Calculus

Problem 32801

How long does it take for a penny to fall from a height of 93 meters? Options: 176.2 s176.2 \mathrm{~s}, 18.97 s18.97 \mathrm{~s}, 4.4 s4.4 \mathrm{~s}, 9.5 s9.5 \mathrm{~s}.

See Solution

Problem 32802

Find the derivative of the function f(x)=tan(x)(6sin(x)+7cos(x))f(x)=\tan (x)(6 \sin (x)+7 \cos (x)): f(x)=f^{\prime}(x)=

See Solution

Problem 32803

If limx4[f(x)+g(x)]=2\lim _{x \rightarrow-4}[f(x)+g(x)]=2 and limx4g(x)=13\lim _{x \rightarrow-4} g(x)=13, find limx46g(x)f(x)g(x)\lim _{x \rightarrow-4} \frac{6 g(x)}{f(x)-g(x)}.

See Solution

Problem 32804

Find the limits: limx1h(x)\lim_{x \rightarrow 1^{-}} h(x), limx1+h(x)\lim_{x \rightarrow 1^{+}} h(x), limx1h(x)\lim_{x \rightarrow 1} h(x), limx2h(x)\lim_{x \rightarrow 2^{-}} h(x), limx2+h(x)\lim_{x \rightarrow 2^{+}} h(x), limx2h(x)\lim_{x \rightarrow 2} h(x) for h(x)={1 for x<1x for 1x<23 for x2h(x)=\left\{\begin{array}{ll}1 & \text { for } x<1 \\ x & \text { for } 1 \leq x<2 \\ 3 & \text { for } x \geq 2\end{array}\right.

See Solution

Problem 32805

Find the values of xx where the tangents to y=(1+x2)3y=(1+x^{2})^{3} and y=3x2y=3x^{2} have equal slopes.

See Solution

Problem 32806

Find the tangent line equation for f(x)=x5x6f(x)=\frac{\sqrt{x}}{5x-6} at the point (3,f(3))(3, f(3)). y=y=

See Solution

Problem 32807

Find the second derivative f(π/4)f^{\prime \prime}(\pi / 4) for the function f(x)=6secxf(x)=6 \sec x.

See Solution

Problem 32808

Bestimmen Sie u(x)u(x) und v(x)v(x) und leiten Sie aba b für die Funktionen: a) f(x)=(2x3x)exf(x)=(2 x^{3}-x) e^{x}, b) f(x)=(x21)(2x2+5)f(x)=(x^{2}-1)(2 x^{2}+5), c) f(x)=(5x24)exf(x)=(5 x^{2}-4) e^{x}.

See Solution

Problem 32809

Find the average rate of change of h(x)=x2+8x+20h(x)=-x^{2}+8x+20 on the interval 0x50 \leq x \leq 5.

See Solution

Problem 32810

Find the derivative of f(x)=12x(sin(x)+cos(x))f(x)=12 x(\sin (x)+\cos (x)) and evaluate f(π6)f^{\prime}\left(-\frac{\pi}{6}\right).

See Solution

Problem 32811

Find the tangent line equation to the curve y=3xcosxy=3 x \cos x at the point (π,3π)(\pi, -3 \pi) in the form y=mx+by=m x+b.

See Solution

Problem 32812

Prove that f(x)=xf(x)=\sqrt{x} is uniformly continuous but not Lipschitz continuous. Also, show that Lipschitz functions compose to be Lipschitz.

See Solution

Problem 32813

Max untersucht die Ableitung von f(x)=x6f(x)=x^{6} als Produkt. Vervollständigen Sie die Tabelle und vermuten Sie die Ableitungsformel.

See Solution

Problem 32814

Find the tangent line to y=3xcosxy=3 x \cos x at (π,3π)(\pi,-3 \pi) in the form y=mx+by=m x+b, with m=m= and b=b=.

See Solution

Problem 32815

Differentiate the function f(x)=4e2xf(x)=4 e^{-2 x} using the chain rule to find f(x)f'(x).

See Solution

Problem 32816

A bullet is shot straight up at 140 m/s. How long will it stay in the air? Use t=2vgt = \frac{2v}{g}, where g9.8 m/s2g \approx 9.8 \mathrm{~m/s^2}.

See Solution

Problem 32817

Lara hat die Ableitung von f(x)=(2x)3f(x)=(2-x)^{3} als f(x)=3(2x)2f'(x)=3(2-x)^{2} gefunden. Erklären Sie, überprüfen Sie und vermuten Sie eine Ableitungsformel.

See Solution

Problem 32818

Determine the convergence of n=1n+1n2+1\sum_{n=1}^{\infty} \frac{\sqrt{n+1}}{n^{2}+1} using comparison tests.

See Solution

Problem 32819

Determine if the series n=1(1n2+1)2\sum_{n=1}^{\infty}\left(\frac{1}{n^{2}}+1\right)^{2} converges or diverges.

See Solution

Problem 32820

Übungsaufgaben:
1. Ergänzen Sie die Ableitungen: a) f(x)=13e3x2+1f(x)=\frac{1}{3} e^{3 x^{2}+1}, f(x)=f^{\prime}(x)= ? b) g(x)=2e5x3g(x)=2 e^{5 x-3}, g(x)=g^{\prime}(x)= ? c) f(x)=(0,5x25x)4f(x)=(0,5 x^{2}-5 x)^{4}, f(x)=f^{\prime}(x)= ?
2. Leiten Sie ab und vereinfachen: a) f(x)=8e1xf(x)=8 e^{1-x} b) f(x)=(3x2)3f(x)=(3 x-2)^{3} c) f(x)=2e0,5x+1f(x)=2 e^{0,5 x+1}

See Solution

Problem 32821

Calculate x=0Lxψn(x)2dx\langle x \rangle = \int_{0}^{L} x \left|\psi_n(x)\right|^2 \,dx for ψn(x)=2Lsin(nπxL)\psi_n(x) = \sqrt{\frac{2}{L}}\sin\left(\frac{n\pi x}{L}\right).

See Solution

Problem 32822

Find the limit as xx approaches 0 for sin(9x)x\frac{\sin(9x)}{x} when xx is in degrees. Answer to 0.01 accuracy.

See Solution

Problem 32823

Finde die Gleichung der Normalen an den Graphen von ff in den Punkten A für die Funktionen a) bis d).

See Solution

Problem 32824

Find critical values of f(x)=(x1)3f(x)=(x-1)^{3} on [0,4][0,4] and determine if they are max, min, or neither. Analyze increasing/decreasing intervals.

See Solution

Problem 32825

Find the integral of sin(ln(x))x\frac{\sin(\ln(x))}{x} with respect to xx.

See Solution

Problem 32826

Find f(2)f^{\prime \prime}(2) for the function f(x)=x+16xf(x)=x+\frac{16}{x}. Options: a. 4, b. 9, c. -3, d. -4.

See Solution

Problem 32828

Calculate the limit: limx0+tg(x)ln(x)\lim _{x \rightarrow 0^{+}} \operatorname{tg}(x) \ln (x).

See Solution

Problem 32829

Find the limit as x approaches 0: limx0x+4\lim _{x \rightarrow 0} \sqrt{x+4}.

See Solution

Problem 32830

Find the tangent line equation for f(x)=x5x6f(x)=\frac{\sqrt{x}}{5 x-6} at the point (3,f(3))(3, f(3)). y=y=

See Solution

Problem 32831

Find the limit: limx0x+66x\lim _{x \rightarrow 0} \frac{\sqrt{x+6}-\sqrt{6}}{x}.

See Solution

Problem 32832

Find the max and min of f(x)=xarcsin(x)+1x2f(x)=x \arcsin (x)+\sqrt{1-x^{2}} on the interval [1,1][-1,1].

See Solution

Problem 32833

Evaluate the limit: limt0sin9t8t\lim _{t \rightarrow 0} \frac{\sin 9 t}{8 t}.

See Solution

Problem 32834

Finde die Ableitung von f(x)=exf(x) = e^{\sqrt{x}}.

See Solution

Problem 32835

Solve for zz in the equation z102xdx=19\int_{z}^{10} 2 x d x=19.

See Solution

Problem 32836

A boat is 3 feet from the dock, and the rope is pulled at 2 ft/s. How fast is the distance to the dock decreasing?

See Solution

Problem 32837

Find the tangent line equation for f(x)=x5x6f(x)=\frac{\sqrt{x}}{5 x-6} at the point (3,f(3))(3, f(3)). y=y=

See Solution

Problem 32838

Calculate the integral 12x2dx\int_{1}^{\infty} \frac{2}{x^{2}} d x for each value of tt.

See Solution

Problem 32839

Calculate the integral: 02z0.4dx=8\int_{0}^{2 z} 0.4 \, dx = 8.

See Solution

Problem 32840

A particle's velocity is v(t)=1+2sin(t22)v(t)=1+2 \sin \left(\frac{t^{2}}{2}\right) and position x=2x=2 at t=4t=4.
(a) Is it speeding up or slowing down at t=4t=4?
(b) Find times 0<t<30<t<3 when the particle changes direction.

See Solution

Problem 32841

Evaluate the integral: 096log10(x+1)x+1dx\int_{0}^{9} \frac{6 \log _{10}(x+1)}{x+1} d x.

See Solution

Problem 32842

Find the derivative of y=ln(ln(lnx))y=\ln (\ln (\ln x)).

See Solution

Problem 32843

Find the linearization of y=f(x)=18xy=f(x)=\frac{1}{8x} at x=8x=8. Provide exact coefficients. L(x)=L(x)=

See Solution

Problem 32844

How fast is Butch's distance from the origin changing at (8,15)(8,15) if dxdt=2\frac{d x}{d t}=-2 m/sec and dydt=3\frac{d y}{d t}=-3 m/sec?

See Solution

Problem 32845

Find the derivative of the function f(x)=x3+2x2f(x)=\frac{x^{3}+2}{x^{2}}. What is f(x)f^{\prime}(x)?

See Solution

Problem 32846

Find the tangent line equation for y=2x3+3xy=2 x^{3}+3 x at x=1x=1 using the derivative definition.

See Solution

Problem 32847

Evaluate the integral 1dxx2+3\int_{1}^{\infty} \frac{d x}{\sqrt{x^{2}+3}} and determine its convergence or divergence.

See Solution

Problem 32848

Find the average position x\langle x \rangle of an electron in a 1-D box using ψn(x)=2Lsin(nπxL)\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right).

See Solution

Problem 32849

Finde die Punkte, wo die Tangente der Funktion ff parallel zur Geraden y=2x3y=2x-3 ist. a) f(x)=4x3xf(x)=4x^{3}-x b) f(x)=13x3+12x210xf(x)=\frac{1}{3}x^{3}+\frac{1}{2}x^{2}-10x

See Solution

Problem 32850

How fast is Butch's distance from the origin changing at (12,35)(12, 35) if dxdt=2 m/s\frac{d x}{d t}=-2 \mathrm{~m/s} and dydt=3 m/s\frac{d y}{d t}=-3 \mathrm{~m/s}?

See Solution

Problem 32851

Find the linearization of f(x)=18xf(x)=\frac{1}{8x} at x=8x=8: L(x)=132x512L(x)=\frac{1}{32}-\frac{x}{512}. What is the area of the triangle formed?

See Solution

Problem 32852

Find the derivative of the function f(x)=x3+2x2f(x)=\frac{x^{3}+2}{x^{2}}. What is f(x)=f^{\prime}(x)=?

See Solution

Problem 32853

Approximate 0π5sinxdx\int_{0}^{\pi} 5 \sin x \, dx using 4 equal intervals.

See Solution

Problem 32854

Solve the initial value problem: dydt=3e3tsin(e3t27)\frac{dy}{dt}=3 e^{3t} \sin(e^{3t}-27), with y(ln3)=0y(\ln 3)=0.

See Solution

Problem 32855

Find the limit as xx approaches infinity: limx6xln(250x+ex)\lim _{x \rightarrow \infty} \frac{6 x}{\ln \left(250 x+e^{x}\right)}.

See Solution

Problem 32856

How fast is Butch's distance from the origin changing at (7,24)(7,24) if dxdt=5\frac{d x}{d t}=-5 m/s and dydt=6\frac{d y}{d t}=-6 m/s?

See Solution

Problem 32857

Find dydx\frac{d y}{d x} using implicit differentiation for the equation x23+y23=1\sqrt[3]{x^{2}}+\sqrt[3]{y^{2}}=1.

See Solution

Problem 32858

Snødybde i fjellområde:
1. Tegn grafen til s(x)=0.017x3+2.0xs(x)=-0.017 x^{3}+2.0 x for 0x110 \leq x \leq 11.
2. Finn s(2)s(2), maksimum dybde, når s(x)=3s(x)=3, og gjennomsnittlig endring fra kl. 06:00 til 10:00.
3. Beregn momentan vekst for kl. 03:00 og 09:00.

Bruk GeoGebra og lever inn som Word-dokument innen 24.1 kl. 22:00.

See Solution

Problem 32859

Show that for all x>0x>0, the inequalities 1x22cos(x)1-\frac{x^{2}}{2} \leq \cos(x) and xx36sin(x)x-\frac{x^{3}}{6} \leq \sin(x) hold. Also, find max and min of f(x)=xarcsin(x)+1x2f(x)=x \arcsin(x)+\sqrt{1-x^{2}} on [1,1][-1,1].

See Solution

Problem 32860

Finde die Extrempunkte der Funktion f(x)=xexf(x)=x \cdot e^{-x}.

See Solution

Problem 32861

Finde die Extrempunkte der Funktionen: a) f(x)=2xexf(x)=2 x-e^{x}, b) f(x)=xexf(x)=x \cdot e^{x}, c) f(x)=xexf(x)=x \cdot e^{-x}, d) f(x)=x2e2xf(x)=x^{2} \cdot e^{2 x}, e) f(x)=e3x6xf(x)=e^{3 x}-6 x, f) f(x)=(x23)exf(x)=(x^{2}-3) \cdot e^{x}.

See Solution

Problem 32862

Bestimmen Sie die Steigung von ff an x0x_{0} für die Funktionen a) bis j) mit den angegebenen x0x_{0}-Werten.

See Solution

Problem 32863

Berechne die Fläche zwischen Gf=127x343xG_f = \frac{1}{27}x^3 - \frac{4}{3}x und t=83x16t = \frac{8}{3}x - 16 im Intervall [12,6][-12, 6]. Wie viele neue Graphen entstehen durch drei Transformationen?

See Solution

Problem 32864

Find the derivative of the function F(t)=t(lnt)tF(t)=t(\ln t)-t. What is F(t)F^{\prime}(t)? F(t)= F^{\prime}(t)=

See Solution

Problem 32865

Bestimme die Steigung von ff an x0x_{0} für: a) f(x)=3sin(x)f(x)=3 \cdot \sin (x) bei x0=0x_{0}=0; b) f(x)=2cos(x)f(x)=2-\cos (x) bei x0=π4x_{0}=\frac{\pi}{4}.

See Solution

Problem 32866

Evaluate the integral 29ln(t)dt=\int_{2}^{9} \ln (t) \, dt = \square using the Fundamental Theorem of Calculus.

See Solution

Problem 32867

Find the average value favef_{\text{ave}} of f(x)=142xf(x)=14-|2x| from -7 to 7 and points cc where f(c)=favef(c)=f_{\text{ave}}.

See Solution

Problem 32868

Evaluate the integral 47(ddt4+2t4)dt\int_{4}^{7}\left(\frac{d}{d t} \sqrt{4+2 t^{4}}\right) d t using the Fundamental Theorem of Calculus.

See Solution

Problem 32869

Evaluate the integral 551x3dx\int_{-5}^{5} \frac{1}{x^{3}} d x using the Fundamental Theorem of Calculus. If it doesn't exist, answer "DNE".

See Solution

Problem 32870

Bestimmen Sie die Menge an Plastikmüll p(t)=0,2te0,0625t+5p(t)=0,2 t e^{-0,0625 t}+5 in Mio. Tonnen und prüfen Sie p(0)p(0), p(10)p(5)p(10)-p(5) und Ableitungen.

See Solution

Problem 32871

Find f(e)f^{\prime}(e) if f(x)=xlnxf(x)=x^{\ln x}. Options: e, 2, 0, 1.

See Solution

Problem 32872

Determine if the series n=1an\sum_{n=1} a_{n} with a1=4a_{1}=4 and an+1=nnana_{n+1}=\sqrt[n]{n} a_{n} converges or diverges.

See Solution

Problem 32873

Sketch the area between y=x39y=\frac{x^{3}}{9} and the x-axis over [4,3][-4,-3]. Find the area.  Area = \text { Area }=

See Solution

Problem 32874

Find the speed and acceleration of a bug on a disk with radius 0.1 m0.1 \mathrm{~m} spinning at 10rad/sec10 \mathrm{rad/sec}.

See Solution

Problem 32875

Find f(e)f^{\prime}(e) for the function f(x)=xlnxf(x)=x^{\ln x}. Options: 2, 0, ee, 1.

See Solution

Problem 32876

Find the average angular speed of Earth around the sun in rad/s\mathrm{rad} / \mathrm{s}, given it orbits in 365.25 days.

See Solution

Problem 32877

Evaluate the integral from -7 to 2: 72(3x+8)dx\int_{-7}^{2}(3 x+8) d x. Use area formulas for help.

See Solution

Problem 32878

Evaluate the integral ππf(x)dx\int_{-\pi}^{\pi} f(x) dx where f(x)={4xif πx0sin(x)if 0<xπf(x) = \begin{cases} -4x & \text{if } -\pi \leq x \leq 0 \\ \sin(x) & \text{if } 0 < x \leq \pi \end{cases}. If it doesn't exist, write "DNE".

See Solution

Problem 32879

Find f(7)f(7) given f(1)=12f(1)=12, ff^{\prime} is continuous, and 17f(t)dt=30\int_{1}^{7} f^{\prime}(t) dt=30.

See Solution

Problem 32880

Find the function f(x)f(x) where f(x)=tan(x)xf'(x)=\frac{\tan (x)}{x} and f(1)=3f(1)=3.

See Solution

Problem 32881

Find the minimum power needed for an escalator moving 20 people (60 kg60 \mathrm{~kg} each) per minute, 5 m5 \mathrm{~m} high.

See Solution

Problem 32882

Berechnen Sie die folgenden Integrale: a) 02(3x2ex)dx\int_{0}^{2}(3 x^{2}-e^{x}) d x b) 14(x1)dx\int_{1}^{4}(\sqrt{x}-1) d x c) 1e(1x+1x2)dx\int_{1}^{e}(\frac{1}{x}+\frac{1}{x^{2}}) d x d) 0π(sin(x)+cos(x))dx\int_{0}^{\pi}(\sin (x)+\cos (x)) d x e) 0πsin(3xπ)dx\int_{0}^{\pi} \sin (3 x-\pi) d x f) 1115e12xdx\int_{-1}^{1} \frac{1}{5} e^{\frac{1}{2} x} d x g) 3412(x+1)dx\int_{3}^{4} \frac{1}{2(x+1)} d x h) 1432x1dx\int_{1}^{4} \frac{3}{2 x-1} d x

See Solution

Problem 32883

Berechnen Sie die folgenden Integrale: a) 02(3x2ex)dx\int_{0}^{2}(3 x^{2}-e^{x}) d x b) 14(x1)dx\int_{1}^{4}(\sqrt{x}-1) d x c) 1e(1x+1x2)dx\int_{1}^{e}(\frac{1}{x}+\frac{1}{x^{2}}) d x d) 0π(sin(x)+cos(x))dx\int_{0}^{\pi}(\sin (x)+\cos (x)) d x

See Solution

Problem 32884

Bestimmen Sie die Stammfunktion F\mathrm{F} von f\mathrm{f} mit F(0)=1\mathrm{F}(0)=1 für die Funktionen a) f(x)=(x+2)2f(x)=(x+2)^{2}, b) f(x)=1x+1f(x)=\frac{1}{x+1}, c) f(t)=2e0,5tf(t)=2 e^{0,5 t}, d) f(t)=cos(5t)f(t)=\cos (5 t).

See Solution

Problem 32885

Determine the inflection points of the function f(x)=3x3+3x236xf(x)=3x^{3}+3x^{2}-36x.

See Solution

Problem 32886

حدد الفترات التي تكون فيها الدالة f(x)=xlnxxf(x) = x \ln x - x متزايدة لـ x>0x > 0.

See Solution

Problem 32887

Berechne die Ableitung von g(x)=104e0,22xg(x) = 104 \cdot e^{0,22x} am Punkt PP.

See Solution

Problem 32888

Find F(x)F^{\prime}(x) for F(x)=x82cos(t2)dtF(x)=\int_{x}^{8}-2 \cos(t^{2}) dt using the Fundamental Theorem of Calculus. F(x)=F^{\prime}(x)=

See Solution

Problem 32889

Find the absolute minimum of the function f(x)=x33x2+1f(x)=x^{3}-3 x^{2}+1 on the interval [1,1][-1,1].

See Solution

Problem 32890

Find f(e)f^{\prime}(e) if f(x)=xlnxf(x)=x^{\ln x}. Choices: 2, 0, e, 1.

See Solution

Problem 32891

e) 01sin(3xπ)dx\int_{0}^{1} \sin(3x - \pi) \, dx f) 1115e12xdx\int_{-1}^{1} \frac{1}{5} e^{\frac{1}{2} x} \, dx g) 3412(x+1)dx\int_{3}^{4} \frac{1}{2(x+1)} \, dx h) 1432x1dx\int_{1}^{4} \frac{3}{2x - 1} \, dx 5 Find an integral-free term for the integral function J1J_{-1} of ff. a) f(x)=(5x+3)3f(x)=(5x+3)^{3} b) f(x)=2e2x+2f(x)=2 e^{2x+2} c) f(x)=13+2x,x>23f(x)=\frac{1}{3+2x}, x>-\frac{2}{3} d) f(x)=3cos(πx)f(x)=3 \cdot \cos(\pi x) 6 Correct the errors in finding an antiderivative.

See Solution

Problem 32892

Find the derivative of the function exexex+ex\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}.

See Solution

Problem 32893

Calculate the integral from 3 to 9 of 1x(lnx)2\frac{1}{x(\ln x)^{2}} dx.

See Solution

Problem 32894

Evaluate the integral π/3π/6cosxxsinxxcosxdx\int_{\pi / 3}^{\pi / 6} \frac{\cos x - x \sin x}{x \cos x} \, dx.

See Solution

Problem 32895

Find the intervals where the function f(x)=x24x+4f(x)=\frac{x^{2}}{4 x+4} is concave up and down.

See Solution

Problem 32896

Find the derivative of y=3xy=3^{x}. Options: y=3xln3y'=\frac{3^{x}}{\ln 3}, y=3xlnxy'=3^{x} \ln x, None, y=3xlny'=3^{x} \ln, y=3xln3y'=3^{-x} \ln 3.

See Solution

Problem 32897

Find the slope function S(x)S(x) for these functions: 44. f(x)=3f(x)=3, 45. f(x)=2x+1f(x)=2x+1, 46. f(x)=xf(x)=|x|.

See Solution

Problem 32898

Find the normal boiling point of chloroform where ΔG=0\Delta \mathrm{G}=0, given ΔH=31.4 kJ/mol\Delta \mathrm{H}=31.4 \mathrm{~kJ/mol} and S=93.7 J/KmolS=93.7 \mathrm{~J/K \cdot mol}. Options: 335 K, 567 K, 95.57 K, 126 K.

See Solution

Problem 32899

Find the sum of the series n=1(9n29(n+1)2)\sum_{n=1}^{\infty}\left(\frac{9}{n^{2}}-\frac{9}{(n+1)^{2}}\right). Options: a. 9 b. 0 c. Diverges d. 3

See Solution

Problem 32900

Find the sum: n=11(2)n3n\sum_{n=1}^{\infty} \frac{-1-(-2)^{n}}{3^{n}}. Choose from: a. 0.01, b. 1.1, c. 0.1, d. -0.1

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord