Calculus

Problem 25701

Find the weight function W(h)W(h) given dWdh=0.0012h2\frac{d W}{d h}=0.0012 h^{2} and W(80)=224.8W(80)=224.8. What is W(69)W(69)?

See Solution

Problem 25702

Find the derivative of f(x)=x2(5t2+arccos(t))dtf(x)=\int_{x}^{-2}(5 t^{2}+\arccos (t)) dt.

See Solution

Problem 25703

Apply the Mean Value Theorem to f(x)=(x2)2(x3)f(x)=(x-2)^{2}(x-3) on [1,4][1,4]. Find cc such that f(c)=f^{\prime}(c)= average rate of change.

See Solution

Problem 25704

Find the derivative f(x)f^{\prime}(x) and second derivative f(x)f^{\prime \prime}(x) for f(x)=x35xf(x)=x^{3}-5x. Graph them together.

See Solution

Problem 25705

Use implicit differentiation on y3y2+y2=xy^{3}-y^{2}+y-2=x to find dydx\frac{d y}{d x}.

See Solution

Problem 25706

Find the domain of f(x)=x+1x2f(x)=\frac{x+1}{x^{2}}, limits at the ends, and intercepts. Domain: (-\infty, 0) U (0, \infty); Limits: ?, Intercepts: (-1, 0).

See Solution

Problem 25707

Find the average slope of f(x)=1xf(x)=\frac{1}{x} on [4,9][4,9]. Then, find cc in (4,9)(4,9) where f(c)f^{\prime}(c) equals this slope.

See Solution

Problem 25708

Graph the function f(x)=x3+3x29x8f(x)=x^{3}+3 x^{2}-9 x-8 and identify all relative extrema and inflection points.

See Solution

Problem 25709

Approximate 4.654.6^{5} using the tangent line of f(x)=x5f(x)=x^{5} at x=5x=5. Find mm and bb for y=mx+by=m x+b.

See Solution

Problem 25710

Find the tangent line equation for y5+2xy2+3x2=4y^{5}+2xy^{2}+3x^{2}=4 at (1,1)(1,-1) in the form y=mx+by=mx+b.

See Solution

Problem 25711

Find the average slope of f(x)=1xf(x)=\frac{1}{x} on [5,10][5,10] and values of cc in (5,10)(5,10) where f(c)f'(c) equals this slope.

See Solution

Problem 25712

Find the population N(9)N(9) of a city after 9 years if dNdt=400+300t\frac{d N}{d t}=400+300 \sqrt{t} and N(0)=2000N(0)=2000.

See Solution

Problem 25713

Find critical numbers, increasing/decreasing regions, and classify extrema for: A. f(x)=(x+2)x(x4)f(x)=(x+2)x(x-4) B. f(x)=x24x5x2f(x)=\frac{x^{2}-4x-5}{x-2}.

See Solution

Problem 25714

Calculate the integral of e4x4dxe^{4x} \cdot 4 \, dx and verify by differentiation. Result: e4x(4)dx=\int e^{4x}(4) \, dx = \square

See Solution

Problem 25715

Gegeben ist die Funktion fa(x)=2x24ax+6a4f_{a}(x) = 2x^{2} - 4ax + 6a - 4. Bestimme Ableitungen, Extrempunkte und zeichne den Graphen für a=1a=1 und a=0,6a=0,6 im Intervall [3;3][-3; 3].

See Solution

Problem 25716

Evaluate the integral from 3 to 6 of the function 9x28x+69x^{2} - 8x + 6.

See Solution

Problem 25717

Find the critical numbers of the function f(z)=4z+410z2+10z+10f(z)=\frac{4 z+4}{10 z^{2}+10 z+10} in increasing order. Use N\mathrm{N} for unused blanks.

See Solution

Problem 25718

Evaluate the integral 16xx6(6x)dx\frac{1}{6-x} \int_{x}^{6}(6x) dx and solve 1300311(t)dt\frac{1}{3-0} \int_{0}^{3} 11(t) dt.

See Solution

Problem 25719

Find these limits: (a) limx5+5x28+6x=\lim _{x \rightarrow \infty} \frac{\sqrt{5+5 x^{2}}}{8+6 x}=, (b) limx5+5x28+6x=\lim _{x \rightarrow-\infty} \frac{\sqrt{5+5 x^{2}}}{8+6 x}=.

See Solution

Problem 25720

Find the critical numbers of f(θ)=12cos(θ)+6sin2(θ)f(\theta)=12 \cos (\theta)+6 \sin ^{2}(\theta) for πθπ-\pi \leq \theta \leq \pi. Use N\mathrm{N} for blanks.

See Solution

Problem 25721

Evaluate the limits and value of the piecewise function g(x)g(x) at specific points: x=1x=1 and x=2x=2.

See Solution

Problem 25722

Trouvez la dérivée de la fonction g(x)=1x+x4g(x) = \frac{1}{\sqrt{x}} + \sqrt[4]{x}.

See Solution

Problem 25723

Find the derivative of the function f(x)=5x2+9xln(x)+1f(x)=5 x^{2}+9 x \ln (x)+1. What is f(x)f^{\prime}(x)?

See Solution

Problem 25724

Evaluate the integral or state "IMPOSSIBLE": x2x383dx\int x^{2} \sqrt[3]{x^{3}-8} d x. Use CC for the constant.

See Solution

Problem 25725

Find how dV/dtdV/dt relates to dr/dtdr/dt (with constant hh), dh/dtdh/dt (with constant rr), and both dh/dtdh/dt and dr/dtdr/dt.

See Solution

Problem 25726

Find the intervals where the function f(x)=x+1x2f(x)=\frac{x+1}{x^{2}} is increasing or decreasing based on its derivatives.

See Solution

Problem 25727

Find the limit: limx0x0t2+4dtx\lim _{x \rightarrow 0} \frac{\int_{x}^{0} \sqrt{t^{2}+4} d t}{x}. What is it equal to?

See Solution

Problem 25728

Find where f(x)=8x8xf(x)=8 \sqrt{x}-8 x is increasing/decreasing and the xx-coordinates of relative maxima/minima.

See Solution

Problem 25729

Find the intervals where the function f(x)=x+1x2f(x)=\frac{x+1}{x^{2}} is concave up and down using f(x)f^{\prime}(x) and f(x)f^{\prime \prime}(x).

See Solution

Problem 25730

Find the absolute min and max of f(x)=8x324xf(x)=8 x^{3}-24 x on the interval [0,5][0,5].

See Solution

Problem 25731

Gegeben ist fa(x)=2x24ax+6a4,5f_{a}(x)=2 x^{2}-4 a x+6 a-4,5. Bestimmen Sie Ableitungen, Steigung bei x=0x=0, Punkt S(1,5/0)S(1,5/0), Extrempunkte und aa für Extrempunkt auf xx-Achse.

See Solution

Problem 25732

Find the value of the integral 1f(xm)xm1dx\int_{1}^{\infty} f\left(x^{m}\right) x^{m-1} d x given F(1)=4F(1)=-4, F(0)=1F(0)=1, limxF(x)=\lim_{x \rightarrow \infty} F(x)=\infty, and m<0m<0. Options: 5m\frac{5}{m}, 4m\frac{4}{m}, 0, diverges, 5.

See Solution

Problem 25733

Calculate the integral 1πf(x)dx\int_{-1}^{\pi} f(x) dx for the piecewise function f(x)f(x) defined as f(x)=x2f(x) = -x^2 for x0x \leq 0 and f(x)=sinx+Cf(x) = -\sin x + C for x>0x > 0.

See Solution

Problem 25734

Find the concavity and inflection points for f(x)=2x33x212x+5f(x)=2 x^{3}-3 x^{2}-12 x+5 and g(x)=18(x+2)2(x4)2g(x)=-\frac{1}{8}(x+2)^{2}(x-4)^{2}.

See Solution

Problem 25735

Find the derivative of sinxcosxetdt\int_{\sin x}^{\cos x} e^{t} dt. Choose from: esin(x)+ecos(x)e^{\sin (x)}+e^{\cos (x)}, cos(x)esin(x)+sin(x)ecos(x)\cos (x) e^{\sin (x)}+\sin (x) e^{\cos (x)}, cos(x)esin(x)sin(x)ecos(x)-\cos (x) e^{\sin (x)}-\sin (x) e^{\cos (x)}, or ecos(x)esin(x)e^{\cos (x)}-e^{\sin (x)}.

See Solution

Problem 25736

Gegeben ist die Funktion fa(x)=2x24ax+6a4,5f_{a}(x)=2 x^{2}-4 a x+6 a-4,5. Finde die 1. und 2. Ableitung und die Steigung bei x=0x=0.

See Solution

Problem 25737

Given xy=3x y=-3 and dydt=3\frac{d y}{d t}=3, find dxdt\frac{d x}{d t} when x=1x=1. What is dxdt\frac{d x}{d t}?

See Solution

Problem 25738

Find dPdt\frac{d P}{d t} for b=1.4,P=7kPa,V=60cm2b=1.4, P=7 \mathrm{kPa}, V=60 \mathrm{cm}^{2}, dVdt=30cm3/min\frac{d V}{d t}=30 \mathrm{cm}^{3}/\mathrm{min}. dPdt=kPa/min\frac{d P}{d t}=\square \mathrm{kPa}/\mathrm{min}

See Solution

Problem 25739

Analyze an energy diagram of two molecules.
1. At which separation is the attractive force greatest?
2. Which separation is stable equilibrium?

See Solution

Problem 25740

Let ff be a continuous function on (0,)(0, \infty) with limx0+f(x)=\lim _{x \rightarrow 0^{+}} f(x)=\infty and limxf(x)=0\lim _{x \rightarrow \infty} f(x)=0. If g(x)f(x)g(x) \geq f(x), which statement is always TRUE?

See Solution

Problem 25741

A balloon inflates at 10.5 cm3/s10.5 \mathrm{~cm}^{3}/\mathrm{s}. Find the radius growth rate when the radius is 1 cm1 \mathrm{~cm}, 10 cm10 \mathrm{~cm}, and 100 cm100 \mathrm{~cm}.

See Solution

Problem 25742

Gegeben ist die Funktion fa(x)=2x24ax+6a4,5f_{a}(x)=2 x^{2}-4 a x+6 a-4,5. Bestimme die Extrempunkte in Abhängigkeit von aa und den Wert für aa, wenn der Extrempunkt auf der xx-Achse liegt.

See Solution

Problem 25743

Which statement is TRUE by the Comparison Test? Consider the integrals and their convergence properties.

See Solution

Problem 25744

Find the domain of f(x)=x+1x2f(x)=\frac{x+1}{x^{2}}, limits at domain ends, and intercepts (x,y)(x, y).

See Solution

Problem 25745

Find the volume increase rate in cm3/sec\mathrm{cm}^{3} / \mathrm{sec} for a sphere with radius 3 cm3 \mathrm{~cm} and rate 3 cm/sec3 \mathrm{~cm/sec}.

See Solution

Problem 25746

Find the rate of area increase for a rectangle with length 40 cm40 \mathrm{~cm}, width 20 cm20 \mathrm{~cm}, length rate 6 cm/s6 \mathrm{~cm/s}, and width rate 4 cm/s4 \mathrm{~cm/s}. Answer in cm2/s\mathrm{cm}^{2} / \mathrm{s}.

See Solution

Problem 25747

Find the marginal revenue equations for the revenue function R(x,y)=70x+120y2x24y2xyR(x, y)=70 x+120 y-2 x^{2}-4 y^{2}-x y.

See Solution

Problem 25748

Find the marginal revenue equations for R(x,y)=70x+120y2x24y2xyR(x, y)=70x+120y-2x^2-4y^2-xy. Set Rx=0R_x=0 and Ry=0R_y=0 to maximize revenue.

See Solution

Problem 25749

Find the partial derivatives of the function f(x,y)=6x25xy33y4f(x, y)=-6 x^{2}-5 x y^{3}-3 y^{4}: fx(x,y)=f_{x}(x, y)= and fy(x,y)=f_{y}(x, y)= .

See Solution

Problem 25750

Find the second partial derivatives of the function f(x,y)=4x32xy2+5y6f(x, y)=4 x^{3}-2 x y^{2}+5 y^{6}: fxx(x,y)f_{x x}(x, y) and fxy(x,y)f_{x y}(x, y).

See Solution

Problem 25751

Find the maximum revenue from the function R(x)=80x0.2x2R(x)=80 x-0.2 x^{2} and the units xx needed for it.

See Solution

Problem 25752

Find the time tt (in min) when the drug concentration C(t)=0.06t0.0002t2C(t)=0.06 t-0.0002 t^{2} is maximized and its value.

See Solution

Problem 25753

A company's revenue is R(q)=q3+320q2R(q)=-q^{3}+320 q^{2} and cost is C(q)=170+14qC(q)=170+14 q.
A) Find the marginal profit function MP(q)M P(q). B) Determine the quantity (in hundreds) to maximize profits.

See Solution

Problem 25754

Evaluate the limits and value of the piecewise function g(x)g(x) at specific points. Sketch the graph of gg.

See Solution

Problem 25755

Find the total cost for producing the first 25 units given the marginal cost function 9x\frac{9}{\sqrt{x}}. Total cost: \$

See Solution

Problem 25756

Bestimmen Sie die Extrem- und Wendepunkte der Funktion f(x)=x(ln(x))2f(x)=x \cdot(\ln (x))^{2}.

See Solution

Problem 25757

Evaluate the integral: x210+x3dx\int x^{2} \sqrt{10+x^{3}} \, dx

See Solution

Problem 25758

Given f(x)=3x43exf(x)=3 x^{4}-3 e^{x}, find f(x)f'(x) and f(5)f'(5), then find f(x)f''(x) and f(5)f''(5).

See Solution

Problem 25759

Find the total cost for producing 100 units, given the marginal cost MC(x)=x1/2+4M C(x)=x^{-1/2}+4. Round to the nearest dollar.

See Solution

Problem 25760

Evaluate the integral from 1 to 7 of 4x2+9x\frac{4 x^{2}+9}{\sqrt{x}} dx.

See Solution

Problem 25761

Solve the equation dxdt=6x\frac{d x}{d t}=\frac{6}{x} with initial condition x(0)=8x(0)=8 to find x(t)=x(t)=.

See Solution

Problem 25762

Evaluate the integral: 2dxxln(4x)\int \frac{2 d x}{x \ln (4 x)}.

See Solution

Problem 25763

Find the first derivative of g(x)=4x3+54x2+240xg(x)=4 x^{3}+54 x^{2}+240 x, then determine g(x)g^{\prime \prime}(x) and g(5)g^{\prime \prime}(-5). Is it concave up or down? Local minimum or maximum at x=5x=-5?

See Solution

Problem 25764

Find the slope of the tangent line to the curve 3x2xy3y3=453 x^{2}-x y-3 y^{3}=-45 at the point (3,3)(-3,3).

See Solution

Problem 25765

Finde die Punkte, wo die Tangente von ff einen Steigungswinkel von 21,8\% hat. Funktionen: a) f(x)=5x2f(x)=5 x^{2}, b) f(x)=40xf(x)=-\frac{40}{x}, c) f(x)=56x3f(x)=\frac{5}{6} x^{3}, d) f(x)=0,15x20,2xf(x)=0,15 x^{2}-0,2 x.

See Solution

Problem 25766

Find the rate of change of the volume V=13π(22)hV=\frac{1}{3} \pi (2^{2}) h when h=10h=10 and dh/dt=3dh/dt=3 inches/sec.

See Solution

Problem 25767

Compute the integral of the derivative from x=3x=3 to x=5x=5: 35f(x)dx\int_{3}^{5} f^{\prime}(x) d x. Choices: -4, -1, 2, 4.

See Solution

Problem 25768

Evaluate the integral from 1.7 to 5.8 of (0.2e0.2A+5A)dA(0.2 e^{-0.2 A} + \frac{5}{A}) dA. Round to three decimal places.

See Solution

Problem 25769

Find the indefinite integral ln(x)3xdx\int \frac{\ln (x)}{3 x} d x using the substitution u=ln(x)u=\ln (x). What does it transform into?

See Solution

Problem 25770

Find the limit definition of f(4)f^{\prime}(4) for f(x)=3x2cscxf(x)=3 x^{2}-\csc x. No need to simplify or evaluate.

See Solution

Problem 25771

Find the slope of the tangent line to the curve x2+2xy+3y3=208-x^{2}+2xy+3y^{3}=208 at the point (4,4)(4,4).

See Solution

Problem 25772

Eine Firma modelliert Verkaufszahlen eines Smartphones mit fk(t)=k(t15)e0,01t+15kf_{k}(t)=k \cdot(t-15) \cdot e^{-0,01 t}+15 k.
a) Bestimme kk für mindestens 750 Verkäufe täglich. b) Zeige, dass der maximale Verkaufszeitpunkt unabhängig von kk ist. c) Zeige, dass Verkaufszahlen nach dem Maximum sinken. d) Berechne den Zeitpunkt des stärksten Rückgangs. e) Bestimme die maximale und langfristige Verkaufszahl für k=100k=100 und k=200k=200.

See Solution

Problem 25773

Evaluate the limit: limx3x2x12x+3\lim _{x \rightarrow-3} \frac{x^{2}-x-12}{x+3}.

See Solution

Problem 25774

Find the first derivative of g(x)=6x3+27x2+36xg(x)=6 x^{3}+27 x^{2}+36 x. Then find the second derivative and evaluate it at x=2x=-2. Is it concave up or down? Local min or max?

See Solution

Problem 25775

Solve the equation dxdt=3x\frac{dx}{dt}=\frac{3}{x} with initial condition x(0)=5x(0)=5 to find x(t)x(t).

See Solution

Problem 25776

Evaluate the Riemann sum of f(x)f(x) on [2,4][-2,4] using 2 rectangles with equal width and right endpoints.

See Solution

Problem 25777

Estimate limxf(x)\lim_{x \rightarrow \infty} f(x) using the provided values for f(x)f(x) at x=10,100,1000,10000,100000,1000000x = 10, 100, 1000, 10000, 100000, 1000000.

See Solution

Problem 25778

Compute the integral: 01(24x5+4x3)e4x6+x4dx=\int_{0}^{1}(24 x^{5}+4 x^{3}) e^{4 x^{6}+x^{4}} d x=

See Solution

Problem 25779

Approximate the root of f(x)=sin(x)f(x)=\sin(x) using 5 iterations of Newton's Method starting from x0=3.7x_0=3.7, to 5 decimal places.

See Solution

Problem 25780

Calculate the integral 0.133ln(5x)2xdx\int_{0.1}^{3} \frac{3 \ln (5 x)}{2 x} d x and round to 4 decimal places.

See Solution

Problem 25781

Evaluate the integral from 2 to 5 of 10x2+9x\frac{10 x^{2}+9}{\sqrt{x}} dx.

See Solution

Problem 25782

Evaluate the integral: x28+x3dx\int x^{2} \sqrt{8+x^{3}} \, dx

See Solution

Problem 25783

Find the derivative function ff^{\prime} for each: (a) f(x)=3x5+x4x+2f(x)=-3 x^{5}+x^{4}-x+2, (b) f(x)=e5xf(x)=e^{-5 x}, (c) f(x)=(xcosx)1729f(x)=(x \cos x)^{1729}.

See Solution

Problem 25784

Given f(x)=4x42exf(x)=4 x^{4}-2 e^{x}, find f(x)f'(x) and f(5)f'(5); also find f(x)f''(x) and f(5)f''(5).

See Solution

Problem 25785

A cannon fires a projectile with initial horizontal velocity 866 m/s and vertical velocity 500 m/s. Find the max height: A. 1.54×104 m1.54 \times 10^{4} \mathrm{~m} B. 4.42×104 m4.42 \times 10^{4} \mathrm{~m} C. 1.28×104 m1.28 \times 10^{4} \mathrm{~m} D. 2.50×103 m2.50 \times 10^{3} \mathrm{~m}

See Solution

Problem 25786

Evaluate the integral: 5106xdx=\int_{5}^{10} \frac{6}{x} d x=\square (Provide the exact answer.)

See Solution

Problem 25787

Find the total cost for producing the first 64 units given the marginal cost function 8x\frac{8}{\sqrt{x}}. Total cost: \$

See Solution

Problem 25788

Rewrite the integral 13(18x1)e9x2xdx\int_{1}^{3}(18 x-1) e^{9 x^{2}-x} d x using the substitution u=9x2xu=9 x^{2}-x.

See Solution

Problem 25789

Evaluate the integral: $$\int_{5}^{10} \frac{6}{x} d x = \square($ Type an exact answer.)

See Solution

Problem 25790

A product's monthly sales q(t)=5000t170t2q(t)=5000t-170t^{2} and price p(t)=170t2p(t)=170-t^{2}. Find R(t)R^{\prime}(t) and its value at t=6t=6.

See Solution

Problem 25791

Find the second partial derivatives of the function f(x,y)=3x2+6xy5+2y6f(x, y)=3 x^{2}+6 x y^{5}+2 y^{6}: fxx(x,y)f_{x x}(x, y) and fxy(x,y)f_{x y}(x, y).

See Solution

Problem 25792

Find the first 5 values using Newton's Method for f(x)=x33x2+x+3f(x)=x^{3}-3x^{2}+x+3 starting with x0=1x_{0}=1. Why might it fail?

See Solution

Problem 25793

Determine if the function h(x)h(x) is concave up, down, or neither using these values: (3,10)(-3, -10), (0,3)(0, -3), (3,2)(3, 2), (6,4)(6, 4), (9,5)(9, 5).

See Solution

Problem 25794

Find the critical point of f(x,y)=38x3x2+y+6y2f(x, y)=-3-8x-3x^{2}+y+6y^{2}. What type is it? Select an answer \vee

See Solution

Problem 25795

Find the definite integral using the Fundamental Theorem of Calculus: 41(x2x+1)dx\int_{-4}^{1}\left(x^{2}-x+1\right) d x.

See Solution

Problem 25796

Evaluate the integral: 15x12dx=\int 15 x^{\frac{1}{2}} d x = \square

See Solution

Problem 25797

Find the derivatives fx(2,4)f_{x}(2,4) and fy(2,4)f_{y}(2,4) for the function f(x,y)=6x34xy2+4y4f(x, y)=6 x^{3}-4 x y^{2}+4 y^{4}.

See Solution

Problem 25798

Calculate the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for the function f(x)=3x+1f(x)=3x+1, where h0h \neq 0.

See Solution

Problem 25799

Approximate the solution of ex=3x+9e^{-x}=-3 x+9 using Newton's method. Start with x1=1x_1=1. Find x2x_2, x3x_3, and final xx.

See Solution

Problem 25800

What are the units of the integral 020f(t)dt\int_{0}^{20} f(t) dt where f(x)f(x) is force in Newtons and xx is distance in meters?

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord