphen der Funktionen p,E,K,Gp, E, K, G. d) Zeige, dass G(x)=2x3+85x2+300x3375G(x)=-2 x^{3}+85 x^{2}+300 x-3375 gilt und berechne den maximalen Gewinn. e) Prüfe, ob 30 Einheiten weiterhin den Gewinn maximieren, wenn die Fixkosten auf 4000 steigen.

See Solution

Problem 11587

Given the function f(x)=x(x+1)2f(x)=\frac{x}{(x+1)^{2}}, find f(x)f^{\prime}(x), f(x)f^{\prime \prime}(x), and sketch f(x)f(x) using curve sketching.

See Solution

Problem 11588

Find the derivative of y=4x37y=\sqrt{4 x^{3}-7}.

See Solution

Problem 11589

Find the derivative of y=xx+1y=x \sqrt{x+1}. What is dydx\frac{d y}{d x}?

See Solution

Problem 11590

Bestimme die Intervalle, in denen die Funktionen f(x)=x2x6f(x)=x^{2}-x-6, f(x)=x3+xf(x)=x^{3}+x, und f(x)=19x3xf(x)=\frac{1}{9} x^{3}-x monoton sind.

See Solution

Problem 11591

Find the differential dyd y for y=3+x2y=\sqrt{3+x^{2}} and evaluate it when dy=1d y=1, dx=0.2d x=-0.2.

See Solution

Problem 11592

Find the slope of the tangent line to f(x)=x23f(x)=x^{2}-3 at (2,1)(-2,1) using limh0(f(a+h)f(a)h)\lim _{h \rightarrow 0}\left(\frac{f(a+h)-f(a)}{h}\right) and write its equation.

See Solution

Problem 11593

Find the instantaneous rate of change of f(x)=xf(x)=\sqrt{x} at x=9x=9 using limx9(f(x)f(9)x9)\lim _{x \rightarrow 9}\left(\frac{f(x)-f(9)}{x-9}\right).

See Solution

Problem 11594

Find the derivative f(4)f^{\prime}(4) for the function f(x)=xx36f(x)=-\sqrt{x}-\frac{\sqrt{x^{3}}}{6}.

See Solution

Problem 11595

Find f(3)f^{\prime}(-3) for the function f(x)=2xexf(x)=-2 x e^{x}. Provide the answer in simplest form.

See Solution

Problem 11596

Find f(3)f^{\prime}(-3) for the function f(x)=2xexf(x)=-2 x e^{x}. Simplify your answer with no negative exponents.

See Solution

Problem 11597

Find f(1)f^{\prime}(1) for the function f(x)=ex3x2+2f(x)=\frac{e^{x}}{3 x^{2}+2}. Simplify your answer without negative exponents.

See Solution

Problem 11598

Find these limits: a. limx5(x23x10x5)\lim _{x \rightarrow 5}\left(\frac{x^{2}-3 x-10}{x-5}\right), b. limx(5xx4x3)\lim _{x \rightarrow \infty}\left(\frac{5-x}{x^{4}-x^{3}}\right), c. limx(7x2+3x3+18000x+6)\lim _{x \rightarrow-\infty}\left(7 x^{2}+3 x^{3}+18000 x+6\right).

See Solution

Problem 11599

Find the vertical asymptote(s) of the graph of y=ln(1x)x+1y=\frac{\ln (1-x)}{x+1}.

See Solution

Problem 11600

Bestimmen Sie die Ableitung von f(x)=2x+x2f(x)=\frac{2}{\sqrt{x}}+\frac{\sqrt{x}}{2}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord