Calculus

Problem 31401

Find the derivative dydx\frac{d y}{d x} for the function y=x19y=x^{\frac{1}{9}}. What is dydx\frac{\mathrm{dy}}{\mathrm{dx}}?

See Solution

Problem 31402

Find the integral I=x(3sec2x+2tan2x)dxI=\int x(3 \sec ^{2} x + 2 \tan ^{2} x) \, dx.

See Solution

Problem 31403

Find the local minimum and maximum of f(x)=2x3+24x242x+7f(x)=-2x^3+24x^2-42x+7. What are their xx values and corresponding function values?

See Solution

Problem 31404

Find the limit as xx approaches -1 for (x+2)4(4x2)(x+2)^{4}(4x^{2}). Identify the Limit Laws used (A-F).

See Solution

Problem 31405

Find the trapezoidal sum for 372xdx\int_{3}^{7} 2 \sqrt{x} \, dx using 4 equal subintervals. Round to the nearest thousandth.

See Solution

Problem 31406

Calculate the average value of f(x)=694xf(x)=\frac{6}{9-4 x} from x=3x=3 to x=9x=9 as a constant times ln3\ln 3.

See Solution

Problem 31407

Find the value of 86f(12x3)dx\int_{-8}^{-6} f\left(\frac{1}{2} x-3\right) d x given that 76f(u)du=6\int_{-7}^{-6} f(u) d u=-6.

See Solution

Problem 31408

Find the value of 12f(x)dx\int_{-1}^{2} f(x) d x given 42f(x)dx=4\int_{4}^{2} f(x) d x=-4 and 14f(x)dx=3\int_{-1}^{4} f(x) d x=3.

See Solution

Problem 31409

Find c(15)+1524c(n)dnc(15)+\int_{15}^{24} c^{\prime}(n) d n using given data and interpret it regarding snow plowing costs.

See Solution

Problem 31410

If g(x)=f(x)g'(x) = f(x) and g(12)=ag(-12) = a, g(3)=bg(-3) = b, g(1)=cg(1) = c, g(4)=dg(4) = d, find 62f(12x)dx\int_{-6}^{2} f\left(\frac{1}{2} x\right) dx in terms of aa, bb, cc, and/or dd.

See Solution

Problem 31411

Find the value of 31013f(x)dx\int_{-3}^{10} \frac{1}{3} f(x) d x given 23f(x)dx=6\int_{-2}^{-3} f(x) d x=-6 and 210f(x)dx=3\int_{-2}^{10} f(x) d x=3.

See Solution

Problem 31412

Find the value of 98(f(x)+2)dx\int_{9}^{8}(f(x)+2) d x given 39f(x)dx=19\int_{3}^{9} f(x) dx=19 and 38f(x)dx=10\int_{3}^{8} f(x) dx=10.

See Solution

Problem 31413

Finde die Wendepunkte für die Funktionen f(x)=x3+1f(x)=x^{3}+1, f(x)=x42x3f(x)=x^{4}-2x^{3} und f(x)=3x3+12x+3f(x)=-3x^{3}+12x+3.

See Solution

Problem 31414

Berechnen Sie die Fläche zwischen dem Graphen der Funktion f:xx22xf: x \mapsto x^{2}-2 x und dem Intervall [1;2][-1 ; 2] und zeigen Sie, dass die Teilflächen gleich sind.

See Solution

Problem 31415

计算从 x=4x=4x=10x=10 的函数 f(x)f(x) 的积分,其中 f(x)f(x) 由线段 ABAB, BCBC, 和 CDCD 组成。

See Solution

Problem 31416

Find df1dx\frac{d f^{-1}}{d x} at x=f(3)x=f(3) for f(x)=x23x+2f(x)=x^{2}-3x+2, where x>1x>1. Choices: a. 13\frac{1}{3} b. 2 c. 3 d. none e. 12\frac{1}{2}.

See Solution

Problem 31417

Bestimme die Wendepunkte der Funktionen: f(x)=3x3+12x+3f(x)=-3x^{3}+12x+3, f(x)=3x3+9x227x+3f(x)=3x^{3}+9x^{2}-27x+3, f(x)=3x2+2x+x3f(x)=-3x^{2}+2x+x^{3}, f(x)=2+x6x2+x4f(x)=2+x-6x^{2}+x^{4}.

See Solution

Problem 31418

Oblicz granice ciągów:
1. 67n+3n46n2n+7n\frac{6 \cdot 7^{n}+3^{n}}{4 \cdot 6^{n}-2^{n}+7^{n}}
2. 7n22n+37n2+6n+1\sqrt{7 n^{2}-2 n+3}-\sqrt{7 n^{2}+6 n+1}
3. 5n+(57)n+7nn\sqrt[n]{5^{n}+\left(\frac{5}{7}\right)^{n}+7^{n}}
4. (3n+33n+1)7n+6\left(\frac{3 n+3}{3 n+1}\right)^{7 n+6}

See Solution

Problem 31419

Find the surface area for revolving y=10sinxy=10 \sqrt{\sin x}, π4xπ2\frac{\pi}{4} \leq x \leq \frac{\pi}{2} around the xx-axis.

See Solution

Problem 31420

Zbadaj zbieżność szeregów: 7. n=1nnlog50\sum_{n=1}^{\infty} \frac{\sqrt[n]{n}}{\log 50}, 8. n=17nn24n\sum_{n=1}^{\infty} \frac{7^{n}}{n^{2} 4^{n}}, 9. n=1(n+62n+7)n\sum_{n=1}^{\infty}\left(\frac{n+6}{2 n+7}\right)^{n}, 10. n=1(1)n4n1\sum_{n=1}^{\infty} \frac{(-1)^{n}}{4 n-1}. Podaj kryteria.

See Solution

Problem 31421

Berechne die Flächeninhalte, die von den Funktionen f(x)=0,5x2+2f(x)=-0,5 x^{2}+2 und g(x)=(x+2)23,5g(x)=(x+2)^{2}-3,5 eingeschlossen werden.

See Solution

Problem 31422

Untersuchen Sie die Funktionen f(x)=x3xf(x)=x^{3}-x und g(x)=3ex+xg(x)=3 e^{x}+x auf Punktsymmetrie, Krümmung und Sattelpunkte.

See Solution

Problem 31423

Bestimme das globale Minimum der Funktion d(x)=x2+(x2+4x+12)2d(x)=\sqrt{x^{2}+(-x^{2}+4x+12)^{2}} für 2x6-2 \leq x \leq 6.

See Solution

Problem 31424

Find the length of the curve defined by x=0ysec4t1dtx=\int_{0}^{y} \sqrt{\sec ^{4} t-1} \, dt from y=π6y=-\frac{\pi}{6} to y=π3y=\frac{\pi}{3}. Select one: 0, 232 \sqrt{3}, none, 1, 43\frac{4}{\sqrt{3}}.

See Solution

Problem 31425

Find the derivative of 1(3x)4\frac{1}{(3-x)^{4}} with respect to xx.

See Solution

Problem 31426

Find the derivative of the function 5x3\sqrt{5x - 3} with respect to xx.

See Solution

Problem 31427

Evaluate the following limits as n n approaches infinity:
1. limn67n+3n46n2n+7n \lim _{n \rightarrow \infty} \frac{6 \cdot 7^{n}+3^{n}}{4 \cdot 6^{n}-2^{n}+7^{n}}
2. limn7n22n+37n2+6n+1 \lim _{n \rightarrow \infty} \sqrt{7 n^{2}-2 n+3}-\sqrt{7 n^{2}+6 n+1}
3. limn5n+(57)n+7nn \lim _{n \rightarrow \infty} \sqrt[n]{5^{n}+\left(\frac{5}{7}\right)^{n}+7^{n}}
4. limn(3n+33n+1)7n+6 \lim _{n \rightarrow \infty}\left(\frac{3 n+3}{3 n+1}\right)^{7 n+6}

See Solution

Problem 31428

Find the derivative of f(x)=(6x+5)53f(x) = (6x + 5)^{\frac{5}{3}}.

See Solution

Problem 31429

Find the derivatives of: a) xtanxx \tan x, b) x2exx^{2} e^{-x}, c) 502xsin3x50^{-2 x} \sin 3 x, d) 3x1/2cos2x3 x^{1/2} \cos 2 x.

See Solution

Problem 31430

Find zsz_s at (t,s)=(0,0)(t, s)=(0,0) for z=sin2xcos3yz=\sin 2x \cos 3y, where x=t+sx=t+s, y=sty=s-t. Options: a. 2 b. 1 c. 0x0^x d. -1

See Solution

Problem 31431

Find the inflection point of f(x)=0.1x3+3x2+1100f(x)=-0.1 x^{3}+3 x^{2}+1100. Choose from: a. (10,1300)(10,1300) b. (20,1300)(20,1300) c. (20,1500)(20,1500) d. (0,1100)(0,1100) e. (10,30)(10,30)

See Solution

Problem 31432

Differentiate the function f(x)=2x6(1+x)5f(x) = 2 x^{6}(1+x)^{5}.

See Solution

Problem 31433

Find all xx where relative minima occur for y=x33x272x+1y=x^{3}-3x^{2}-72x+1. Options: a. 6, b. 0, c. None, d. -4, e. 1.

See Solution

Problem 31434

Determine the behavior of the function f(x)=1x2+1f(x)=\frac{1}{x^{2}+1}: increasing, decreasing, or neither for x<0x<0 and x>0x>0.

See Solution

Problem 31435

Find the critical points of y=x33x245x+6y=x^{3}-3 x^{2}-45 x+6. Choose from the options given.

See Solution

Problem 31436

Oblicz granicę ciągu an=(3n4+n2+1)4(n+4)16a_{n}=\frac{\left(3 n^{4}+n^{2}+1\right)^{4}}{(n+4)^{16}} dla nn \to \infty.

See Solution

Problem 31437

Find the intervals where the function f(x)=x4122x2f(x)=\frac{x^{4}}{12}-2 x^{2} is concave up. Options: a. (,2),(2,)(-\infty,-2),(2, \infty) b. none c. (2,)(2, \infty) d. (2,2)(-2,2) e. (4,4)(-4,4)

See Solution

Problem 31438

Budd's plane cost per hour follows dpdt=10600t2\frac{dp}{dt} = 10 - \frac{600}{t^2}.
a) Find hh for local minimum.
b) Prove cost is \$200/hour for 10 hours if \$230/hour for 4 hours.

See Solution

Problem 31439

Oblicz granicę ciągu an=(4n+34n+1)7n+6a_{n}=\left(\frac{4 n+3}{4 n+1}\right)^{7 n+6}.

See Solution

Problem 31440

Find the derivative of the function f(x)=(x3+2x)xf(x)=(x^{3}+2x)\sqrt{x}. What is f(x)f'(x)?

See Solution

Problem 31441

Oblicz granicę ciągu an=2n2+6n+42n2+3n2a_{n}=\sqrt{2 n^{2}+6 n+4}-\sqrt{2 n^{2}+3 n-2}.

See Solution

Problem 31442

Zbadać zbieżność szeregu n=1n24n3n\sum_{n=1}^{\infty} \frac{n^{2} 4^{n}}{3^{n}}.

See Solution

Problem 31443

Zbadaj zbieżność szeregu n=15n4+23n4+11\sum_{n=1}^{\infty} \frac{5 n^{4}+2}{3 n^{4}+11}.

See Solution

Problem 31444

Find the derivative of the function f(x)=x5/2f(x)=x^{5/2}.

See Solution

Problem 31445

Find the derivative of f(x)=x3+8f(x)=x^{3}+8 at x=2x=2.

See Solution

Problem 31446

Zbadać zbieżność szeregu n=1(7n+64n+2)n\sum_{n=1}^{\infty}\left(\frac{7n+6}{4n+2}\right)^{n}.

See Solution

Problem 31447

Find the slope of the curve y=2x2+1y=\sqrt{2 x^{2}+1} at the point (2,3)(2,3).

See Solution

Problem 31448

Differentiate y=(x2+4)3y=(x^{2}+4)^{3}.

See Solution

Problem 31449

Find the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=x27xf(x)=x^{2}-7x and simplify.

See Solution

Problem 31450

Find the second derivative of the function f(x)=9x2+2x2f(x)=9 x^{2}+2 x-2.

See Solution

Problem 31451

Find the limit: limx3x4x3+27\lim _{x \rightarrow 3} \frac{\sqrt{x}-4}{x^{3}+27}.

See Solution

Problem 31452

Oblicz granicę ciągu an=2n+(23)n+3nna_{n}=\sqrt[n]{2^{n}+\left(\frac{2}{3}\right)^{n}+3^{n}}.

See Solution

Problem 31453

Determine if the limit exists and find its value: limx2x2+2x8x2\lim _{x \rightarrow 2} \frac{x^{2}+2 x-8}{x-2}

See Solution

Problem 31454

Find the limit: limx2x2+1x2+1\lim _{x \rightarrow \infty} \frac{2 x^{2}+1}{x^{2}+1} if it exists.

See Solution

Problem 31455

Differentiate the function: y=8x38xy=\frac{8}{x^{3}}-\frac{8}{x}.

See Solution

Problem 31456

Find the limit as xx approaches -1 for the expression x21x+1\frac{x^{2}-1}{x+1}.

See Solution

Problem 31457

Find limx8[f(x)g(x)]\lim _{x \rightarrow 8}[f(x)-g(x)] given limx8f(x)=4\lim _{x \rightarrow 8} f(x)=4 and limx8g(x)=5\lim _{x \rightarrow 8} g(x)=-5.

See Solution

Problem 31458

Find points of inflection for the function f(x)=x3+5x+2f(x)=-x^{3}+5x+2.

See Solution

Problem 31459

Find the integral of sinxcos3x\frac{\sin x}{\cos ^{3} x} with respect to xx.

See Solution

Problem 31460

Find dy/dx\mathrm{dy} / \mathrm{dx} using y=cos(11x)y=\cos(\sqrt{11} x) and u=11xu=\sqrt{11} x with substitution and chain rule.

See Solution

Problem 31461

Find the inflection point(s) of the function y=2x33x212x+17y=2 x^{3}-3 x^{2}-12 x+17.

See Solution

Problem 31462

Find the relative extrema of the function f(x)=x312x+4f(x)=x^{3}-12x+4.

See Solution

Problem 31463

Determine where the function f(x)=4x43x3+5x10f(x)=4 x^{4}-3 x^{3}+5 x-10 is concave up.

See Solution

Problem 31464

Find the xx-coordinates of all relative extrema for f(x)=14x4+23x332x2+4f(x)=\frac{1}{4} x^{4}+\frac{2}{3} x^{3}-\frac{3}{2} x^{2}+4.

See Solution

Problem 31465

Berechnen Sie die Steigung von ff bei x0x_{0} für: a) f(x)=x2,x0=1f(x)=x^{2}, x_{0}=-1 und b) f(x)=0,5x2,x0=2f(x)=0,5 x^{2}, x_{0}=2.

See Solution

Problem 31466

1. Don won a lottery of $1000\$ 1000 weekly for 25 years. How much to invest now at 4%4\% weekly compounding?
2. An annuity pays $1200\$ 1200 yearly for 15 years at 5.2%5.2\% annual compounding. Find the total interest earned.
3. Noah has two annuity options: - A: $1000\$ 1000 yearly at 6.25%6.25\% annually. - B: $500\$ 500 semi-annually at 6.25%6.25\% semi-annually. Which is better? Show calculations.

See Solution

Problem 31467

Find the length of the curve x=tan(3y)x=\tan(3y) for π18yπ9\frac{\pi}{18} \leq y \leq \frac{\pi}{9}.

See Solution

Problem 31468

Find the area of the region between y=exy=e^{x}, y=2y=2, and x=1x=-1. Then, find volumes when this region is revolved around x=1x=-1 and y=1y=-1.

See Solution

Problem 31469

Find the integral of sec2(x)tan2(x)\sec ^{2}(x) \tan ^{2}(x) with respect to xx.

See Solution

Problem 31470

Find the volume of a solid with base under y=exy=e^{x}, x=1x=1, and square cross sections perpendicular to the xx-axis.

See Solution

Problem 31471

Calculate the area between the xx-axis and the curve y=x37x2+10xy=x^{3}-7 x^{2}+10 x.

See Solution

Problem 31472

Find the area between f(x)=sinxf(x)=\sin x and g(x)=sinxg(x)=-\sin x for 0xπ0 \leq x \leq \pi, volume when revolved about y=3y=3, and kk if volume is 8π8\pi.

See Solution

Problem 31473

Find fxzf_{xz} for f(x,y,z)=exyzf(x, y, z)=e^{xyz} at the point (1, -1, -1). Choices: a. ee, b. 0x0^{x}, c. e-e, d. None.

See Solution

Problem 31474

Find limits for the function f(x)=2xe2xf(x)=2 x e^{2 x}: a. limxf(x)=\lim _{x \rightarrow-\infty} f(x)=, b. limxf(x)=\lim _{x \rightarrow \infty} f(x)=.

See Solution

Problem 31475

Check if the function ff is continuous at x=2x=2, where f(x)=x24x2f(x)=\frac{x^{2}-4}{x-2} for x2x \neq 2 and f(2)=1f(2)=1.

See Solution

Problem 31476

Find the infinite limit: limx0(ln(x2)x2)\lim _{x \rightarrow 0}\left(\ln \left(x^{2}\right)-x^{-2}\right). Is it \infty or -\infty?

See Solution

Problem 31477

Find the integral (4xx3)dx\int(4x-x^{3})dx and evaluate 22(4x+x3)dx\int_{-2}^{2}(4x+x^{3})dx. Explain area under y=4xx3y=4x-x^{3}.

See Solution

Problem 31478

Find the volumes using the shell method for the region revolving around: a. xx-axis, b. y=1y=1, c. y=85y=\frac{8}{5}, d. y=25y=-\frac{2}{5}. Answer in terms of π\pi.

See Solution

Problem 31479

Evaluate the integral: secxdxln(secx+tanx)\int \frac{\sec x \, dx}{\sqrt{\ln (\sec x + \tan x)}}.

See Solution

Problem 31480

Find the critical points of the function y=x33x245x+6y=x^{3}-3 x^{2}-45 x+6. Which option is correct?

See Solution

Problem 31481

For the function described, find the limits: (a) limx1f(x)\lim _{x \rightarrow 1} f(x) and (b) limx3f(x)\lim _{x \rightarrow 3^{-}} f(x).

See Solution

Problem 31482

Find the x\mathrm{x}-values for relative minima of y=x33x272x+1y=x^{3}-3 x^{2}-72 x+1: a. 1 b. 6 c. -4 d. None e. 0

See Solution

Problem 31483

Determine the values of xx for the convergence of the series n=0cosn(x)7n\sum_{n=0}^{\infty} \frac{\cos ^{n}(x)}{7^{n}} and find its sum.

See Solution

Problem 31484

Determine the values of xx for convergence of the series n=0cosn(x)7n\sum_{n=0}^{\infty} \frac{\cos ^{n}(x)}{7^{n}} and find its sum.

See Solution

Problem 31485

Use the shell method to find the volume by revolving the region bounded by y=3xy=3x, y=0y=0, and x=2x=2 around various lines.

See Solution

Problem 31486

Find the relative maximum point of the function f(x)=x22x21f(x)=\frac{x^{2}-2}{x^{2}-1} using f(x)f'(x) and f(x)f''(x).

See Solution

Problem 31487

Find the total sales formula for a company with daily growth rate 10e0.02t10 e^{0.02 t} and initial sales of 800 items.

See Solution

Problem 31488

Find the derivative of the function f(x)=3(13)xf(x)=3\left(\frac{1}{3}\right)^{x}.

See Solution

Problem 31489

A firework launched at 128ft/s128 \mathrm{ft/s} with gravity 16ft/s2-16 \mathrm{ft/s}^2 reaches what maximum height? Options: 1,024ft1,024 \mathrm{ft}, 448ft448 \mathrm{ft}, 256ft256 \mathrm{ft}, 512ft512 \mathrm{ft}

See Solution

Problem 31490

Find the limit: limx4f(x)\lim _{x \rightarrow 4} f(x) given that 10x46f(x)x2+2x3010 x-46 \leq f(x) \leq x^{2}+2 x-30.

See Solution

Problem 31491

Find the volume of the solid formed by revolving the area between y=secxy=\sec x, y=2y=\sqrt{2}, x=0x=0, x=π4x=\frac{\pi}{4} around x=1x=-1.

See Solution

Problem 31492

Determine where the function f(x)=x22x21f(x)=\frac{x^{2}-2}{x^{2}-1} is concave down based on f=2(3x2+1)(x21)3f^{\prime \prime}=\frac{2\left(3 x^{2}+1\right)}{\left(x^{2}-1\right)^{3}}. Choose the correct interval.

See Solution

Problem 31493

Determine where the function f(x)=x2x1f(x)=\frac{x^{2}}{x-1} is concave up based on f=2(x1)3f^{\prime \prime}=\frac{2}{(x-1)^{3}}.

See Solution

Problem 31494

Calculate the area under the curve of f(x)={5, if x<15x2, if x1f(x)=\left\{\begin{array}{ll}5, & \text { if } x<1 \\ 5 x^{2}, & \text { if } x \geq 1\end{array}\right. from x=3x=-3 to x=3x=3.

See Solution

Problem 31495

Find the value of cc for f(x)=x2+xf(x)=x^{2}+x on [0,2][0,2] using the Mean Value Theorem. Options: 1, 2, 34\frac{3}{4}, 0, none, 32\frac{3}{2}.

See Solution

Problem 31496

Find the yy-coordinate on the ellipse 4x2+25y2=1004x^{2}+25y^{2}=100 where x=1x=1, then find the tangent line equation at that point.

See Solution

Problem 31497

Evaluate the limit: limx06x+255x\lim _{x \rightarrow 0} \frac{\sqrt{6x + 25} - 5}{x}

See Solution

Problem 31498

Find the limit as bb approaches 4 for the expression 1b14b4\frac{\frac{1}{b}-\frac{1}{4}}{b-4}.

See Solution

Problem 31499

Find the infinite limit: limx4x2+8xx28x+16\lim _{x \rightarrow 4} \frac{x^{2}+8 x}{x^{2}-8 x+16}

See Solution

Problem 31500

Find the average rate of change of f(x)=x2+10xf(x)=x^{2}+10x over [3,3+h][3,3+h] as an expression in terms of hh.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord